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Free scalar field theory on 2-dimensional flat spacetime, cast in diffeomorphism invariant guise by

treating the inertial coordinates of the spacetime as dynamical variables, is quantized using loop quantum

gravity (LQG) type ‘‘polymer’’ representations for the matter field and the inertial variables. The quantum

constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in

LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete

set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation-

annihilation modes and (b) canonical transformations corresponding to conformal isometries, are

represented as operators on the physical Hilbert space. None of these constructions suffer from any of

the ‘‘triangulation’’-dependent choices which arise in treatments of LQG. In contrast to the standard Fock

quantization, the non-Fock nature of the representation ensures that the group of conformal isometries as

well as that of the gauge transformations generated by the constraints are represented in an anomaly free

manner. Semiclassical states can be analyzed at the gauge invariant level. It is shown that ‘‘physical

weaves’’ necessarily underlie such states and that such states display semiclassicality with respect to, at

most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a

fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in

LQG.
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I. INTRODUCTION

This work is devoted to an application of canonical loop
quantum gravity (LQG) techniques to the quantization of a
generally covariant, field theoretic toy model which goes
by the name of parametrized field theory (PFT). PFT is just
free field theory on flat spacetime, cast in a diffeomorphism
invariant disguise. It offers an elegant description of free
scalar field evolution on arbitrary (and in general curved)
foliations of the background spacetime by treating the
‘‘embedding variables’’ which describe the foliation as
dynamical variables to be varied in the action in addition
to the scalar field. Specifically, let XA ¼ ðT; XÞ denote
inertial coordinates on 2 dimensional flat spacetime. In
PFT, XA are parametrized by a new set of arbitrary coor-
dinates x� ¼ ðt; xÞ such that for fixed t, the embedding
variables XAðt; xÞ define a spacelike Cauchy slice of flat
spacetime. General covariance of PFT ensues from the
arbitrary choice of x� and implies that in its canonical
description, evolution from one slice of an arbitrary folia-
tion to another is generated by constraints. While 2 dimen-
sional PFT has been quantized in a Fock representation for
the matter fields in Refs. [1,2], here we are interested in the

construction of an LQG type representation for both the

embedding as well as the matter fields, along the lines of
Ref. [3]. The usefulness of this exercise for canonical LQG
can only be gauged in the context of the current status of
the field, a brief discussion of which we now turn to.
LQG is a non-perturbative approach to quantum gravity

which, in its canonical version, attempts to construct a
Dirac quantization of a Hamiltonian description of gravity
in terms of a spatial SUð2Þ connnection. and its conjugate
electric field. The strength of this approach is that it con-
stitutes, for the most part, an extremely conservative devel-
opment and application of canonical quantization tech-
niques to gravity (see for e.g. the reviews [4–7]). This
conservative union of the principles of quantum mechanics
with those of classical gravity has yielded many beautiful
results such as a satisfactory treatment of spatial diffeo-
morphisms [8,9], discrete spatial geometry [10–12], a cal-
culation of black hole entropy [13,14], and a uniqueness
theorem for its underlying representation [15,16].
However, a necessity for radical ideas has arisen in the
treatment of quantum dynamics [17,18] as well as in that of
semiclassical issues [19–21].
The key obstruction to a completely conservative treat-

ment stems from the fact that in LQG only certain non-
local functionals of the connection, namely, the holono-
mies around spatial loops, can be promoted to quantum
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operators rather than the connection itself.1 As a result, all
questions of interest (including that of the quantum dy-
namics defined by the Hamiltonian constraint which is a
local function of the connection and triad) need to be
phrased in terms of holonomy operators. Since holonomy
operators associated with close by loops have actions un-
related by any sort of continuity, this leads to a situation
where a choice of a subset of the (uncountable) set of all
holonomy operators (or equivalently, the spatial loops
labelling them) becomes necessary. We shall loosely refer
to such choices as ‘‘triangulation’’ choices since, often, the
family of loops is chosen to lie on some set of triangula-
tions of the spatial manifold. Since there seems to be no
natural choice independent of the intuition of the re-
searcher, this leads to proposals which may be seen as
radical or ad hoc depending on one’s taste.

In order to test these proposals it is necessary to have a
‘‘perfect’’ toy model in which an LQG type of quantization
can be constructed which is free from any triangulation
ambiguities. What is needed is a generally covariant, field
theoretic (with an infinite number of true degrees of free-
dom, since many of the difficulties can be traced to the field
theoretic nature of gravity) system in which all steps of an
LQG type quantization procedure can be carried out in a
triangulation independent manner. As we show in this
work, just such a model is provided by 2 dimensional
parametrized field theory on S1 � R. Specifically, we con-
struct, in a triangulation independent manner: an appropri-
ate kinematic ‘‘holonomy’’ algebra and its LQG type
‘‘polymer’’ representation on a kinematic Hilbert space
H kin, a representation on H kin of both (the finite trans-
formations generated by) the constraints and an over-
complete set of gauge invariant observables, the group
averaging map [9,22] and the physical state space H phys

which naturally inherits a representation of the Dirac ob-
servables from that on H kin.

The above quantization of PFT offers an arena in which
proposals for quantum dynamics developed for LQG may
be tested against the manifestly triangulation/regulariza-
tion free group averaging techniques used in this work.
Further, semiclassical issues can be examined at the physi-
cal state level since both H phys and representation of an

overcomplete set of Dirac observables thereon, are avail-
able. This is in contrast to LQG wherein most current
proposals are defined on H kin with the hope that they
may still be useful at the physical state level. Again, since
the quantization here admits a representation of Dirac
observables on H kin as well as H phys, it offers a useful

testing ground for proposed constructions of semiclassical

states in LQG. Finally, since PFT also admits the usual
Fock space quantization of the scalar field [1,2], this can be
compared with the ‘‘polymer’’ quantization presented
here. This comparison is useful for similar ‘‘graviton
from LQG’’ issues [23] in canonical LQG.
The layout of the paper is as follows. Section II contains

a brief review of classical PFT on S1 � R. Details may be
found in [24]. In Sec. III,H kin is constructed as the tensor
product of Hilbert spaces for the matter and embedding
sectors, each of which supports a polymer representation of
suitably defined LQG- type operators. It is shown that
H kin also supports a unitary representation of the finite
canonical transformations generated by the constraints. In
Sec. IV an overcomplete set of gauge invariant (Dirac)
observables corresponding to (a) exponentials of the stan-
dard mode functions of the free scalar field on flat space-
time and (b) conformal isometries, are promoted to
operators on H kin. These operators commute with those
corresponding to finite gauge transformations. In Sec. V,
the physical state space, H phys, is constructed through

group averaging techniques [9,22]. Ambiguities in the
group averaging map are systematically reduced by requir-
ing commutativity with the Dirac observables and super-
selection sectors are described, each of which provide a
cyclic, non-separable representation of the algebra gener-
ated by the gauge invariant operators of Sec. IV. Section VI
is devoted to a preliminary discussion of semiclassical
issues. It is shown that, at most, only a countable subset
of the overcomplete (and uncountable) set of Dirac ob-
servables of type (a) can be approximated by semiclassical
states in H phys. Further, it is shown that any such state

must be characterized by a suitably defined ‘‘physical’’
weave. Two issues (connected with the S1 spatial topology
and the treatment of zero modes) are addressed in Sec. VII.
Section VIII contains a discussion of our results as well as
of open issues.
In the interests of brevity, we shall refrain from provid-

ing detailed proofs where such proofs are straightforward.
Some lemmas are proved in the Appendices A and B. The
dimensions of various quantities and our choice of units are
displayed in Appendix C.

II. CLASSICAL PFT ON S1 �R

We provide a brief review of classical 2 dimensional
PFT. In sections II A and II B we shall implicitly assume
that the spatial topology is that of a circle. The consequen-
ces of this nontrivial spatial topology on the formalism will
be made explicit in Sec. II C.

A. The action for PFT

The action for a free scalar field f on a fixed flat 2-
dimensional spacetime in terms of global inertial coordi-
nates XA, A ¼ 0, 1 is

1The reason for this is the lack of regularity in the action of the
holonomy operators: while, classically, the connection at a point
can be obtained from the holonomy of a loop containing the
point in the limit that the loop is infinitesimally small, the limit
of the corresponding operators does not exist in the LQG
representation.
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S0½f� ¼ � 1

2

Z
d2X�AB@Af@Bf; (1)

where theMinkowski metric in inertial coordinates,�AB, is
diagonal with entries ð�1; 1Þ. If instead, we use coordi-
nates x�, � ¼ 0, 1 (so that XA are ‘‘parametrized’’ by x�,
XA ¼ XAðx�Þ), we have

S0½f� ¼ � 1

2

Z
d2x

ffiffiffiffi
�

p
���@�f@�f; (2)

where ��� ¼ �AB@�X
A@�X

B and � denotes the determi-

nant of ���. The action for PFT is obtained by considering

the right-hand side of (2) as a functional, not only of�, but
also of XAðxÞ i.e. XAðxÞ are considered as 2 new scalar
fields to be varied in the action [��� is a function of XAðxÞ].
Thus

SPFT½f; XA� ¼ � 1

2

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffi
�ðXÞ

q
���ðXÞ@�f@�f: (3)

Note that SPFT is a diffeomorphism invariant functional of
the scalar fields fðxÞ, XAðxÞ. Variation of f yields the
equation of motion @�ð ffiffiffiffi

�
p

���@�fÞ ¼ 0, which is just

the flat spacetime equation �AB@A@Bf ¼ 0 written in the
coordinates x�. On varying XA, one obtains equations
which are satisfied if �AB@A@Bf ¼ 0. This implies that
XAðxÞ are undetermined functions (subject to the condition
that determinant of @�X

A is non-vanishing). This 2
functions-worth of gauge is a reflection of the 2 dimen-
sional diffeomorphism invariance of SPFT. Clearly the dy-
namical content of SPFT is the same as that of S0; it is only
that the diffeomorphism invariance of SPFT naturally al-
lows a description of the standard free field dynamics
dictated by S0 on arbitrary foliations of the fixed flat
spacetime.

B. Hamiltonian formulation of PFT

In the previous subsection, XAðxÞ had a dual interpreta-
tion—one as dynamical variables to be varied in the action,
and the other as inertial coordinates on a flat spacetime. In
what follows we shall freely go between these two
interpretations.

We set x0 ¼ t and fx�g ¼ ft; xg. We restrict attention to
XAðx�Þ such that for any fixed t, XAðt; xaÞ describe an
embedded spacelike hypersurface in the 2-dimensional
flat spacetime (it is for this reason that XAðxÞ are called
embedding variables in the literature). This means that, for
fixed t, the functions XAðxÞ must be such that the symm-
metric form qab defined by

qabðxÞ :¼ �AB
@XAðxÞ
@x

@XBðxÞ
@x

(4)

is a 1-dimensional Riemannian metric. This follows from
the fact that qabðxÞ is the induced metric on the hypersur-
face in the flat spacetime defined by XAðxÞ at fixed t.

A 1þ 1 decomposition of SPFT with respect to the time
‘‘t,’’ leads to its Hamiltonian form:

SPFT½f; XA;�;�A;N
A� ¼

Z
dt

Z
d2xð�A

_XA þ �f _f

� NAHAÞ: (5)

Here �f is the momentum conjugate to the scalar field f,

�A is the momenta conjugate to the embedding variables
XA, NA are Lagrange multipliers for the first class con-
straints HA. It turns out that the motions on phase space
generated by the ‘‘smeared’’ constraints,

R
d2xðNAHAÞ

correspond to scalar field evolution along arbitrary folia-
tions of the flat spacetime, each choice of foliation being in
correspondence with a choice of multipliers NA. Since the
constraints are first class they also generate gauge trans-
formations and, as in general relativity, the notions of
gauge and evolution are intertwined.
Since free scalar field theory in 2 dimensions finds its

simplest expression in terms of left and right movers, it is
useful to make a point canonical transformation to light
cone embedding variables X�ðxÞ :¼ TðxÞ � XðxÞ (here we
have set X0 ¼ T, X1 ¼ X). Denoting the conjugate embed-
ding momenta by ��ðxÞ, and setting H� ¼ H0 �H1, the
action takes the form

S ¼
Z
dt

Z
dx½�f _fþ�þ _Xþ þ�� _X� � NþHþ

� N�H��: (6)

where N� are the new Lagrange multipliers appropriate to
H�. Explicitly, the constraints H� are given by

H�ðxÞ ¼ ½��ðxÞX�0ðxÞ � 1
4ð�f � f0ÞðxÞð�f � f0ÞðxÞ�:

(7)

Note that while X�ðxÞ, fðxÞ transform as scalars under
spatial coordinate transformations, ��, �f, N� transform

as scalar densities (or equivalently as spatial vector fields).
The Poisson brackets between various fields are given by

ffðxÞ; �fðx0Þg ¼ �ðx; x0Þ; fX�ðxÞ;��ðx0Þg ¼ �ðx; x0Þ;
(8)

and the remaining brackets are zero. Here �ðx; x0Þ is the
delta function on S1.
To complete the transition to variables closely related to

the left and right movers of free scalar field theory [24], we
perform a canonical transformation on the matter varia-
bles. ðf; �fÞ ! ðYþ; Y�Þ. Here Y�ðxÞ ¼ �fðxÞ � f0ðxÞ
(strictly speaking this transformation is not invertible
when the spatial topology is S1 due to the existence of
zero modes; we shall return to this issue in Sec. III). The
Poisson brackets between the scalar densities, Y�, are
given by
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fY�ðxÞ; Y�ðx0Þg ¼ �½@x�ðx; x0Þ � @x0�ðx0; xÞ�
fY�ðxÞ; Y�ðx0Þg ¼ 0:

(9)

The constraints are now

H�ðxÞ ¼ ½��ðxÞX�0ðxÞ � 1
4Y

�ðxÞ2�: (10)

and the constraint algebra is

fH�½N��; H�½M��g ¼ H�½LN�M��
fH�½N��; H�½M��g ¼ 0

(11)

Here LN denotes the Lie derivative with respect to the 1-
dimensional spatial vector field with component NðxÞ in
the coordinate system ‘‘x.’’ The action of the constraints on
the phase space variables can be expressed as follows. Let
�� ¼ ðY�;��Þ, we have

f��ðxÞ; H�½N��g ¼ LN���ðxÞ
f��ðxÞ; H�½N��g ¼ 0;

(12)

Thus, on the set of variables��, infinitesimal gauge trans-
formations act as diffeomorphisms on S1, and there is a
split of the constraints and the phase space variables into
commuting ‘‘þ’’ and ‘‘�’’ parts which correspond to the
usual right and left moving sectors of free scalar field
theory. The action of the constraints on the embedding
variables X�ðxÞ preserves this split:

fX�ðxÞ; H�½N��g ¼ N�ðX�Þ0; (13)

fX�ðxÞ; H�½N��g ¼ 0: (14)

Indeed, the above equations seem to indicate that infini-
tesimal gauge transformations, once again, act as diffeo-
morphisms on S1; however, as we shall see in the next
subsection, this interpretation is not strictly true for
Eqs. (13) and (14) due to the nonexistence of global, single
valued coordinates on S1.

