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The role of quadratic on-site pinning potentials on determining the size �N� dependence of the disorder
averaged steady state heat current �J� in an isotopically disordered harmonic chain connected to stochastic heat
baths is investigated. For two models of heat baths, namely white noise baths and Rubin’s model of baths, we
find that the N dependence of �J� is the same and depends on the number of pinning centers present in the
chain. In the absence of pinning, �J�Fr�1 /N1/2 while in the presence of one or two pins �J�Fi�1 /N3/2. For a
finite �n� number of pinning centers with 2�n�N we provide heuristic arguments and numerical evidence to
show that �J�n�1 /Nn−1/2. We discuss the relevance of our results in the context of recent experiments.
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Since the seminal paper of Anderson �1�, the physics of
localization in disordered systems has now been studied for
over half a century �2–5�. Recently there has been a renewed
interest in this field with a lot of work on some open ques-
tions such as, for example, the effect of interactions on lo-
calization �6–8�, and the metal-insulator transition in two
dimensions �9�. A number of recent experiments have also
reported detailed studies on localization in varied systems
such as heat conduction in a isotopically disordered nanotube
�10�, electrons in a disordered carbon nanotube �11�, photons
in a waveguide �12�, and sound localization in elastic net-
works �13�. The field is thus still filled with interesting ques-
tions and puzzles. Here in this paper we point out that even
the simple problem of heat conduction in a one-dimensional
disordered harmonic lattice has surprises.

It is well known that all the eigenstates of an electron in a
one-dimensional disordered potential are localized. The elec-
trical current thus decays exponentially with wire length,
making it an insulator. In contrast, in phononic systems, for
example, a disordered harmonic chain, long wavelength
modes are extended and can conduct a significant amount of
heat. How good a heat conductor then is the disordered har-
monic chain? The obvious question to ask is the system size
�N� dependence of the disorder averaged steady state heat
current which we will denote by �J�. It is expected that this
has the form �J��1 /N1−� so that the conductivity scales as
��N�. The dependence of � on the choice of heat baths and
boundary conditions has been somewhat puzzling and has
caused some amount of confusion. We note that heat conduc-
tion in this system is nondiffusive and correspondingly �
�0.

We briefly review earlier work on this problem �14�. In an
important work on the localization of normal modes in the
isotopically disordered harmonic chain �IDHC�, Matsuda and
Ishii �3� �MI� showed that normal modes with frequencies
���d were extended. For a harmonic chain of length N,
given the average mass m= �ml�, the variance
	2= ��ml−m�2�, and interparticle spring constant k, it was
shown that

�d � � km

N	2	1/2
. �1�

They also evaluated expressions for thermal conductivity of
a finite disordered chain connected to �a� white noise baths

and �b� baths modeled by semi-infinite ordered harmonic
chains �Rubin’s model of baths�. In the following we will
also consider these two models of baths and refer to them as
model �a� and model �b�. For model �a� MI used fixed
boundary conditions �BCs� and the limit of weak coupling to
baths, while for case �b� they considered free BCs and this
was treated using the Kubo formalism. They found �=1 /2 in
both cases, a conclusion which we will show is incorrect.
The other two important theoretical papers on heat conduc-
tion in the disordered chain are those by Rubin and Greer
�RG� �15� who considered model �b� and of Casher and
Lebowitz �CL� �16� who used model �a� for baths. RG ob-
tained a lower bound �J�
1 /N1/2 and gave numerical evi-
dence for an exponent �=1 /2 and this was later proved rig-
orously by Verheggen �17�. On the other hand, for model �a�,
CL found a rigorous bound �J�
1 /N3/2 and simulations by
Visscher with the same baths supported the corresponding
exponent �=−1 /2. In a more recent work �18�, one of us
�A.D.� gave a unified treatment of the problem of heat con-
duction in disordered harmonic chains connected to baths
modeled by generalized Langevin equations and showed that
models �a� and �b� were two special cases. An efficient nu-
merical scheme was proposed and used to obtain the expo-
nent � and it was established that �=−1 /2 for model �a�
�with fixed BC� and �=1 /2 for model �b� �with free BC�. It
was also pointed out that, in general, � depended on the
spectral properties of the baths.

Here we apply the same formulation as developed in �18�
to understand in detail the role of BCs �and more generally
the presence of pinning potentials� on heat transport in the
IDHC connected to either white noise �model �a�� or Rubin
baths �model �b��. We show that with the same kind of pin-
ning, the exponent � is the same for the two different bath
models. The pinning potentials strongly scatter low fre-
quency waves and hence can be expected to lower the heat
current. Surprisingly, we find that even the exponent �
changes with the number of pinning centers. We also provide
expressions for the asymptotic value of �J� for various cases.