C. Consequences of spatial topology ¼ S1

1. Conditions on the canonical variables

S1 does not admit a global single valued coordinate
system. However, at the cost of introducing appropriate
periodic/quasiperiodic boundary conditions on the fields
we may choose x to be the standard angular coordinate,
x 2 ½0; 2�� with the identification x ¼ 0� x ¼ 2�. The
Minkowskian coordinates XA ¼ ðT; XÞ in the action (1) are
chosen so that T 2 ð�1;1Þ, X 2 ð�1;1Þ with the iden-
tifications X � X þ 2�. The above specifications on x, X
imply the following conditions on the canonical embed-
ding variables and the Lagrange multipliers:

(i) X�ð2�Þ � X�ð0Þ ¼ �2�.
(ii) Any two sets of embedding data ðXþ

1 ðxÞ; X�
1 ðxÞÞ andðXþ

2 ðxÞ; X�
2 ðxÞÞ are to be identified if there exists an

integer m such that Xþ
1 ðxÞ ¼ Xþ

2 ðxÞ þ 2m� 8 x 2
½0; 2�� and X�

1 ðxÞ ¼ X�
2 ðxÞ � 2m� 8 x 2 ½0; 2��.

(iii) ��ðxÞ; N�ðxÞ and their spatial derivatives to all
orders, as well as the spatial derivatives to all orders
of the embedding coordinates X�ðxÞ are periodic on
½0; 2�� with period 2�. This follows from the 1þ 1
Hamiltonian decomposition of (3) and the fact that
@XA

@x� in Eq. (4) is single valued on S1 � R.

An additional ‘‘nondegeneracy’’ condition arises
from (4):

(iv) �ðX�Þ0 > 0.
Since f in (1) is a single valued function on S1 � R, it

follows that the matter phase space variables ðf;�fÞ and
their spatial derivatives to all orders are also periodic
functions on ½0; 2��. Note also that the delta function
�ðx; yÞ in (8) and (9) is periodic in both its arguments.

2. Finite gauge transformations

Whereas Eq. (12) implies that finite gauge transforma-
tions act on ð��; Y�Þ as spatial diffeomorphisms on S1, as
remarked earlier the case of the embedding variables X� is
more subtle as X� are not single valued fields on S1 by
virtue of (i), Sec. II C 1. Therefore, evolution of X� under
the flow generated by the constraints is better understood in
terms of transformations on the universal cover of S1 as
follows.
Unwind S1 to its universal cover R. Quasiperiodic

boundary conditions obeyed by the embeddings suggest
that their extension to R satisfies:

X�
extðx� 2n�Þ :¼ X�ðxÞ � 2n� (15)

where x 2 ½0; 2�� and n 2 Z. The vector fields N�ðxÞ on
S1 extend to periodic vector fields N�

ext on R so that
N�

extðxþ 2n�Þ ¼ N�ðxÞ, x 2 ½0; 2��. Let the 1 parameter
family of (periodic) diffeomorphisms of R generated by
N�

ext be denoted by�½N�
ext; t�. And let�½N�

ext; t�ðxÞ 2 R be
the image of x 2 ½0; 2�� under �½N�

ext; t�. Then it is
straightforward to check that the finite transformations
generated by the constraints on X�ðxÞ are labeled by
�½N�

ext; t� and act as follows:

ð��½N�
ext;t�X

�ÞðxÞ ¼ X�
extð�½N�

ext; t�ðxÞÞ 8 x 2 ½0; 2��
ð��½N�

ext;t�X
�ÞðxÞ ¼ X�ðxÞ 8 x 2 ½0; 2�� (16)

Here ��½N�
ext;t� is the flow generated by Hamiltonian vector

field of H�½N��.
It is also straightforward to see that the action of finite

gauge transformations on the phase space variables �� 2
fY�;��g can be equally well written in terms of the action
of the periodic diffeomorphisms �½N�

ext; t� on the periodic
extensions ��

ext as

ð��½N�
ext;t��

�ÞðxÞ ¼ ��
extð�½N�

ext; t�ðxÞÞ 8 x 2 ½0; 2��
ð��½N�

ext;t��
�ÞðxÞ ¼ ��ðxÞ 8 x 2 ½0; 2�� (17)

Here ��
extðxþ 2n�Þ ¼ ��ðxÞ 8 x 2 ½0; 2��; n 2 Z.
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Since �½N�
ext; t�, 8ðN�

ext; tÞ range over all periodic dif-
feomorphisms of R connected to identity, we label every
finite gauge transformation by a pair of such diffeomor-
phisms ð�þ; ��Þ so that the Hamiltonian flows generated
by H� are denoted by ��� . To summarize: Let ��ðxÞ 2
ðX�ðxÞ, ��ðxÞ; Y�ðxÞÞ and let its appropriate quasiperi-
odic/periodic extension on R be ��

ext. Then we have that,
8x 2 ½0; 2��,
ð�����ÞðxÞ ¼ ��

extð��ðxÞÞ ð�����ÞðxÞ ¼ ��ðxÞ:
(18)

Eqs. (18) imply a left representation of the group of peri-
odic diffeomorphisms of R by the Hamiltionian flows
corresponding to finite gauge transformations:

���
1
���

2
¼ ���

1 ���
2

(19)

���
1
���

2
¼ ���

2
���

1
: (20)

We emphasize that the extended fields are only formal
constructs which are useful for interpreting gauge trans-
formations in terms periodic diffeomorphisms of R. The
spatial slice is always S1 coordinatized by x 2 ½0; 2��with
boundary points identified.

D. Dirac observables

Since finite gauge transformations act as periodic diffeo-
morphisms of R, it follows, directly, that the integral over
x 2 ½0; 2�� of any periodic scalar density constructed
solely from the phase space variables, is an observable.

An analysis of the Hamiltonian equations [24] shows
that the relation between solutions fðXþ; X�Þ of the flat
spacetime wave equation and canonical data ðY�; X�Þ on
the constraint surface is

� 2
@f

@X� ¼ Y�

ðX�Þ0 : (21)

Here f is evaluated at the spacetime point ðXþ; X�Þ defined
by the canonical data. Recall that any solution fðXþ; X�Þ
to the free scalar field equation is of the form

fðXþ; X�Þ ¼ qffiffiffiffiffiffiffi
2�

p þ pffiffiffiffiffiffiffi
2�

p ðXþ þ X�Þ
2

þ X1
n¼1

i

4�n

�ðaðþÞne�inXþ þ að�Þne�inX� � c:cÞ; (22)

where c.c. stands for ‘‘complex conjugate.’’ Equations (21)
and (22) yield an interpretation for the Dirac observables
constructed below.

1. Mode functions

From (21) and (22) and the remarks above, it follows
that

að�Þn ¼
Z
S1
dxY�ðxÞeinX�ðxÞ; n 2 Z; n > 0

(23)

(and their complex conjugates, a�ð�Þn,) are Dirac observ-

ables which correspond to the mode functions að�Þn of

Eq. (22). These observables form the (Poisson) algebra,

fað�Þn; að�Þm�g ¼ �4�in�n;m; fað�Þn; að�Þmg ¼ 0;

fað�Þn�; að�Þm�g ¼ 0: (24)

The Dirac observables corresponding to right-moving sec-
tor ðaðþÞm; aðþÞn�Þ Poisson commute with the observables

corresponding to the left moving sector ðað�Þm; að�Þn�Þ.

2. Zero modes

The quantities q, p in Eq. (22) are referred to as zero
modes of the scalar field and are also realizable as Dirac
observables which are canonically conjugate to each other
[24]. Indeed, it is straightforward to see from (21) and (22),
that p corresponds to p :¼ R

S1 dxY
þðxÞ ¼ R

S1 dxY
�ðxÞ.

However, the degree of freedom corresponding to q is
absent in the phase space coordinates ðX�;��; Y�Þ as a
result of Y� only containing derivatives of f [see Eq. (21)].
Our aim in this work is to construct a triangulation

independent polymer quantization of a generally covariant
field theoretic model. Issues related to the construction of
zero modes [which are anyway mechanical (as opposed to
field theoretic) degrees of freedom] as Dirac observables
serve to distract from this aim. Hence we shall switch off
the zero modes by setting q ¼ p ¼ 0. Since q and p are
canonically conjugate, this can be done consistently. In the
free scalar field action (1) this corresponds to limiting the
space of all scalar fields by the conditions q ¼ 1ffiffiffiffiffi

2�
p �R

S1 dXfðT ¼ 0; XÞ ¼ 0 and p ¼ 1ffiffiffiffiffi
2�

p R
S1 dX

@fðT;XÞ
@T ¼ 0.

In the canonical description of PFT in terms of
ð��; X�; Y�Þ, since q does not appear, we only need to
set the quantity

p :¼ 1ffiffiffiffiffiffiffi
2�

p
Z
S1
dxYþðxÞ ¼ 1ffiffiffiffiffiffiffi

2�
p

Z
S1
dxY�ðxÞ ¼ 0: (25)

Since, as can easily be checked, p commutes with
ð��; X�; Y�Þ as well as the constraints (10), it is consis-
tent to impose (25).
To summarize: The system we consider in this work is

PFT on S1 � R with the zero modes switched off. The
phase space variables are ð��; X�; Y�Þ subject to the
conditions of Sec. II C 1. The symplectic structure is given
by (8) and (9) and the constraints by (10). The degrees of
freedom of the theory reside entirely in the mode coeffi-
cients að�Þn, a�ð�Þn (22) which are expressed as the func-

tions að�Þn, a�ð�Þn on phase space via (23).
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3. Conformal isometries

Free scalar field theory in 1þ 1 dimensions (1) is con-
formally invariant. It turns out that the generators of con-
formal isometries in free scalar field theory are expressible
as Dirac observables in PFT (for details, see Ref. [24]).
Consider the conformal isometry generated by the confor-

mal Killing field ~U on the Minkowskian cylinder. Let ~U
have the components ðUþðXþÞ; U�ðX�ÞÞ in the ðXþ; X�Þ
coordinate system. U� are periodic functions of X� by

virtue of the fact that ~U is smooth vector field on the flat

spacetime S1 � R. These components of ~U naturally cor-
respond to the functions ðUþðXþðxÞÞ; U�ðX�ðxÞÞÞ on the
phase space of PFT. The Dirac observable in PFT corre-
sponding to the generator of conformal transformations in

free scalar field theory associated with ~U is given by

��½U�� ¼
Z
S1
��ðxÞU�ðX�ðxÞÞ: (26)

These observables generate a Poisson algebra isomorphic
to that of the commutator algebra of conformal Killing
fields:

f��½U��;��½V��g ¼ �½½V;U���
f��½U��;��½V��g ¼ 0:

(27)

Here ½V;U�� refer to the� components of the commutator

of the spacetime vector fields ~U, ~V, i.e. ½V;U�� ¼
V� @U�

@X� �U� @V�
@X� . ½V;U�� define functions of the embed-

ding variables X�ðxÞ in the manner described above.
Note that these observables are weakly equivalent, via

the constraints (10) to quadratic combinations of the mode
functions [24]. In the standard Fock representation of
quantum theory (see for e.g. Ref. [1]), these quadratic
combinations are nothing but the generators of the
Virasoro algebra.

As we shall see, the polymer quantization of PFT pro-
vides a representation for the finite canonical transforma-
tions generated by ��½U��. For future reference, it is
straightforward to check that the Hamiltonian flow,
�ð��½U��;tÞ generated by ��½U�� leaves the matter sector

of phase space untouched and acts on the embedding
variables X� as

�ð��½U��;tÞX�ðxÞ ¼ ð�ð ~U;tÞX
�ÞðxÞ: (28)

Here �ð ~U;tÞ denotes the one parameter family of conformal

isometries generated by the conformal Killing field ~U on
spacetime. �ð ~U;tÞ maps the spacetime point ðXþ; X�Þ to

�ð ~U;tÞX
� and hence maps the spatial slice defined by the

canonical data X�ðxÞ to the new slice (and hence the new
canonical data) ð�ð ~U;tÞX

�ÞðxÞ. �ð ~U;tÞ ranges over all con-
formal isometries connected to identity. Any such confor-
mal isometry �c is specified by a pair of functions ��

c so
that �cðXþ; X�Þ :¼ ð�þ

c ðXþÞ; ��
c ðX�ÞÞ. Invertibility of

�c together with connectedness with identity implies that

d��
c

dX� > 0; (29)

and the cylindrical topology of spacetime implies that

��
c ðX� � 2�Þ ¼ ��

c ðX�Þ � 2�: (30)

Thus, we may denote the Hamiltonian flows which gen-
erate conformal isometries by ��c

or, without loss of

generality, by ���
c
with ���

c
acting trivially on the �

sector.
To summarize:���

c
leave the matter variables un-

touched, so that

���
c
Y�ðxÞ ¼ Y�ðxÞ; ���

c
Y�ðxÞ ¼ Y�ðxÞ; (31)

and act on X�ðxÞ as

���
c
X�ðxÞ ¼��

c ðX�ðxÞÞ; ���
c
X�ðxÞ ¼ X�ðxÞ: (32)

Further, since ��½U�� are observables which commute
strongly with the constraints, the corresponding
Hamiltonian flows are gauge invariant. This translates to
the condition that for all

���
c
� ��þ ¼ ��þ � ���

c
���

c
� ��� ¼ ��� � ���

c

(33)

where as before �� label finite gauge transformations.

III. POLYMER QUANTUM KINEMATICS

A. Preliminaries

As in LQG, the polymer quantization is based on suit-
ably defined ‘‘holonomies’’ and the polymer Hilbert space
is spanned by suitably defined ‘‘charge-network’’ states. In
view of the correspondence between finite gauge trans-
formations and periodic diffeomorphisms of R, it is useful
to define periodic and quasiperiodic extensions of charge-
network labels. Hence we define the following.
Definition 1: A charge-network s is specified by the

labels ð�ðsÞ; ðje1 ; . . . ; jenÞÞ consisting of a graph �ðsÞ (by
which we mean a finite collection of closed, nonoverlap-
ping (except in boundary points) intervals which cover
½0; 2��) and ‘‘charges’’ je 2 R assigned to each interval
e. (Note that je ¼ 0 is allowed.) Equivalence classes of
charge networks are defined as follows. The graph �0 is
said to be finer than graph � iff every edge of � is identical
to, or composed of, edges in �0. The charge network s0 is
said to be finer than s iff (a) �ðs0Þ is finer than �ðsÞ (b) the
charge labels of identical edges in �ðsÞ, �ðs0Þ are identical
and the charge labels of the edges of �ðs0Þ which compose
to yield an edge of �ðsÞ are identical and equal to that of
their union in �ðsÞ. Two charge networks are equivalent if
there exists a charge network finer than both. Hence we can
represent each equivalence class by a unique representative
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s such that no two adjacent edges have the same charge.
However, unless otherwise mentioned, s will not neces-
sarily denote this unique choice.

Definition 2: The periodic extension of the charge net-
work s to R is denoted by sext and defined as follows.

Given a graph � as in Definition 1 above, TNð�Þ denotes
the translation of � by 2N�, i.e. TNð�Þ lies in ½2N�; 2ðN þ
1Þ��. We define the extension of � to R as �ext ¼
[N2ZTNð�Þ. The restriction of �ext to any interval I 	 R
is denoted by �extjI so that �extj½0;2�� ¼ �.

Given a charge network s ¼ ð�ðsÞ; ðje1 ; . . . ; jenÞÞ, sext is
specified by the graph �ðsextÞ :¼ �ðsÞext (�ðsÞext denotes
the extension of �ðsÞ toR) and charge labels for each edge
of �ðsextÞ which are such that TNð�ðsÞÞ 	 �ðsextÞ has the
same set of charges which are on �. Thus

(1) On any closed interval IN ¼ ½2N�; 2ðN þ 1Þ��,
N 2 Z, �ðsextÞjIN is naturally isomorphic to �ðsÞ.

(2) The set of charges on �ðsextÞjIN is ðje1 ; . . . ; jenÞ.
We refer to sextj½0;2�� as the restriction of sext to ½0; 2�� so
that sextj½0;2�� ¼ s.

Definition 3: The quasiperiodic extension of the charge
network s to R is denoted by �sext and defined as follows.
Given a charge network s ¼ ð�ðsÞ; ðje1 ; . . . ; jenÞÞ, �sext is

specified by the graph �ð�sextÞ :¼ �ðsÞext and charge labels
for each edge of �ð �sextÞ which are such that TNð�ðsÞÞ 	
�ð�sextÞ has the set of charges which are on � augmented by
2N�. Thus

(1) On any closed interval IN ¼ ½2N�; 2ðN þ 1Þ��,
N 2 Z, �ð�sextÞjIN is naturally isomorphic to �ðsÞ.

(2) The set of charges on �ð�sextÞjIN is ðje1 þ
2N�; . . . ; jen þ 2N�Þ.

Definition 4: The action of periodic diffeomorphisms
with period 2� on �ext, sext, �sext may be defined as follows.
Any periodic diffeomorphism � of R commutes with the
2� translations, TN . Hence its natural action�ð�extÞ on the
extension �ext of graph � preserves periodicity i.e.
ð�ð�extÞj½0;2��Þext ¼ �ð�extÞ. Let the edge �ðeÞ 2 �ð�extÞ
be the image, by� of the edge e 2 �ext. The action of� on
the extensions sext, �sext is defined by

(i) mapping the underlying graph �ðsÞext to �ð�ðsÞextÞ
(ii) labeling the edge �ðeÞ 2 �ð�ðsÞextÞ by the same

charge as the edge e 2 �ðsÞext so that k�ðeÞ ¼ ke.

Denote the resulting periodic/quasiperiodic charge net-
works on R by �ðsextÞ=�ð�sextÞ

B. Embedding sector

1. The *-algebra

The elementary variables which generate the *-Poisson
algebra are, XþðxÞ, Tsþ½�þ�, X�ðxÞ, Ts�½���. Here
Ts�½��� are the holonomy-type functions associated
with the charge networks s�, and are given by

Ts�½��� ¼
Y

e�2�ðs�Þ
exp

�
�ik�

e�
Z
e�

��
�
: (34)

The only nontrivial Poisson brackets are

fX�ðxÞ; Ts�½���g ¼ �ik�
e�Ts�½���

if x 2 Interior ðe�Þ ¼ � i

2
ðk�
e�
I�
þ k�

e�ðIþ1Þ�
ÞTE
s�½���

if x 2 e�
I� \ e�ðI�þ1Þ1 
 I� 
 ðn� � 1Þ

fX�ð0Þ; Ts�½���g ¼ fX�ð2�Þ; Ts�½���g
¼ � i

2
ðk�
e�
1

þ k�
e�
n�
ÞTs�½���;

(35)

where the last Poisson bracket uses the periodicity of the
delta function. The *-relations are given by

ðX�ðxÞÞ� ¼ X�ðxÞ 8 x 2 ½0; 2��
Ts�½���� ¼ T�s�½���;�s�

¼ ð�ðs�Þ; ð�k�
e�
1

; . . . ;�k�
e�
n�
ÞÞ (36)

The action of finite gauge transformations on these ele-
mentary functions is as follows (we only analyze the right-
moving sector; the analysis of the left-moving sector is
identical).
From Eq. (18) we have

��þTsþ½�þ� ¼ Tsþ½ð�þÞ��þ�: (37)

It is straightforward to check, using the periodicity of �þ,
�þ, sþext and the various definitions in Sec. III A that

Tsþ½ð�þÞ��þ� ¼ T�þðsþextÞj½0;2�� ½�þ�: (38)

Finite gauge transformations act on X� as in Eqs. (16) and
(18). To summarize, under finite gauge transformations the
generators of the Poisson algebra transform as

���ðX�ÞðxÞ ¼ X�
extðð��ÞðxÞÞ ¼ X�ðy�Þ � 2�N�

if ð��ÞðxÞ ¼ y� þ 2�N�y� 2 ½0; 2��
���ðX�ÞðxÞ ¼ X�ðxÞ

���ðTs�½���Þ ¼ T�
��ðs�extÞj½0;2�� ½�

��
���ðTs�½���Þ ¼ Ts�½���

(39)

2. Representation of the *-algebra

Denote the kinematic Hilbert space for the� embedding
sectors by H�

E . H
�
E is the closure of the span of the

orthonormal basis of embedding ‘‘charge-network states’’.
Each such state is labeled by a charge network s� and
denoted by Ts� .

2 The inner product is

hTs� ; Ts0� i ¼ �s�;s0� (40)

where �s�;s0� is a Kronecker delta function which is unity

2More precisely, the labeling is by the equivalence class of s�
as in Definition 1, Sec. III A
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when the two charge networks are equivalent and vanishes
otherwise.

The ‘‘�’’ sector operators corresponding to the elemen-
tary functions of the previous section are denoted by

X̂�ðxÞ, T̂s� . T̂s� acts on the charge-network states as

T̂ s�Ts0� :¼ Ts�þs0� ; (41)

where s� þ s0� is the charge network obtained by choos-
ing its underlying graph to be finer than �ðs�Þ, �ðs�0Þ
dividing �ðs�Þ, �ðs0�Þ and assigning charge k�

e� þ k�
e0� to

e� \ e0� where e� 2 �ðs�Þ, e0� 2 �ðs�1 Þ.
The action of X̂�ðxÞ is

X̂ �ðxÞTs� :¼ �x;s�Ts� ; (42)

where, for �ðs�Þ with n� edges,

�x;s� :¼ @k�
e�
I�
Ts� if x 2 Interior ðe�

I�Þ;

1 
 I� 
 n� :¼ @

2
ðk�
e�
I�
þ k�

e�ðIþ1Þ�
ÞTs�

if x 2 e�
I� \ e�ðI�þ1Þ1 
 I� 
 ðn� � 1Þ

(43)

:¼ @

2

�
k�
e�
n�

� 2�

@
þ k�

e�
1

�
Ts� if x ¼ 0

:¼ @

2

�
k�
e�
1

� 2�

@
þ k�

e�
n�

�
Ts� if x ¼ 2�

(44)

The last two equations, (44), implement the boundary
condition X�ð2�Þ � X�ð0Þ ¼ �2� [see (i) of Sec. II C 1.]

It is straightforward to check that Eqs. (41)–(44) provide
a representation of the Poisson bracket algebra (35) so that
quantum commutators equal i@ times the Poisson brackets.
It is also straightforward to verify that the *-relations (36)

on X̂�ðxÞ, T̂s� are implemented by the inner product (40)

so that X̂�ðxÞ are self-adjoint and T̂s� are unitary.

3. Unitary representation of finite gauge transformations

Since the Hamiltonian flows of ��� (18) are real, the

corresponding quantum operators Ûð��Þ must be unitary.
Equations (18) and (19), imply that this unitary represen-
tation must satisfy

Û�ð��
1 ÞÛ�ð��

2 Þ ¼ Û�ð��
1 ���

2 Þ
Û�ð��ÞX̂�ðxÞÛ�ð��Þ�1 ¼ X̂�ðy�Þ � 2�N�

Û�ð��ÞT̂s�Û�ð��Þ�1 ¼ T̂��ðs�Þextj½0;2��:

(45)

where ��ðxÞ ¼ y� þ 2�N�, with y� 2 ½0; 2�� and
N� 2 Z.

We define the action of Ûð��Þ to be

ð��ÞTs� :¼ T�ð �s�extÞj½0;2�� Û�ð��ÞTs� :¼ Ts� : (46)

The appearance of the quasiperiodic extensions �s�ext of the
charge networks s� (see Definition 3, Sec. III A) in the first

equation above may be anticipated from the quasiperiodic
nature of the embedding variables X�ðxÞ (15). Unitarity of
Û�ð��Þ follows straightforwardly:

hÛ�ð��ÞTs�
1
; Û�ð��ÞTs�

2
i ¼ hT�ð �s�

1ext
Þj½0;2�� ; T�ð�s�2extÞj½0;2�� i

¼ ���ð �s�
1ext

Þj½0;2��;��ð �s�
2ext

Þj½0;2��
8 �� ¼ �s�

1
;s�
2

(47)

where we have used the fact that two charge networks are
equal on ½0; 2�� iff their extensions are equal.
From Eq. (46) and Definitions 3,4 of Sec. III A, it

follows that

Û�ð��
1 ÞÛ�ð��

2 ÞTs� ¼ T
��

1
ð��

2
ð �s�extÞj½0;2��Þextj½0;2��

¼ T��
1
ð��

2
ð �s�extÞÞj½0;2��

¼ Tð��
1
���

2
Þð �s�extÞj½0;2��

¼ Û�ð��
1 ���

2 ÞTs� ; (48)

thus verifying the first relation in (45).
Next, we turn to the second relation of (45). We sketch

the proof for the ‘‘þ’’ sector; the proof for the ‘‘�’’ sector
is on similar lines. From (42) and (46) we have that

Û þð�þÞX̂þðxÞÛþð�þÞ�1Tsþ

¼ Ûþð�þÞX̂þðxÞTð�þÞ�1ð �sþextÞj½0;2�� ¼ �x;ð�þÞ�1ð �s�extj½0;2��ÞTsþ :

(49)

It is straightforward to see that

�x;ð�þÞ�1ð �sþextj½0;2��Þ ¼ �yþ;sþ þ 2�Nþ; (50)

which via Eq. (42) obtains the desired result.
Finally, we turn to the last relation of (45). Once again,

we sketch the proof for the ‘‘þ’’ sector; the ‘‘�’’ sector
proof follows analogously. We want to show that

Û þð�þÞT̂sþÛþðð�þÞ�1Þ ¼ T̂�þðsþextÞj½0;2�� : (51)

Since charge-network states form an orthonormal basis in
the Hilbert space, it follows that (51) is equivalent to the
condition that 8sþ1 , sþ2

hTð�þÞ�1ð �sþ
1
Þextj½0;2�� jT̂sþjTð�þÞ�1ð�sþ

2
Þextj½0;2�� i

¼ hTsþ
1
jT̂�þðsþextÞj½0;2�� jTsþ2 i; (52)

which from Eq. (41) is, in turn, equivalent to the equation

�ð�þÞ�1ð �sþ
1
Þextj½0;2��;sþþð�þÞ�1ð �sþ

2
Þextj½0;2�� ¼ �sþ

1
;�þðsþextÞj½0;2��þsþ2 :

(53)

However, (suppressing the ‘‘þ’’ superscript), we have that
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���1ð �s1Þextj½0;2��;sþ��1ð �s2Þextj½0;2�� ¼ ���1ð �s1Þext;sextþ��1ð �s2Þext
¼ �ð �s1Þext;�ðsextÞþð�s2Þext
¼ �ðs1Þext;�ðsextÞþðs2Þext
¼ �s1;�ðsextÞj½0;2��þs2 ; (54)

thus proving (51).