The Hamiltonian of the IDHC considered here is

H = 

l=1

N
pl

2

2ml
+ 


l=1

N−1
1

2
k�xl+1 − xl�2 +

1

2
k��x1

2 + xN
2 � , �2�

where �xl , pl� denote the displacement and momentum of the
particle at lattice site l. The random masses �ml� are chosen
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from a uniform distribution between �m−�� to �m+��. The
strength of on-site potentials at the boundaries is k�. The
particles at two ends are connected to heat baths at tempera-
ture TL and TR. The heat reservoirs are modeled by general-
ized Langevin equations �18–20�. The steady state classical
heat current through the chain is given by

J =
kB�TL − TR�

4�


−



d�TN��� , �3�

where

TN��� = 4�2����G1N����2, Ĝ��� = Ẑ−1/k ,

and

Ẑ = �− �2M̂ + �̂ − �̂����/k ,

where M̂ and �̂ are, respectively, the mass and force matrix

for the harmonic chain and Ĝ is the Green’s function of the
chain connected to baths. The self-energy correction in the

Green’s function �̂, coming from the baths, is an N�N ma-
trix whose only nonzero elements are �11=�NN=���� and
����=Im���. For white noise baths ����=−i�� where � is
the coupling strength with the baths, while in the case of
Rubin’s baths

���� = k�1 − m�2/2k − i��m/k�1/2�1 − m�2/�4k��1/2� .

We have assumed that the RG bath has spring constant k and
equal masses m. We note that TN��� is the transmission co-
efficient of phonons through the disordered chain. To extract
the asymptotic N dependence of �J� we need to determine the
Green’s function element G1N���. It is convenient to write
the matrix elements Z11=−m1�2 /k+1+k� /k−� /k
=−m1�2 /k+2−�� where ��=� /k−k� /k+1 and similarly
ZNN=−mN�2 /k+2−��. Following the techniques used in
�16,18� we have

�G1N����2 = k−2��N����−2 �4�

with

�N��� = D1,N − ���D2,N + D1,N−1� + ��2D2,N−1,

where �N��� is the determinant of Ẑ and the matrix elements
Dl,m are given by the following product of �2�2� random

matrices T̂l:

D̂ = �D1,N − D1,N−1

D2,N − D2,N−1
	 = T̂1T̂2 ¯ T̂N, �5�

where

T̂l = �2 − ml�
2/k − 1

1 0
	 .

We note that the information about bath properties and
boundary conditions are now contained entirely in �����
while D̂ contains the system properties. It is known that
�Dl,m��ecN�2

for �l−m��N �3�, where c is a constant, and so
we need to look only at the low frequency ���1 /N1/2� form
of ��. We now proceed to examine various cases. For model

�a� free BCs correspond to k�=0 and so ��=1− i�� /k while
for model �b� free boundaries correspond to k�=k and this
gives, at low frequencies, ��=1− i�m /k�1/2�. Other values of
k� correspond to pinned boundary sites with an on-site po-
tential kox2 /2 where ko=k� for model �a� and ko=k�−k for
model �b�. The main difference, from the unpinned case, is
that now Re�����1. The arguments of �18� then immedi-
ately give �=1 /2 for free BCs and �=−1 /2 for fixed BCs
for both bath models. The arguments consisted of two parts:
�i� it was observed numerically that the transmission coeffi-
cients at low frequencies for the ordered and disordered
chain were almost the same, and �ii� an asymptotic analysis
was then carried out for the ordered case, for which T could
be obtained exactly for any bath spectral properties �an im-
proved version of those arguments is given below�.

For the choice of parameters �= �mk�1/2, the imaginary
part of �� is the same for both bath models, and we expect,
for large system sizes, the actual values of the current to be
the same in both cases. This can be seen in Fig. 1 where we
show the system size dependence of the current for the vari-
ous cases. The current was evaluated numerically using Eq.
�3� and averaging over many realizations ��4–100�. We also
show the exact asymptotic forms for the current which we
will discuss later. Note that for free BCs, the exponent �
=1 /2 settles to its asymptotic value at relatively small values
�N�103� while, with pinning, we need to examine much
longer chains �N�105�. We also find that the presence of a
single pinning center in the IDHC is sufficient to change the
value of � from 1 /2 to −1 /2 �see Fig. 2�. These results
clearly show that, for both models �a� and �b�, the exponent
� is the same and is controlled by the presence or absence of
pinning in the IDHC.

Next we try to better understand the above results. As
mentioned before only modes ���d are involved in con-
duction. It was noted in �18� that in this low frequency re-
gime we can approximate �TN���� by the transmission coef-
ficient of the ordered chain TN

O���. We then obtain

100 1000 10000 100000
N

10
-6

10
-4

10
-2

<
J>

Model (a) free BC
Model (b) free BC
Model (a) fixed BC
Model (b) fixed BC

FIG. 1. �Color online� Plot of �J� vs N for free BCs �n=0� and
fixed BCs �n=2�. Results are given for both models �a� and �b� of
baths. The two straight lines correspond to the asymptotic expres-
sions given in Eqs. �10� and �11�. We used parameters m=1, �
=0.5, k=1,�=1, TL=2, TR=1, and ko=1. The error in the measure-
ments is much smaller than the size of the symbols.
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�J� � �TL − TR�
0

�d

TN
O���d� . �6�

For model �a�, TN
O in the limit N→ is effectively given by

�21�

TO��� =
��2�4mk − m2�2

k�2 + ��2 + m�k − k����2 . �7�

We then find for free BCs �k�=0�, TO����1 while for fixed
BCs �k��0�, TO�����2. Using Eq. �6� then immediately
gives the asymptotic N dependence for the two BCs. Our
results are valid even in the weak coupling limit ��1 and
this means that the result given by MI for model �a� in the
weak coupling limit is incorrect. Our numerics supports this
conclusion. We also compute the transmission coefficient of
the ordered chain �as N→� in the presence of a single
pinning at one boundary,

T
O��� =

2��2�4mk − m2�2

�4�4�2 + k���k�� + 4�2��
,

with

� = �2 + km, � = k� − m�2, �8�

and we again find TO��2, for k��0. This confirms our
numerics that the asymptotic N dependence of �J� is analo-
gous for the IDHC with single or double pinning centers. For
model �b�, the transmission coefficient of the ordered chain,
pinned at the two boundary sites with ko=k�−k, is given
effectively by �as N→�

TO��� =
2k2 sin2 q

2k2 sin2 q + ko
2 , �9�

where �=2�k /m�1/2 sin�q /2�. As expected, for ko=0 we have
TO=1 while for ko�0, TO��2. The above qualitative analy-
sis thus shows that the effect of introducing pinning poten-
tials is to pinch the band of conducting modes �between 0
−�d� from the zero frequency side and thus lower �J�.

Our asymptotic analysis also allows us to make predic-
tions, on the dependence of �J�, on various system param-
eters such as mass variance, spring constant, etc. Here we
denote �J�Fr for �J� in the absence of pinning while �J�Fi
represents �J� in the presence of double pinnings at the
boundaries. From Eq. �6� and the forms of TO��� in various
cases we get

�J�Fr = Ac
kB�TL − TR�

�
� km

N	2	1/2
, �10�

�J�Fi = A�c�
kB�TL − TR�

�
� km

N	2	3/2
, �11�

where c=2��mk�1/2 / ��2+mk�, 1 for model �a� and model
�b�, respectively. For fixed boundaries we have c�
=��mk�1/2 /ko

2, mk /ko
2 for model �a� and model �b�, respec-

tively. A ,A� are constant numbers. We find that for model �b�
our numerical results agree with an exact expression for �J�Fr
due to Papanicolau �apart from a factor of 2�� and this gives
A=�3/2�0

dt�t sinh��t�� / ��t2+1 /4�1/2cosh2��t���1.084 17
�see �17��. We note that this differs from the expression given
in �3�. For fixed boundaries we find numerically that A�
�17.28 and the fit is shown in Fig. 1. Based on our analyti-
cal and numerical results, we believe that the expression in
�17� is in error by a 2� factor.

Until now, using numerical results and heuristic argu-
ments, we have arrived at the result that for a IDHC, in the
absence of any pinning potential, �=1 /2 while the presence
of one or two pinned sites changes the exponent to
�=−1 /2. This is true both for white noise and Rubin’s bath.
It is natural to now asks what happens in the presence of
more numbers of pinning centers. It is expected that more
pinning centers will lead to enhanced scattering of low fre-
quency phonons and decrease the heat current but it is not
obvious as to whether the exponent � changes. For a finite
fraction of sites on the lattice having pinning potentials, it is
known that �J��e−cN �8�. Here we investigate the case with
a finite number, say n, of pinning sites. Numerically it be-
comes difficult to determine � for n�4 as, with more pins,
the heat current becomes very small at large system sizes and
numerical errors become significant. In Fig. 2 we show nu-
merical results for n=3,4, where the extra pinning potentials
with ko=1 are placed in the bulk of the chain with equal
separations. We find ��−1.03,−1.38, respectively for n
=3,4, which are clearly different from the n=1,2 value �
=−0.5. Let us now see what our earlier heuristic arguments
give, for n=3. We again find that the low frequency behav-
iors of �N��� are similar for the disordered and ordered lat-
tices. Let us therefore find the form of �N for the ordered
case. Let N=2M +1 with the 1st, �M +1�th, and Nth sites

being pinned. Except for T̂M+1= T̂� all the other T̂ls’ are iden-

tical and given by T̂, say. If we denote D̂N= T̂N and D̂N�

= T̂MT̂�T̂M = D̂MT̂�D̂M, then using the fact that for the ordered
lattice D1N=sin q�N+1� /sin�q�, where cos�q�=1−m�2 / �2k�,
and carrying out the matrix multiplications above we find
that at low frequencies D1N� is larger than D1N by a factor
�1 /sin�q��1 /�. This means that TN for the three-pin case