C. Matter sector

1. The *-algebra

The *-algebra is generated by the operators correspond-
ing to the classical holonomiesWs�½Y�� which are defined
as

Ws�½Y�� ¼ exp

�
i

X
e�2Eð�ðs�ÞÞ

l�
e�

Z
e�
Y�

�
: (55)

Here s� :¼ f�ðs�Þ; ðl�
e�
1

; . . . ; l�
e�
m�
Þg are charge networks.

The algebra for the holonomy operators is the analog of
the Weyl algebra for linear quantum fields. Similar to that
case, we need to first evaluate the Poisson brackets,
fPe�l

�
e�

R
e� Y

�;
P
e0�l

�
e0�

R
e0� Y

�g, between the exponents

of pairs of classical holonomies and then use the Baker-
Campbell-Hausdorff lemma [25] to define the algebra on
the holonomy operators in quantum theory.

Let 	e be the characteristic function associated with a
closed interval e and denote the beginning and final points
of e by bðeÞ and fðeÞ so that

	eðxÞ ¼ 1 if x 2 Interior ðeÞ
¼ 1

2 if x ¼ bðeÞ or fðeÞ (56)

¼ 1
2 if x ¼ 0 and fðeÞ ¼ 2�

¼ 1
2 if x ¼ 2� and bðeÞ ¼ 0:

(57)

Here, Eqs. (57) follow from the periodicity of the delta
function. From Eq. (9) it follows that�Z

e�
Y�;

Z
e0�
Y�

�
¼ ��ðe�; e0�Þ
:¼ �ð	e0� j@e� � 	e�j@e0� Þ; (58)

where @e refers to the boundary of e and

	ej@e0 :¼ 	eðfðe0ÞÞ � 	eðbðe0ÞÞ; (59)

so that �X
e�
l�
e�

Z
e�
Y�;

X
e0�
l�
e0�

Z
e0�
Y�

�

¼ � X
e�;e0�

l�
e�l

�
e0��ðe�; e0�Þ: (60)

It follows that the ‘‘Weyl algebra’’ of holonomy operators
is

Ŵðs�ÞŴðs0�Þ ¼ exp

�
� i@

2
�ðs�; s0�Þ

�
Ŵðs� þ s0�Þ;

Ŵðs�Þ� ¼ Ŵð�s�Þ; (61)

where

�ðs�; s0�Þ :¼ X
e�2�ðs�Þ

X
e0�2�ðs0�Þ

l�e l�e0��ðe�; e0�Þ; (62)

with �ðe; e0Þ defined through Eqs. (58) and (59). From the
second equation of (9), it follows that the ‘‘þ’’ and ‘‘�’’
holonomy operators commute, so that, once again, these
sectors can be treated independently.

2. Representation of the *-algebra

It is convenient to define the quantum theory through the
Gelfand- Naimark-Segal (GNS) construction [26]. The
explicit operator action on the basis of charge-network
states is provided after we present the GNS state.
We define the GNS states !�

M on the � holonomy
algebras by specifying their action on the holonomy op-
erators as follows:

!�
MðŴðs�ÞÞ ¼ �s�;�: (63)

Here ‘‘�’’ is the trivial charge network which may be
represented by graph �ð�Þ consisting of the single edge
e ¼ ½0; 2�� with vanishing charge l�e ¼ 0. The Kronecker
delta function �s�;� is unity iff s� ¼ � and vanishes oth-

erwise. It follows from the GNS construction that the
corresponding GNS Hilbert spaces H�

M are spanned by
charge-network states denoted by Wðs�Þ. The inner prod-
uct is

hWðs�Þ;Wðs0�Þi� ¼ �s�;s0� (64)

and the action of the holonomy operators is

Ŵðs�ÞWðs0�Þ ¼ exp

�
� i@�ðs�; s0�Þ

2

�
Wðs� þ s0�Þ:

(65)

Here, as for the embedding sector, s� þ s0� is defined as in
(41).3

It is straightforward to check, explicitly, that Eq. (65)
provides a representation for the first equation of (61).
Verification of the second equation of (61) is equivalent
to showing that 8s�, s0�, s00�,
hWðs0�Þ;ðŴðs�ÞÞyWðs00�Þi�¼hWðs0�Þ;Ŵð�s�ÞWðs00�Þi�:

(66)

Equation (66) follows straightforwardly from (64) and
(65). One needs to use the identity �s�;�s0�þs00� ¼

3While our notation uses charge-network labels, the operators
Ŵðs�Þ and states Wðs�Þ only depend on the equivalence classes
of labels. See also footnote 2 in this regard.
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�s�þs0�;s00� and the easily verifiable fact that �ðs�; s0�Þ is
bilinear and antisymmetric in its arguments.

3. Unitary representation of finite gauge transformations

Since Y� are periodic scalar densities, under finite gauge
transformations their holonomies transform in a similar
manner to those of the embedding momenta. Specifically,
Eq. (18) in conjunction with the periodicity of��, Y�, s�ext
and the various definitions of section III A, imply that

���Ws�½Y�� :¼ Wð��Þðs�extÞj½0;2�� ½Y��: (67)

It is straightforward to see [either explicitly from Eq. (62)
or abstractly using the fact that the periodicity of ��, Y�,
s�ext implies that one is effectively restricting attention to
diffeomorphisms, graphs, charge networks and holonomies
on S1] that

�ðs�; s0�Þ ¼ �ð��ðs�extÞj½0;2��; ��ðs0�extÞj½0;2��Þ: (68)

Equations (65) and (68) imply that the Hamiltonian flow of
(67) induces an automorphism of the Weyl algebra of
holonomies. Note also that Eq. (63) is invariant under the
action of this automorphism. This directly implies that the
group of finite gauge transformations is unitarily repre-
sented in the quantum theory. Let these unitary operators

be denoted, as in the embedding sector, by Û�ð��Þ. Their
explicit action on the charge-network basis can be defined
from the GNS construction to be

Û �ð��ÞWðs�Þ :¼ Wðð��Þðs�extÞj½0;2��Þ: (69)

D. The kinematic Hilbert space

The kinematic Hilbert space H kin is the product of the
Hilbert spaces H�

kin with

H �
kin ¼ ðH�

E �H�
MÞ (70)

so that

H kin ¼ ðHþ
E �Hþ

MÞ � ðH�
E �H�

MÞ: (71)

H�
kin is spanned by an orthonormal basis of equivalence

classes of charge-network states of the form Ts� �Wðs0�Þ
with s�¼f�ðs�Þ;ðk�

e�
1

; . . . ;k�
e�
n�
Þg, s0�¼ f�ðs0�Þ;ðl�

e0�
1

; . . . ;

l�
e0�
m�
Þg.

The results of the previous subsections show that H kin

supports a *-representation of the *-algebras for the matter
and embedding degrees of freedom, as well as a unitary
representation of finite gauge transformations.

Consider, as above, the state Ts� �Wðs0�Þ. The equiva-
lence relation between charge networks is defined in
Definition 1, Sec. III A. Using this equivalence, it is
straightforward to see that we can always choose s�, s0�
such that �ðs�Þ ¼ �ðs0�Þ. Then each edge e� of �ðs�Þ is
labeled by a pair of real charges ðk�e ; l�e Þ. Note that such a
choice of graph and charge pairs is not unique. However, it

is easy to see that a unique choice can be made if we
require that the pairs of charges, ðk�

e� ; l
�
e�Þ, are such that

no two consecutive edges are labeled by the same pair of
charges. We shall denote this unique labeling by s� so that

s� :¼ f�ðs�Þ; ðk�
e�
1

; l�
e�
1

Þ; . . . ; ðk�
e�
n�
; l�
e�
n�
Þg; (72)

with

ke�
I�

� ke�ðI�þ1Þ
or=and le�

I�
� le�ðI�þ1Þ

: (73)

The corresponding charge-network state is denoted by js�i
so that

js�i ¼ Ts� �Wðs0�Þ (74)

with s� defined from s�, s0� in the manner discussed

above. It follows from (46) and (69) that Û�ð��Þ maps
js�i to a new charge-network state. We denote the new
(unique) charge-network label by s�

�� so that

js�
��i :¼ Û�ð��Þjs�i: (75)

IV. UNITARY REPRESENTATION OF DIRAC
OBSERVABLES

A. Exponentials of mode functions

Whereas að�Þn (23) depend on Y�ðxÞ, the basic operators
of quantum theory are the holonomies Ŵðs�Þ. As in LQG,
the representation of the holonomy operators on H kin is

not regular enough to allow a definition of Ŷ�ðxÞ via a
‘‘shrinking of edges’’ procedure [3]. For example, let s�ðtÞ
be a 1 parameter family of charge networks such that
�ðs�ðtÞÞ has non- vanishing unit charge on only one of
its edges. Let this edge contain x and let its coordinate

length be t. Whereas, classically, Y�ðxÞ ¼
limt!0

Wðs�ðtÞÞ�1
it , it is easy to check that, as in LQG, the

corresponding operators are not weakly continuous in t and
the limit cannot be defined on the charge-network basis.
This leads to a regularization dependence in the definition
of âð�Þn [3]. However, as we show below, suitably defined

exponential functions of að�Þn, a�ð�Þn can be promoted to

quantum operators in a regularization/triangulation inde-
pendent manner. Let qn, pn be the real and imaginary parts
of að�Þn so that

qð�Þn ¼
Z
S1
Y�ðxÞ cosðnX�ðxÞÞ;

pð�Þn ¼
Z
S1
Y�ðxÞ sinðnX�ðxÞÞ;

(76)

and consider the functions

ei�qð�Þn ¼ ei�
R
S1
Y�ðxÞ cosðnX�ðxÞÞ

ei�pð�Þn ¼ ei�
R
S1
Y�ðxÞ sinðnX�ðxÞÞ

(77)
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where �, � 2 R. These functions can be promoted to
quantum operators as follows.

Let fðX�Þ be a smooth periodic real function of X�.
ThenO�

f
:¼ R

S1 Y
�ðxÞfðX�ðxÞÞ are functions on the phase

space of PFT. Next, restrict attention to the embedding
sector Hilbert space H�

E and consider the operator valued

(on H�
E ) function on the matter phase space, O�

f̂
:¼R

S1 Y
�ðxÞfðX̂�ðxÞÞ. Since charge-network states are eigen-

states of the embedding operator, we have that

O�
f̂
Ts� ¼

�Xn�
i¼1

fð@k�
e�i
Þ
Z
e�i
Y�ðxÞ

�
Ts� ; (78)

where s� ¼ f�ðs�Þ; ðk�
e�
1

; . . . ; k�
e�
n�
Þg and that

e
iO�

f̂ Ts� ¼ e
i
P

n�
i¼1

fð@k�
e�
i

Þ
R
e�
i

Y�ðxÞ
Ts� ;

¼ Wðs�f Þ½Y��Ts� ; (79)

where s�f :¼f�ðs�Þ;ðfð@k�
e�
1
Þ; . . . ;fð@k�

e�
n�
ÞÞg. Equation (79)

implies that we can define the operators dexpiO�
f corre-

sponding to the functions expiO�
f via their action on the

charge-network states Ts� �Wðs0�Þ 2 H�:

dðexpiO�
f ÞTs� �Wðs0�Þ :¼ Ts� � Ŵðs�f ÞWðs0�Þ: (80)

Clearly, this is a manifestly regularization/triangulation
independent definition. Moreover, since s�f is constructed

from the embedding part of the charge network, and since

f is periodic, it is straightforward to check that e
ciO�
f

commute with the unitary operators corresponding to finite

gauge transformations. Hence e
ciO�
f are Dirac observables

in quantum theory. It is also easy to check that

ð dexpiO�
f Þy ¼ ð dexpiO�

f Þ�1 ¼ ð dexpiO�
�fÞ (81)

so that the classical reality conditions are implemented.
By setting f to be the appropriate cosine (sine) function

times � (�), we obtain the operators corresponding to the
functions in Eq. (77). Clearly, these operators (8�, � 2
R, n > 0) form an over-complete set of Dirac observables.

B. Conformal isometries

Regularization dependence also manifests in attempts to
promote the generators of conformal isometries, ��½U��
[see Eq. (26)], to operators on H kin. Choosing exponen-
tials of these observables only partially alleviates this
problem since (unlike the case of að�Þn) the resulting

operator suffers from operator ordering problems stem-
ming from the fact that f��ðxÞ; U�ðX�ðxÞÞg � 0.
Therefore, we focus on the Hamiltonian flows correspond-
ing to finite conformal isometries.

The action of the Hamiltonian flows (corresponding to
conformal isometries), ���

c
, on ðX�ðxÞ; Y�ðxÞÞ has been

detailed in Sec. II D 3. It remains to specify their action on
the embedding momenta, ��ðxÞ. The information in this
specification can equally well be seeded in the action of
���

c
on the Hamiltonian flows ��� corresponding to finite

gauge transformations by virtue of the facts that (a) the
constraints (10) are linear in the embedding momenta and
(b) this linear dependence is invertible by virtue of the non-
degeneracy condition (iv) of section II C 1. Thus ���

c
are

completely specified through Eqs. (31)–(33). Accordingly,
we seek a unitary representation of ���

c
by operators

V̂ð��
c Þ such that V̂�ð��

c Þ act trivially on the matter sector,

commute with the operators Ûþð�þÞ and Û�ð��Þ which
implement gauge transformations, and transform X̂�ðxÞ
through

V̂ �ð��
c ÞX̂�ðxÞðV̂�Þyð��

c Þ ¼ ��
c ðX̂�ðxÞÞ; (82)

while leaving X̂�ðxÞ invariant.
We define V̂�ð��

c Þ to act trivially on the matter Hilbert
spaces Hþ

M, H
�
M and on the � embedding Hilbert space

H�
E . The action of V̂

�ð��
c Þ onH�

E is defined as follows.
Let s ¼ f�ðsÞðk�

e�
1

; . . . ; k�
e�n
Þg be a charge network. Define

the charge networks �þ
c ðsþÞ, ��

c ðs�Þ by
��
c ðs�Þ :¼ f�ðs�Þ; ð��

c ðk�e�
1
Þ; . . . ; ��

c ðk�e�n ÞÞg: (83)

Then the action of V̂ð��
c Þ on the charge-network state

Ts� 2 H�
E is defined to be

V̂ �½��
c �Ts� ¼ Tð��

c Þ�1ðs�Þ: (84)

To reiterate, in the notation (83) we have that ð��
c Þ�1 �

ðs�Þ ¼ f�ðs�Þ; ðð��
c Þ�1ðk�

e�
1

Þ; . . . ; ð��
c Þ�1ðke�n ÞÞg.

From Eq. (84), the invertibility of the functions ��
c

[which follows from Eq. (29)] and the inner product

(40), it follows that hV̂�½��
c �Ts�jV̂�½��

c �Ts0� i ¼
hTs�jTs0� i 8 s�; s0�, thus showing unitarity. It is also
straightforward to check, using the quasiperiodicity of

the functions ��
c (30), that V̂�½��

c � commutes with

Ûð��Þ. By definition V̂�½��
c � commutes with Ûð��Þ

and with the matter holonomies. Finally, it is easy to check
that Eq. (82) holds when applied on any charge-network

state. Thus, our definition of V̂�½��
c � provides a satisfac-

tory definition of conformal isometries in quantum theory.
Note also that Eq. (84) implies that

V̂ �½��
1c�V̂�½��

2c� ¼ V̂�½��
2c ���

1c�; (85)

so that our definition of V̂�½��
c � implies an anomaly free

representation (by right multiplication) of the group of
conformal isometries.
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V. PHYSICAL STATE SPACE BY GROUP
AVERAGING

Only gauge invariant states are physical so that physical

states�must satisfy the condition Û�ð��Þ� ¼ �,8��.
A formal solution to this condition is to fix some j i 2
H kin and set� ¼ P j 0iwhere the sum is over all distinct
j 0i which are gauge related to  . A mathematically pre-
cise implementation of this idea places the gauge invariant
states in the dual representation (corresponding to a formal
sum over bras rather than kets) and goes by the name of
group averaging. The ‘‘group’’ is that of gauge transfor-
mations and the ‘‘averaging’’ corresponds to the construc-
tion of a gauge invariant state from a kinematical one by
giving meaning to the formal sum over gauge related
states. Specifically (for details see Ref. [9]), the physical
Hilbert space can be constructed if there exists an antilinear
map � from a dense subspaceD of the kinematical Hilbert
space H kin, to its algebraic dual D�, subject to certain
requirements. The algebraic dual of D is defined to be the
space of linear mappings fromD to the complex numbers.
The requirements which � needs to satisfy are as follows.

Let  1,  2 2 D, let Â be a Dirac observable of interest and

let �� be a gauge transformation with Û�ð��Þ being its
unitary implementation on H kin. Let �ð 1Þ 2 D� denote
the image of  1 by� and let�ð 1Þ½ 2� denote the complex
number obtained by the action of �ð 1Þ on  2. Then for all

 1,  2, Â, � we require that

(1) �ð 1Þ½ 2� ¼ �ð 1Þ½Ûð�Þ 2�
(2) �ð 1Þ½ 2� ¼ ð�ð 2Þ½ 1�Þ�, �ð 1Þ½ 1� � 0.

(3) �ð 1Þ½Â 2� ¼ �ðÂy 1Þ½ 2�.
Here, we choose D to be the finite span of charge-

network states. Clearly due to the split of ‘‘þ’’ and ‘‘�’’
structures, we may consider averaging maps �� on the
dense sets D� 	 H�

kin separately. Here D� is the finite
span of states of the form js�i (see Sec. III D for the
notation used here and below). Define the action of ��
on js�i as

��ðjs�iÞ ¼ �½s��
X

s0�2½s��
< s0�j

¼ �½s��
X

��2DiffP½s��R

< s�
��j; (86)

where ½s�� ¼ fs0�js0� ¼ s�
�� for some ��g, DiffP½s��R

is a set of gauge transformations such that for each s0� 2
½s�� there is precisely one gauge transformation in the set
which maps s� to s0� and �½s�� is a positive real number

depending only on the gauge orbit ½s��. The right-hand
side of Eq. (86) inherits an action on states in D from that
of each of its summands. Because of the inner product (40)
and (64), only a finite number of terms in the sum contrib-
ute so that��ðjs�iÞ is indeed inD�. It is straightforward to
see that �� satisfies the requirements (1), (2) and that a
positive definite inner product <, >phys on the space

��ðD�Þ can be defined through

h��ðjs�1 iÞ; ��ðjs�2 iÞiphys ¼ ��ðjs�1 iÞ½js�2 i�: (87)

If in addition, (3) is also satisfied by ��, the group averag-
ing technique guarantees that the above inner product
automatically implements the adjointness conditions on
the Dirac observables (which act by dual action on
D��)4 of Sec. IV, by virtue of the fact that these conditions
are implemented on H kin.
In Sec. VB we use the requirement (3) to constrain the

positive real numbers �½s�� and thus bring down the enor-

mous ambiguity in the inner product (87). While the analy-
sis can be done, in principle, for all of ��½D��, we shall,
for simplicity, restrict attention to a certain subspace of
D� which is left invariant by finite gauge transformations
as well as the Dirac observables of Sec. IV. In Sec. VAwe
define this ‘‘superselected’’ subspace. Finally, in Sec. VC
we display a cyclic representation of the operator algebra
generated by the Dirac observables in conjunction with the
gauge transformations.

A. The chosen subspace of D

Consider the charge-network state Ts� �Ws0� . Let
�ðs�Þ have n� edges and let the embedding charges on
these edges be such that
(a) �k�

e�
I�

� �k�
e�ðI��1Þ

I� ¼ 2; . . . ; n�.

(b) �ðk�
e�
n�

� k�
e�1
Þ 
 2�

@
.

These conditions are physically motivated. Conditions
(a), (b) are the quantum analogs of the classical nondege-
neracy condition (iv) of Sec. II C 1. when x 2 ð0; 2�Þ, and
when x 2 f0; 2�g, respectively.
Henceforth we shall restrict attention to charge-network

states subject to (a) and (b). Note that these conditions
define a superselection sector of D with respect to gauge
transformations as well as the observables of Sec. IV. We
will refer to this subspace as DðaÞðbÞ.

B. Commutativity of �� with Dirac observables

We focus on the ‘‘þ’’ case and suppress the ‘‘þ’’ super-
scripts wherever possible. The ‘‘�’’ case follows analo-
gously. We aim to restrict �½s� by subjecting it to condition

(3) above. We choose Â :¼ e
ciOþ
f [recall, from Sec. IVA,

that Oþ
f
:¼ R

S1 Y
þðxÞfðXþðxÞÞ]. Thus we require that 8s,

e
d

i
R
YþfðXþÞ�ðjsiÞ ¼ �

�
e

d
i
R
YþfðXþÞjsi

�
: (88)

As in Eq. (74) we set js�i ¼ Ts� �Wðs0�Þ. The equiva-
lence relation between charge-network labels allows us,

4Given �� 2 D��,  � 2 D� and Â� such that Ây
� � 2

D�, define Â��� through Â���½ �� :¼ ��½Ây
� ��. This is

the dual action.
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without loss of generality, to choose �ðsÞ ¼ �ðsÞ ¼ �ðs0Þ.
Equations (62), (65), and (80) imply that

e
d

i
R
YþfðXþÞjsi ¼ Ŵsf jsi :¼ e�ði@�ðsf;s0Þ=2ÞjsðfÞi; (89)

where

s ¼ f�ðsÞ; ððke1 ; le1Þ; . . . ; ðken ; lenÞÞg; (90)

s0 ¼ f�ðsÞ; ðle1 ; . . . ; lenÞg; (91)

sf ¼ f�ðsÞ; ðfð@ke1Þ; . . . ; fð@kenÞÞg; (92)

s ðfÞ ¼ f�ðsÞ; ððke1 ; le1 þ fð@ke1Þ; . . . ; ðken ; len þ fð@kenÞg;
(93)

�ðsf; s0Þ ¼
Xn
I¼1

fð@keI Þ½leIþ1
� leI�1

�;

e0 :¼ en; enþ1 :¼ e1:

(94)

Recall (see Sec. III D) that s denotes the unique labelling
such that no two consecutive edges of �ðsÞ have the same
pair of charges. It is straightforward to see from Eq. (94)
that for I ¼ 1; . . . ; n� 1,

keI � keIþ1
or=and leI � leIþ1

) keI � keIþ1

or=and leI þ fð@keI Þ � leIþ1
þ fð@keIþ1

Þ: (95)

Thus, consistent with the use of bold face notation (see
Sec. III D), sðfÞ is also the unique labeling such that no two
consecutive edges of its underlying graph [also chosen to
be �ðsÞ] have the same pair of charges.

From footnote 4 (68) and (89), the fact that e
d

i
R
YþfðXþÞ

commutes with gauge transformations, and (86), it follows
that the left-hand side of (88) is

e
d

i
R
YþfðXþÞ�ðjsiÞ ¼ �½s�eði@�ðsf;s

0Þ=2Þ X
�2DiffP½s�R

< sðfÞ�j:

(96)

and that the right-hand side of (88) is

�ðe d
i
R
YþfðXþÞjsiÞ ¼ �½sðfÞ�eði@�ðsf;s

0Þ=2Þ X
�2DiffP½sðfÞ�R

< sðfÞ�j

(97)

where jsðfÞ�i :¼ Ûð�ÞjsðfÞi. Thus we need to impose

�½s�
X

�2DiffP½s�R

< sðfÞ�j ¼ �½sðfÞ�
X

�2DiffP½sðfÞ�R

< sðfÞ�j (98)

It is easy to see that we may choose

Diff P½s�R ¼ DiffP½sðfÞ�R: (99)

This immediately follows from the fact that

Ûð�ÞeciOþ
f jsi � e

ciOþ
f jsi iff Ûð�Þjsi � jsi: (100)

Equation (100) follows, in turn, from the invertibility of

e
ciOþ
f (81) and its commutativity with Ûð�Þ. Equations (98)

and (99) imply that

�½s� ¼ �½sðfÞ�: (101)

Next, we analyze the consequences of the restriction (101).
There are 2 cases:
Case 1: ½s� is such that there exists some s 2 ½s�, s ¼

f�ðsÞ; ððke1 ; le1Þ; . . . ; ðken ; lenÞÞg with
ke1 < ke2 < . . . : < ken ; ðken � ke1Þ< 2�: (102)

Case 2: The complement of Case 1.
We have analyzed both cases. The analysis for Case 2 is

quite involved and, in the interests of pedagogy, we do not
present it here. We shall focus only on Case 1 in this paper.
Accordingly, consider s as in Case 1. We define ~s to be the
embedding charge-network label which is obtained by
dropping the matter charge labels from s so that �ð~sÞ ¼
�ðsÞ with the edges of �ð~sÞ carrying the same embedding
charges as in s. Since s, sðfÞ have the same embedding
charges and the same underlying graph, we could equally
well have obtained ~s by dropping the matter charge labels
from sðfÞ. Thus, using the ‘‘~’’ notation, we have that

~s ¼ ~sðfÞ ¼ ð�ðsÞ; ðke1 ; . . . ; kenÞÞ: (103)