100 10000 1000000
N

10
-8

10
-6

10
-4

10
-2

<
J>

Single pinning
Triple pinning
Four pinning

FIG. 2. �Color online� Plot of �J� vs N for n=1,3 ,4 pinning
centers for model �b�. Parameters are same as in Fig. 1 and for these
parameters model �a� results are almost indistinguishable for N
�103. The straight lines have slopes −1.47, −2.03, and −2.38. The
error bars shown are for disorder average and are of the same order
as numerical errors.
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will have an extra factor of �2 compared to the two-pin case.
Correspondingly one expects, using Eq. �6�, an exponent �
=−3 /2. The argument can be extended to the case of n
2
pins �two of which are in the boundaries� in which case we
get

� = 3/2 − n . �12�

Our numerical results for n=3,4 �see Fig. 2� are consistent
with this prediction though we are not able to verify the
precise value of the exponent.

Finally we note that the calculation by CL �16� for the
lower bound on current, in the case of two pinning centers
�fixed boundaries� in model �a�, can be extended to the case
with more pins. The argument by CL consists in evaluating
�D1N

2 � by looking at the disorder averaged direct product

�D̂ � D̂�=�l�Q̂l� where Q̂l= T̂l � T̂l. In the CL case �Q̂l�= Q̂

for all Q̂ and an analysis of the eigenvalues of Q̂ led to the
result �D1N

2 ��ecN�2
. In our case, say for the case of n=3 with

an additional pinning at site l=M +1, �Q̂M+1�= Q̂� is different

and we have �D̂ � D̂�= Q̂MQ̂�Q̂M. A careful analysis of this
then gives �D1N

2 ���−2ecN�2
. Using this in Eq. �3� gives

�J�3
C�0
d��4e−cN�2

�O�N−5/2�, where c and C are con-
stants. In general we get �J�n
O�N−n+1/2� for 2�n�N.

Quantum case. For a Hamiltonian of the form of Eq. �2�
where now �xl , pl� are Heisenberg operators, the steady state
quantum heat current through the IDHC in the linear re-
sponse regime is given by

Jq =
kB�TL − TR�

4�


−



d�TN���� ��

2kBT
	2

cosech2� ��

2kBT
	 ,

where TN��� is the same as Eq. �3� and T= �TL+TR� /2. Fol-
lowing our derivation for the classical system we see that the
asymptotic N dependence of �Jq� is determined by TN���
which is here exactly the same as the classical case. For any
fixed temperature, however small, at sufficiently large sys-
tem sizes we will have ��d�kBT, and hence within this
cutoff frequency the factor ��� /kBT�2cosech��� /kBT�2→1.
Hence for large system sizes we always get the classical

result. The approach to the asymptotic behavior though will
be different.

Discussion. In real experiments heat baths usually have a
finite bandwidth making the noise correlated, as in Rubin’s
model. Here we have shown that for heat conduction in the
IDHC these noise correlations do not affect the exponent �
�note that a bath for which ���� depends nonlinearly on � at
small frequencies can affect ��. We have elucidated the role
of boundary conditions and shown that the actual value of �
depends on the number of pinned sites. Our results are also
valid for bond disorder. We have provided explicit expres-
sions for the currents which, apart from giving the system
size dependence, also give the dependence on various other
parameters such as mass variance, coupling to baths, etc. We
also emphasize that heat conduction through IDHC is non-
diffusive. Our physical understanding is as follows. In the
presence of mass or bond disorder phonons are scattered co-
herently giving rise to localization and low transmission.
Long wavelength phonons with ���d �see Eq. �1�� are rela-
tively unaffected and dominate heat conduction in such dis-
ordered materials. Now the introduction of pinning centers
causes strong scattering of even the low frequency modes
and, as we have shown, significantly reduces the current. We
obtain the surprising and nontrivial result that the exponent �
giving the system size dependence of current changes lin-
early with the number of pinning centers. There are now
experimental measurements of heat conduction in one-
dimensional systems such as nanotubes and nanowires
�10,22� and molecular wires �23�. At low temperatures one
can neglect anharmonic effects and it will be interesting to
see if our prediction of the strong reduction of heat current,
by substrate potentials at localized points on a disordered
wire, can be observed. While our results are for a simple
classical model we expect the effect of pinning to be quite
generic and should be true for systems with more compli-
cated phonon dispersions. It will be interesting to see the
effect of pinning potentials in heat conduction in two and
three dimensions.

A.D. thanks David Huse for useful discussions.
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