Next, note that we can always choose f such that
fð@keI Þ ¼ �leI , I ¼ 1; . . . ; n so that sðfÞ has vanishing

matter charges. Clearly the property that all matter charges
vanish is a gauge invariant statement. This fact together
with Eq. (103) implies that the set ½sðfÞ� (with f chosen as
above) is isomorphic to the set of embedding charge net-
works which are gauge equivalent to ~s. Denoting the latter
set by ½~s�we have, from Eq. (101) that�½s� can only depend
on the set ½~s�. We denote this dependence through the
notation

�½~s� :¼ �½s�: (104)

An identical analysis holds for the conformal isometry

operators V̂ð�cÞ. Equation (84) implies that

V̂ð�cÞjsi ¼: j��1
c ðsÞi: (105)

s is given by Eqs. (90) and (102), and

��1
c ðsÞ ¼ f�ðsÞ; ðð��1

c ðke1Þ; le1Þ; . . . ; ð��1
c ðkenÞ; lenÞÞg:

(106)

The invertibility of �c and its quasiperiodicity imply that
��1
c ðsÞ is the unique labeling such that no two consecutive

edges have the same pairs of charges, and that the condi-

tion (102) is preserved by the action of V̂ð�cÞ.
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Condition (3) implies that, in obvious notation,

�½s�
X

�2DiffP½s�R

<��1
c ðsÞjÛyð�Þ

¼ �½��1
c ðsÞ�

X
�2DiffP½��1

c ðsÞ�R

<��1
c ðsÞjÛyð�Þ: (107)

An argument identical to that in (100) implies that
DiffP½s�R ¼ DiffP½��1

c ðsÞ�R so that

�½s� ¼ �½��1
c ðsÞ�: (108)

Clearly, given any pair of charge networks s1, s2 as in Case
1, with �ðs1Þ ¼ �ðs2Þ and with identical matter charges,

there exists some �c such that js2i ¼ V̂ð�cÞjs1i. This, in
conjunction with Eqs. (104) and (108), implies that�½s� can
only depend on the set of graphs ½�ðsÞ� which are obtained
by the action of gauge transformations on �ðsÞ.
Specifically,

½�ðsÞ� ¼ f�0s:t:9�s:t:�0
ext ¼ �ð�extÞg � :¼ �ðsÞ;

(109)

where we have used the notation defined in Sec. III A. We
denote this dependence of �½s� through the notation

�½s� ¼ �½�ðsÞ�: (110)

This completes our analysis of the rigging map.

C. Cyclic representation

We focus on the ‘‘þ’’ sector of the algebra of operators
and the ‘‘þ’’ sector of the state space. As in Sec. VB we
suppress ‘‘þ’’ superscripts. The analysis for the ‘‘�’’ case
follows analogously. Cyclicity is defined with respect to an
algebra of operators. Here the putative generators of the
algebra are the Dirac observables of Sec. IV and the finite
gauge transformations. As we shall see in Sec. VI, neither
does the commutator of two of the observables of Sec. IVA
yield a representation of the corresponding Poisson brack-
ets nor does their product yield a representation of the
appropriate Weyl algebra. As shown in Sec. VI, the con-
nection with classical theory is state dependent and only
holds for semiclassical states (this is roughly similar to
what happens for area operators in LQG [27]). Given this
situation, we define the operator algebra in terms of the
concrete representation onH kin (orH phys) of the relevant

operators rather than in terms of abstract representations of
classical structures.

Since the operators of Sec. IV as well as those for finite
gauge transformations are unitary (and hence bounded),
the finite span of their products is well defined onH kin so
that it is possible to define the algebra of operators gen-
erated by these elementary ones in terms of the action of
elements of this algebra on H kin. We denote this algebra
of operators as Akin

D;G. In a similar manner, consider the

algebra of operators generated by the action of the Dirac

observables of Sec. IV on H phys. Denote this algebra by

Aphys
D .
Fix a graph �. Let s� be the set of charge networks such

that 8s 2 s�, �ðsÞ ¼ � and s satisfies condition (102) on

its embedding charges. Let ½s�� be the set of charge net-

works which are gauge related to elements of s� i.e.8s0 2
½s��9 some gauge transformation � and some s 2 s� such

that s0 ¼ s�. Finally, let H ½�� be the (Cauchy completion

of the) finite span D½��ð	 DðaÞðbÞÞ of charge-network

states js0i, s0 2 ½s��.
The analysis of the preceding section shows that:
(1) H ½�� 	 H kin provides a cyclic representation of

the algebra Akin
D;G. Any charge-network state in

H ½�� is a cyclic state.
(2) Group averaging of states in D½�� yields a cyclic

representation of the algebra Aphys
D i.e. Aphys

D is
represented cyclically on H ½��;phys 	 H phys where

H ½��;phys is the Cauchy completion (in the physical

inner product) of �ðD½��Þ. The group average of any
charge-network state in D½�� is a cyclic state.

Note that both H ½�� and H ½��;phys are nonseparable.

VI. SEMICLASSICAL ISSUES

An exhaustive analysis of semiclassical states is outside
the scope of this paper. Instead, we focus on two issues
related to semiclassicality. In Sec. VIA we show that
semiclassical states must be based on suitably defined
‘‘weaves.’’ In Sec. VI B we show that semiclassicality
can be exhibited with respect to, at most, a countable
number of the mode function operators of Sec. IVA.

A. Semiclassicality and weaves

Recall that in LQG, states which exhibit semiclassical
behavior for spatial geometry operators are based on
graphs called weaves [28]. Here the (flat) spacetime ge-

ometry is encoded in the behavior of the X̂�ðxÞ operators.
Hence we define the notion of a weave as follows. The
embedding charge network s� ¼ f�ðs�Þ; ðk�

e�
1
; . . . ; k�

e�
N�
Þg

will be called a weave iff the embedding charges satisfy
(a), (b) of Sec. VA together with k�

e�N
� k�

e�
1
 �2� and iff

N � 1. This is, of course, not a precise definition since
k�
e�N

� k�
e�
1

 2� and N � 1. are not precise statements.

Nevertheless this ‘‘working’’ definition will suffice for our
purposes.
Let  � 2 H�

kin exhibit semiclassicality with respect to

the� sector observables of Sec. IVA. Further, let  � be an

eigenstate of X̂�ðxÞ (we shall relax this assumption later)
so that  � ¼ Ts� �  �

M,  
�
M 2 H�

M. The analysis below is
for the þ sector and can be trivially extended to the �
sector. In what follows we suppress the þ superscript.
From Eq. (80) it follows straightforwardly that
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h½edi�qm; edi�pm�i ¼ �2i sin

�
��@

2
fs;m

�
he di�qmþi�pmi; (111)

where

fs;m :¼ XN
I¼1

cosð@mkeI Þðsinð@mkeIþ1
Þ � sinð@mkeI ÞÞ;

(112)

where keNþ1
:¼ ke1 . In order to write (112) in a more useful

form, we define the following:

�keI :¼ keIþ1
� keI ; I ¼ 1; . . . ; N � 1 (113)

�keN :¼ ke1 � keN þ
2�

@
: (114)

Rearranging terms in (112) and using standard trigonomet-
ric identities we obtain that

fs;m ¼ XN
I¼1

sinð@m�keI Þ: (115)

Since  is semiclassical we assume that, for some
classical data ðqm; pmÞ,

he di�qmþi�pmi  ei�qmþi�pm; (116)

and we require that as @ ! 0

h½eic�qm; edi�pm�i ! i@fei�qm ; ei�pmg (117)

where the Poisson bracket evaluates to

fei�qm ; ei�pmg ¼ ���2�mei�qmþi�pm : (118)

Equations (111)–(118) imply that to leading order in @

fs;m¼1  2�: (119)

Note that the eigenvalues of the embedding operators are in
terms of

kI :¼ @keI (120)

so that in the @ ! 0 (classical) limit, kI does not vanish
(except when keI ¼ 0). Hence, we investigate the condi-

tions imposed on s by the requirement��������2�� XN
I¼1

sinð�kIÞ
��������<
; 
� 1: (121)

where, similar to (113) we have defined

�kI :¼ kIþ1 � kI; I ¼ 1; . . . ; N � 1 (122)

�kN :¼ k1 � kN þ 2�: (123)

Note that conditions (a), (b) of Sec. VA imply that

�kI � 0;
XN
I¼1

�kI ¼ 2�: (124)

Intuitively, since j sinxx j 
 1 and ¼ 1 at x ¼ 0, Eqs. (121)

and (124), lead us to expect that �kI, I ¼ 1; . . . ; N should
be small. That this is indeed the case is shown in lemmas
1–3 in the appendix. Clearly, the fact that �kI ! 0 as 
!
0 (see appendix) implies that s is a weave. Thus, we have
shown that any kinematic semiclassical state which is an
eigenstate of the embedding operators must be based on a
weave.
Next, consider an arbitrary kinematic state j i ¼P
aijsi > �j iMi where ai are complex coefficients, jsii

are an orthonormal set of embedding charge-network states
and j iMi 2 HM. In order that this state satisfies
Eq. (117), it turns out that j i must be peaked around si
such that si are weaves. This is shown in lemma 4 of the
appendix. Finally, consider an arbitrary physical state.
Such a state is a linear combination of averages over
embedding eigenstates. Lemma 5 shows that such a state
is peaked around averages of embedding eigenstates which
are based on weaves.

B. Semiclassicality and mode function operators:
A no-go result

We show that no states exist which are semiclassical
with respect to the uncountable set of operators

fedi�qm ; edi�pm ; j�� �0j< 
; j�� �0j< �g for any fixed
m, �0, �0 and any 
, � > 0. First, consider states j i
which are embedding eigenstates so that j i ¼
jsi � j Mi. Here s is an embedding charge network and
j Mi 2 HM can expanded as j Mi ¼

P
rbrjs0ri where

fjs0rig is a countable set of orthonormal matter charge
networks.

The operators e
di�qm , edi�pm act by changing the matter

charge labels by sines and cosines of (m times) the embed-
ding charges [see (80)]. Consider the set L of all matter
charges on sr8r and construct the set �L of differences
between all pairs of elements of L i.e. �L :¼ fl�
l08l; l0 2 Lg. Let ke, e 	 �ðsÞ be such that cosm@ke � 0.
Then, in any neighborhood of �0 we can choose uncount-
ably many � such that � cosm@ke =2 �L. Clearly for such

� we have that hedi�qmi ¼ 0. If cosm@ke ¼ 0 we can repeat
the same argument with sinm@ke and conclude that

hedi�pmi ¼ 0 for uncountable many � near �0. Clearly,
such behavior is far from semiclassical. This argument
can be suitably generalised for arbitrary states in H kin as
well as in H phys. The relevant material is in lemma 6 and

lemma 7 of Appendix B.

VII. TWO OPEN ISSUES AND THEIR
RESOLUTION

Before we conclude this paper, a couple of points remain
which we have not yet addressed. First, it still remains to
enforce (ii), Sec. II C 1 in order to ensure that the spatial
topology is a circle. Second, we need to take care of the
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zero modes by imposing Eq. (25) in quantum theory and
show that the results of Sec. VI continue to hold after this is
done. We address these points in Secs. VII A and VII B
below.

A. Identifying 2� shifted embeddings

Although the spatial inertial coordinate X ranges over
ð�1;1Þ, we need to identify X � X þ 2� in accordance
with the discussion in Sec. II C 1. Condition (ii), Sec. II C 1
states that two embeddings ðX1; T1Þ, ðX2; T2Þ are equivalent
if the following conditions are satisfied:

Xþ
1 ðxÞ ¼ Xþ

2 ðxÞ þ 2m� 8 x 2 ½0; 2��;
X�
1 ðxÞ ¼ X�

2 ðxÞ � 2m� 8 x 2 ½0; 2��: (125)

We now show that this equivalence has already been taken
care of at the physical state-space level. Let

sþ ¼ f�ðsþÞ; ðkþ
eþ1
; . . . ; kþ

eþN
Þ; ðlþ

eþ1
; . . . ; lþ

eþN
Þg

s� ¼ f�ðs�Þ; ðk�e�
1
; . . . ; k�e�M Þ; ðl�e�1 ; . . . ; l�e�M Þg

(126)

The identification (126) in the classical theory implies the
following equivalence condition in quantum theory:

jsþi � js�i � jsþ2�mi � js��2�mi (127)

where,

sþ
2�m ¼ f�ðsþÞ; ðkþ

eþ1
þ 2m�; . . . ; kþ

eþN

þ 2m�Þ; ðlþ
eþ
1

; . . . ; lþ
eþN
Þg;

s��2�m ¼ f�ðs�Þ; ðk�e�1 � 2m�; . . . ; k�e�M
� 2m�Þ; ðl�e�

1
; . . . ; l�e�M Þg:

(128)

Next, note that for any integer m, there exist gauge trans-
formations ��

ðmÞ such that ��
ðmÞ � s� ¼ f�ðs�Þ; ðk�

e�1
�

2m�; . . . ; k�
e�N

� 2m�Þ; ðl�
e�
1

; . . . ; l�
e�N
Þg. Thus js�i and

js��2�mi are gauge related so that

��ðjs�iÞ ¼ ��ðjs��2�miÞ; (129)

) �þðjsþiÞ � ��ðjs�iÞ ¼ �þðjsþ2�miÞ � ��ðjs��2�miÞ:
(130)

Equation (130) shows that the identification of 2�-shifted
embeddings is subsumed by the identification of embed-
dings related by gauge transformations.

B. Taking care of the zero mode in quantum theory

In Sec. VII B 1 we impose the condition p ¼ 0 [see
Eq. (25)] by appropriate group averaging. In Sec. VII B 2
we show that this does not alter the conclusions of Sec. VI.

1. Imposition of p ¼ 0 by averaging

The conditions
R
S1 Y

� ¼ 0 of Eq. (25) are equivalent to

the conditions ei�
�R

S1
Y� ¼ 1, 8��. The latter can be

imposed by group averaging with respect to the operators

e
d

i��
R
S1
Y�
. Let s�

�� be matter charge networks with a single

edge e� ¼ ½0; 2�� labeled by the charge �� i.e. s�
�� ¼

f�ðs�
��Þ ¼ ½0; 2��; l�

e� ¼ ��g. Clearly, we have that

e
d

i��
R
S1
Y� ¼ Ŵðs�

��Þ. Note that Ŵðs�
��Þ commutes with

all the gauge transformations as well as observables of
Sec. IV. Since we have already averaged over the group
of gauge transformations, the map ��� which implements
(25) is defined from the space ��ðD�

ðaÞðbÞÞ to its algebraic

dual ��ðD�
ðaÞðbÞÞ � . Recall that D�

ðaÞðbÞ (defined in

Sec. VA) is the finite span of charge networks subject to
the conditions (a), (b) of Sec. VA. Before defining ���,
note that

Ŵðs�
��Þjs�i ¼: js�

��i; (131)

where s�
�� is obtained from s� ¼ f�ðsÞ�;

ðk�
e�
1

; . . . ; k�
e�N
Þ; ðl�

e�
1

; . . . ; l�
e�N
Þg by adding �� to all the matter

charges. We now define

���ð��ðjs�iÞÞ ¼ ��½½s���0�½s��ð
M
��2R

X
��2DiffP½�ðs�Þ�R

hðs�
��Þ��j:

(132)

The equivalence class ½½s���0 is defined via following
relation. ½s�� � ½s�1 � if for any f�ðs�Þ; ðk�

e�
1

; . . . ; k�
e�N
Þ;

ðl�
e�
1

; . . . ; l�
e�N
Þg 2 ½s��, 9ðf�ðs�Þ; ðk�

e�
1

; . . . ; k�
e�N
Þ; ðl�

e�
1

þ
��; . . . ; l�

e�N
þ ��Þg 2 ½s�1 � for some �� 2 R.

Once again the ambiguity in the rigging map contained
in ��½½s���0 can be reduced by demanding that ��� commutes

with the observables. It can be checked that for the super-
selected sector of H phys defined in Sec. VB, we have

��½½s��0 ¼ ��½��, where as in Sec. VB and VCwe have once

again suppressed � superscripts and where ½�� is defined
as in Sec. VC. Setting ~�½�ðsÞ� :¼ ��½���½��, we have that the
inner product on ���ðD�ss

phy Þ is given by

h ��ð�ðjsiÞj ��ð�ðjs1iÞi ¼ ~�½�ðsÞ�
M
�

ð�ðjsiÞ½js1;�i�Þ: (133)

2. Semiclassical issues

Since the zero mode operator Ŵðs�
��Þ leaves the embed-

ding part of the states in H kin and H phys untouched, it is

easy to see that the proofs of Sec. VIA and appendix A still
apply after the zero mode averaging is done. Thus, semi-
classical states which satisfy the p ¼ 0 constraint are
necessarily based on weaves.

ALOK LADDHA AND MADHAVAN VARADARAJAN PHYSICAL REVIEW D 78, 044008 (2008)

044008-16



It is also straightforward to see that the results of
Sec. VIB apply after zero mode group averaging. While
the line of argument is roughly similar to that in Sec. VIB
and appendix B, there are some differences. In the interests
of brevity, we provide only a skeleton of the argument
below. As usual we shall suppress the � superscripts.

The averaging with respect to �� slightly complicates
matters because there is an additional sum over matter
charge networks wherein matter charges associated with
charge-network states are all incremented by the same
amount. As a result, it is necessary to consider pairs of
edges subject to conditions on their embedding charges.
This is in contrast to the role of single edges (with cosines
or sines of (@ times) their embedding charges being non-
vanishing) in the arguments of Sec. VIA and appendix B.
Specifically, consider a state decomposition defined in
terms of embedding charge networks sj as in Eqs. (A5)

and (A18). Separate the values taken by the index j into a
set C1 and its complement, C2, where j 2 C1 iff for fixed
m, there exist a pair of edges eIðjÞ, eJðjÞ 2 �ðsjÞ such that
cosm@keIðjÞ � cosm@keJðjÞ.

Next, with a slight abuse of notation, for each j 2 C1 fix
a pair of edges eIðjÞ, eJðjÞ 2 �ðsjÞ such that cosm@keIðjÞ �
cosm@keJðjÞ. As in appendix B, define �L to be the set of

differences of all matter charges which occur in the ex-
pansions (A5), (A18), and (B1). Also define �2L to be the
set of all differences between pairs of elements of �L. For
each j 2 C1 define�

2Lj to be the set of elements obtained

by dividing each element of �2L by cosm@keIðjÞ �
cosm@keJðjÞ. Let �

2LC1
:¼ [j2C1

�2Lj. The set �2LC1
is

countable so that there are uncountably many � in any
neighborhood of �0 such that � =2 �2LC1

. It can then be

checked that hedi�qmi obtains contributions only from terms
labeled by j 2 C2.

Finally, we show that such terms are of negligible mea-
sure. Note that for j 2 C2 we have that cosm@keIðjÞ ¼
cosm@keJðjÞ for any pair of edges eIðjÞ, eJðjÞ 2 �ðsjÞ. It
is then straightforward to see that for such j, the function
fsj;m [defined by Eqs. (112) and (A11)] vanishes identi-

cally. Then the arguments of Sec. VIA and appendix A
imply that the contribution from j 2 C2 must be negligible
for semiclassicality to hold.

Similar arguments can be made for hedi�pmi by replacing
cosines with sines in the above argument.

VII. DISCUSSION OF RESULTS AND OPEN ISSUES

In this work, we constructed a quantization of PFT
similar to that used in LQG. Our constructions are based
on Ref. [3]. Quantum states are in correspondence with
graphs (i.e. collections of edges) in the spatial manifold.
The edges of these graphs are labeled by a set of real valued
embedding and matter charges. These charge-network
states are analogs of the spin network states in LQG.

There, however, the labels are integer valued. Such a label-
ling is also, in principle, possible here. Had the holonomies
of Sec. III been based on charge networks with embedding
charges which were integer multiples of 2�

L for some fixed

integer L and matter charges which were also integer
multiples of some appropriate dimensionful unit, such
holonomies would still separate points in phase space by
virtue of the fact that they were based on arbitrary graphs
(this is similar to what happens in LQG). Such a choice
would lead to states with integer valued charges. However
it is not clear if (a large enough subset of) the Dirac
observables of Sec. IV preserve the space spanned by these
integer-charge-network states. It would be useful to inves-
tigate this issue in detail.
The polymer quantization of the embedding variables

replaces the classical (flat) spacetime continuum with a
discrete structure consisting of a countable set of points.
This can be seen as follows. The canonical data X�ðxÞ is a
map from S1 into the flat spacetime ðS1 � R;�Þ and em-
beds the former into the latter as a spatial Cauchy slice.
Any gauge transformation generated by the constraints
maps this data to new embedding data which, in turn,
define a new Cauchy slice in the flat spacetime. In particu-
lar, the action of the one parameter family of gauge trans-
formations generated by smearing the constraints with
some choice of ‘‘lapse-shift’’ type functions NA (see
Sec. II) generates a foliation of ðS1 � R;�Þ. Consider the
image set in ðS1 � R;�Þ of the set of all embeddings which
are gauge related to a given one. From the above discussion
it follows that this image set is exactly the flat spacetime
ðS1 � R;�Þ itself. Next, consider the corresponding quan-
tum structures. Any charge-network state is an eigenstate

of X̂�ðxÞ. Consider a charge-network state, jsþi � js�i
with js�i ¼ Ts� �Ws0�, where s� satisfy the conditions
(a), (b) of section VA. From Eqs. (42)–(44) it follows that
the set of eigenvalues �x;s� for all x 2 ½0; 2�� describes a
finite set of points on a spacelike Cauchy surface in ðS1 �
R;�Þ. These points have light cone coordinates
ðXþ; X�Þ ¼ ð�x;sþ ; �x;s�Þ. The action of any gauge trans-

formation on such a charge-network state yields another
charge-network state whose eigenvalues lie, once again, on
a Cauchy slice in ðS1 � R;�Þ. From Eq. (46) it follows that
the set of eigenvalues for all possible gauge related charge-
network states is countable and defines a corresponding set
of points in ðS1 � R;�Þ. The gauge invariant state obtained
by group averaging a charge-network state is a sum over all
distinct gauge equivalent states and hence contains the
elements of this discrete structure. The discrete structure
is a good approximant of the continuum spacetime ðS1 �
R;�Þ for charge networks with a large number of embed-
ding charges i.e. for weave states. Thus, it is not surprising
that semiclassicality requires states to be based on weaves
as in Sec. VIA and appendix A.
In contrast to the embedding charges, the matter charges

do not have a direct physical interpretation because charge-
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network states are not eigenstates of the matter holono-
mies. As a tentative, provisional interpretation we choose
to think of them, rather imprecisely, as measuring excita-
tions of the matter. Since, on the constraint surface, the
classical data ðX�ðxÞ; Y�ðxÞÞ correspond to free scalar field
data Y�ðxÞ on the slice ðXþðxÞ; X�ðxÞÞ in flat spacetime,
we interpret a charge-network state jsþi � js�i 2 H kin as
specifying excitations of matter on the discretized ‘‘quan-
tum’’ slice specified by the embedding charges. The action
of a gauge transformation on a charge-network state can
then be interpreted as evolving the matter excitations on
the ‘‘initial’’ quantum slice specified by this state to the
new one specified by the gauge related charge-network
state. Since the physical state obtained as the group average
of a charge-network state contains all distinct gauge related
states, it follows that such a physical state may be inter-
preted, roughly, as a ‘‘history.’’ It may be useful to attempt
an interpretation of physical states in LQG along these
lines.

An overcomplete set of Dirac observables correspond-
ing to exponential functions of the standard annihilation-
creation modes of free scalar field theory are represented as
(unitary) operators in the polymer representation. Note that
in contrast to the assumption of Ref. [9], here the commu-
tator between two such operators does not close as in the
case of Weyl algebras. Indeed, as shown in Sec. VIA, the
commutator only approximates the corresponding Poisson
bracket for semiclassical states based on weaves. This
underlines the fact that in a general covariant theory in-
volving spacetime geometry, classical structures are typi-
cally not approximated in the @ ! 0 limit unless it is
possible to coarse grain/smoothen away the underlying
discreteness of the quantum spacetime. Nevertheless the
action of the basic Dirac observables is well defined and
there is no obstruction to the quantization procedure.

The results of Sec. VI B imply that semiclassical analy-
sis requires a choice of a countable subset of these observ-
ables. One possibility is to choose, for each n, a pair �,
�� 1ffiffi

@
p and define the approximants to q̂n, p̂n by

e
ci�qn�ed�i�qn

2i� , e
ci�pn�ed�i�pn

2i� . However, there is no natural choice

of �, � and so, while the quantization constructed in this
paper is free of the ‘‘triangularization’’ choices which
occur in the definition of the quantum dynamics of LQG,
an element of choice does appear when semiclassical
issues are confronted. Note, however, that the results of
Sec. VIA indicate that any physical semiclassical state
necessarily has an associated (gauge invariant) structure,
namely, that of a weave.5 The ‘‘spacing’’ of the weave (i.e.
@�kI of Sec. VIA and the Appendix A) provides a natural
scale for �, �. Thus, our viewpoint is that since choices of

Dirac observables can be tied (however tenuously) to
structures already present in the semiclassical states, am-
biguities (if present) in definitions of the quantum dynam-
ics are more worrying because quantum dynamics is
defined for all states, not only semiclassical ones.
While the general covariance of PFT is encoded in the

gauge transformations generated by the constraints, the
conformal invariance of the underlying free scalar field
theory is reflected in the canonical transformations which
correspond to the Dirac observables of Sec. II D 3. The
results of Secs. III and IVBshow that the group of gauge
transformations as well as that of conformal isometries are
represented in an anomaly-free manner. While the
anomaly-free nature of the former is necessary for the
consistency of the quantum theory, it is possible, in prin-
ciple, for the latter to admit anomalies. Indeed this is
exactly what happens in the representation of PFT con-
structed in Refs. [1,2]. While the algebra of gauge trans-
formations is anomaly-free, the physical Hilbert space
representation is equivalent to the standard free field
Fock representation and the algebra of the generators of
conformal isometries displays the standard Virasoro cen-
tral extension. Motivated by the results of Refs. [1,2,29],
we believe that the anomaly manifests as result of the
Poincare invariance of the Fock representation i.e. as a
result of the existence of the Poincare invariant vacuum.
From this point of view the absence of anomalies in the
group of gauge transformations as well as the group of
conformal isometries in the polymer quantization is related
to the absence of a Poincare invariant state (Poincare trans-
formations are a subset of the conformal isometry group
and it is easy to see that no kinematic or physical state is
Poincare invariant). We shall return to the issue of Poincare
invariance towards the end of this section.
Next we turn to the discussion of the efficacy of polymer

PFT as a toy model for LQG. We believe that the quantiza-
tion provided here is a useful testing ground for proposed
definitions of quantum dynamics in canonical LQG. It
would be of interest to construct the quantum dynamics
of the model along the lines of Ref. [17] and compare the
resulting physical Hilbert space with the one considered
here. Proposals for examining semiclassical issues [20,21]
may also be tested here. One of the outstanding problems
in LQG [23,30] is the relation between states in LQG and
the Fock states of perturbative gravity. Since PFT admits a
Fock quantization [1,2] equivalent to the standard flat
spacetime free scalar field Fock representation, one may
enquire as to how Fock states arise from the polymer
Hilbert space. Since the results of Sec. VI B suggest that
the operators corresponding to exponentials of mode func-
tions do not possess the requisite continuity for the
annihilation-creation modes themselves to be defined as
operators, it is difficult to identify Fock states in terms of
their properties with respect to the action of the
annihilation-creation operators. However, as a first step,

5Note that in contrast to the weaves of Ref. [28] which
approximate a spatial geometry, here it is the (flat) spacetime
geometry which is being approximated by virtue of the discus-
sion in the second paragraph of this section.
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it may be possible to identify candidate states correspond-
ing to the Fock vacuum by using the Poincare invariance of
the latter. Specifically, since the operators corresponding to
finite Poincare transformations are available (as a subset of
the conformal isometry operators of Sec. IV), one could try
and group average with respect to these operators.

Another open issue pertains to the representation appro-
priate to the case of noncompact spatial topology. The
quantization here explicitly incorporates the compact spa-
tial topology S1. Here, the unit of length has been chosen so
that the circumference of the T ¼ const circle is 2�. By
allowing the circle to have an arbitrarily large circumfer-
ence, it may be possible to transit to polymer PFTon R� R
and compare the resulting quantization with the infinite
tensor product proposal of Thiemann et al. [31,32].

APPENDIX A: LEMMAS CONCERNING
SEMICLASSICALITYAND WEAVES

Lemma 1: If �kJ � � [see (120) and (122)] for some J,
1 
 J 
 N then �1 
 fs;m¼1 
 �.

Proof: Let �kJ � �. Equations (124) imply thatX
I�J

�kI 
 �; (A1)

and, hence, that

�kIjI�J 
 �: (A2)

This in conjunction with the fact that j sinxx j 
 1 implies

that

XN
I¼1

sin�kI 

X
I�J

�kI þ sin�kJ 
 �: (A3)

From Eq. (A2) and �kJ � �, we have that

XN
I¼1

sin�kI � �1: (A4)

The lemma follows immediately from Eqs. (A3) and (A4)
and the definition (115) of fs;m¼1

Lemma 2: If �kI 
 �, I ¼ 1; . . . ; N [see (120) and
(122)] then 0 
 fs;m¼1 
 2�.

Proof: This follows immediately from the fact that
j sinxx j 
 1 in conjunction with Eqs. (124) and the definition

(115) of fs;m¼1.

Lemma 3: Equation (121) implies that as 
! 0, �kI !
0, I ¼ 1; . . . ; N and N ! 1.

Proof: From lemma 1 and Eq. (121) it follows that for
sufficiently small 
, it must be the case that �kI 
 �, I ¼
1; . . . ; N.

Next, let � be the minimum value of the bounded,
continuous function sin�

� in the interval ½0; �2� (here
sin�
� j�¼0 :¼ 1). Define the function fðxÞ :¼ x� sinx�
�
6 x

3. It is easy to check that dfdx � 0, x 2 ½0; �� and that

fðx ¼ 0Þ ¼ 0. This implies that x� sinx � �
6 x

3, x 2

½0; ��. This in conjunction with Eqs. (121) and (124)
implies that

P
N
I¼1ð�kIÞ3 < 6


� so that �kI ! 0, I ¼
1; . . . ; N as 
! 0. This in turn, together with (124), im-
plies that N ! 1 as 
! 0.
Lemma 4: Any normalized j i 2 H kin admits the ex-

pansion:

j i ¼ X
j

ajjsj;  jMi; jsj;  jMi :¼ jsji � j jMi;

(A5)

hsijsji ¼ �ij; sj ¼ f�ðsjÞ; ðkej
1
; . . . ; kejnj

Þg (A6)

h jMj jMi ¼ 1; (A7)

X
j

jajj2 ¼ 1: (A8)

Here sj are embedding charge labels, ejI, I ¼ 1; . . . ; nj are

the edges of the graph underlying sj, aj are complex

coefficients and j jMi 2 HM.

If j i is semiclassical then the coefficients aj are such

that j i is peaked around sj such that sj are weaves.

Proof: The proof closely mirrors the arguments of
Sec. VIA. Semiclassicality implies that to leading order
in @,

h j½edi�qm; edi�pm�j i  i@fei�qm; ei�pmg
¼ �i@��2�mei�qmþi�pm (A9)

Using Eqs. (80), (A5), and (A9) we have thatX
j

jajj22 sin
�
��@

2
fsj;m

�
hsj;  jMje di�qmþi�pm jsj;  jMi

 @��2�mei�qmþi�pm (A10)

where

fsj;m ¼ Xnj
I¼1

sinm�kjI; (A11)

and �kjI :¼ kjIþ1 � kjI for 1 
 I 
 nj � 1, �kjnj :¼ kj1 �
kjnj þ 2� and we have set kjI :¼ @kejI

. From lemmas 1 and 2

it follows that

� 1 
 fsj;m¼1 
 2� 8 j: (A12)

Since fsj;m¼1 is bounded, Eq. (A10) implies that to leading

order in @, we have thatX
j

jajj2fsj;m¼1hsj; jMje di�q1þi�p1 jsj; jMie�i�q1�i�p1 2�

(A13)

Denote the left-hand side of Eq. (A13) by LHS.
Equation (A13) implies that
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jLHS� 2�j 
 �; �� 1: (A14)

Taking absolute values of both sides of Eq. (A13) and using

(A8) and (A12) and the fact that e
di�qmþi�pm is a bounded

operator of norm 1, we have that

2� � X
j

jajj2jfsj;m¼1j � jLHSj: (A15)

From (A14) and (A15) we have that � � j2�� LHSj �
2�� jLHSj � 2��P

jjajj2jfsj;m¼1j, so thatX
j

jajj2jfsj;m¼1j � 2�� �: (A16)

Let J< be the set of all j such that jfsj;m¼1j 
 2�� �1=2

and let
P
j2J< jajj2 ¼ P<. Then (A12) and (A16) imply

that P<ð2�� �1=2Þ þ ð1� P<Þ2� � 2�� � so that

P< 
 �1=2. Thus as �! 0, almost all j are such that

jfsj;m¼1j � 2�� 
, where we have set 
 :¼ �1=2. Using

(A12), this, in turn, implies that for small enough 
,

fsj;m¼1 � 2�� 
: (A17)

This brings us back to Eq. (119) with s ¼ sj, m ¼ 1. The

analysis subsequent to that equation implies that such sj
must be a weave.

Lemma 5: Let j i 2 H phys be semiclassical. Then j i
is peaked at group averages of embedding eigenstates
which are based on weaves.

Proof: Recall that j i is in the completion of �ðDÞ
where D is the finite span of charge-network states. It is
then straightforward to see that any such j i admits the
expansion:

j i ¼ X
j

aj�ðjsji � j jMiÞ; (A18)

such that

�ðjsii � j iMiÞ½jsji � j jMi� ¼ �ij; (A19)

and jsii, jsji are not gauge related if i � j i.e. for i � j and

8�,
jsii � Ûð�Þjsji: (A20)

Here sj is an embedding charge-network label, � is a

gauge transformation and j jMi 2 HM. We shall use the

notation of lemma 4 for the edges and charge labels of sj.

Note that j jMi is such that �ðjsji � j jMiÞ 2 H phys as

implied by (A19). Using (87), the normalization
h j iphys ¼ 1 implies thatX

j

jajj2 ¼ 1 (A21)

Semiclassicality implies that, to leading order in @,

h j½edi�qm; edi�pm�j iphys  þi@��2�mei�qmþi�pm;
(A22)

where the ‘‘þ’’ sign in the right-hand side is due to the fact
that operators act onH phys by dual action (see footnote 4).

Using Eqs. (80) and (A20) we have thatX
j

jajj22i sin
�
��@

2
fsj;m

�
h�ðjsji � j jMiÞ;

e
di�qmþi�pm�ðjsji � j jMiÞiphys  i@��2�mei�qmþi�pm:

(A23)

Here fsj;m is defined as in lemma 4.6 This is the analog of

Eq. (A10) of lemma 4. The analysis of lemma 4 subsequent
to that equation applies here identically thus proving
lemma 5.

APPENDIX B: LEMMAS CONCERNING THE NO
GO RESULT OF SECTION VIB

Lemma 6: No states j i 2 H kin exist which are semi-
classical with respect to the uncountable set of operators

fedi�qm ; edi�pm ; j�� �0j< 
; j�� �0j< �g for any fixed
m, �0, �0 and any 
, � > 0.
Proof: As in lemma 4 of Appendix A, any j i 2 H kin

admits the expansion (A5)–(A8). Additionally we may
expand j jMi in terms of matter charge networks so that

for any fixed j,

j jMi ¼
X
rj

brj js0rji (B1)

hs0
rj
1

js0
rj
2

i ¼ �rj
1
;rj
2

(B2)

where rj varies over a countable set (as, of course, does j),
brj are complex coefficients and s0

rj
are matter charge

networks.
Let C be the set of all j such that �ðsjÞ has at least one

edge eðjÞ with embedding charge keðjÞ such that

cosm@keðjÞ � 0. For every j 2 C choose an edge ej 	
�ðsjÞ with embedding charge kej such that

cj :¼ cosm@keðjÞ � 0: (B3)

Let S be the set of all j such that j =2 C. Clearly, for each
j 2 S we can fix an edge ej 2 �ðsjÞ such that its charge

label kej satisfies

sj :¼ sinm@keðjÞ � 0: (B4)

Next, let L be the set of all matter charges which occur in
s0
rj
8j, r. Let �L be the set of differences between all pairs

6It is straightforward to check that fsj;m in (A11) is a gauge
invariant function of sj i.e. fsj;m ¼ fs0j;m 8 s0j such that 9 a
gauge transformation � such that js0ji ¼ Ûð�Þjsji.
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of elements of L i.e. �L ¼ fl� l08l; l0 2 Lg. For every
jC 2 C, jS 2 S, define the sets �LjC , �LjS whose ele-

ments are obtained by dividing elements of �L by cjC , sjS

[see (B3) and (B4)] i.e. �LjC :¼
�
x
cjC

8x 2 �L

�
, �LjS :¼�

x
sjS

8x 2 �L

�
. Finally, let �LC :¼ [jC2CLjC , �LS :¼

[jS2SLjS .
Note that �LC, �LS are both countable sets. It follows

that in any neighborhood of �0, �0 there exist uncountably
many �, � such that � =2 �LC, � =2 �LS. Then from (80)

and the fact that e
di�pm is an operator of unit norm, it follows

that for such �, �,

jh jedi�qm j ij ¼ X
j2S

jajj2; (B5)

jh jedi�pm j ij 
 X
j2C

jajj2 ¼ 1� X
j2S

jajj2: (B6)

Semiclassicality requires that both (B5) and (B6) be close
to unity. Clearly, this is not possible.

Lemma 7: No states j i 2 H phys exist which are semi-

classical with respect to the uncountable set of operators

fedi�qm; edi�pm ; j�� �0j< 
; j�� �0j< �g for any fixed
m, �0, �0 and any 
, � > 0.

Proof: As in lemma 5, Appendix A, any j i 2 H phys

admits the expansion (A18)–(A20). Further j jMi can be

expanded as in Eq. (B1)–(B3) of lemma 6. Note that the
antilinearity of � implies that we may rewrite Eq. (A18) as

j i ¼ �

�X
j

a�j jsji � j jMi
�
: (B7)

Next, let us construct the sets �LC, �LS(as defined in

lemma 6) for the state
P
ja

�
j jsji � j jMi 2 H kin. It fol-

lows straightforwardly from the periodicity of the cosine
and sine functions in conjunction with the action of gauge
transformations (75) that we may choose the sets �LC,
�LS in such a way that they are identical for any (kine-
matic) state which is gauge related to the state

P
ja

�
j jsji �

j jMi. Thus the sets �LC, �LS can be chosen so as to

depend only on the physical state j i, and it is straightfor-
ward to see that, as in lemma 6, if we choose � =2 �LC,
� =2 �LS, we obtain Eqs. (B5) and (B6) with j i as in
(B7). This proves the lemma.

APPENDIX C: CHOICE OF UNITS

In this appendix we summarize dimensions of various
operators and parameters of the theory. We have set the
speed of light c to be unity.

½S0� ¼ ML ¼ ½@�
½f� ¼ M1=2L1=2; ½�f� ¼ M1=2L�ð1=2Þ

½X�� ¼ L; ½��� ¼ ML�1

½qð�Þn� ¼ M1=2L1=2 ¼ ½pð�Þn�

(C1)

where ½n� ¼ L�1.
The dimensions of the above fields naturally imply the

dimensions of the various charges and parameters involved
in the theory.

½ke� ¼ M�1; ½le� ¼ M�ð1=2ÞL�ð1=2Þ

½�� ¼ M�ð1=2ÞL�ð1=2Þ (C2)

where the parameter � occurs in the exponentiated observ-
ables defined in (77). Throughout this paper, we have fixed
the units such that length of the T ¼ const circle is 2�.
Thus the only arbitrary scale in the theory is the mass scale.
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