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We study the dynamics of the quantum phase distribution associated with the reduced density matrix of a
system for a number of situations of practical importance, as the system evolves under the influence of its
environment, interacting via a quantum nondemolition type of coupling, such that there is decoherence without
dissipation, as well as when it interacts via a dissipative interaction, resulting in decoherence as well as
dissipation. The system is taken to be either a two-level atom �or, equivalently, a spin-1 /2 system� or a
harmonic oscillator, and the environment is modeled as a bath of harmonic oscillators, starting out in a
squeezed thermal state. The impact of the different environmental parameters on the dynamics of the quantum
phase distribution for the system starting out in various initial states is explicitly brought out. An interesting
feature that emerges from our work is that the relationship between squeezing and temperature effects depends
on the type of system-bath interaction. In the case of a quantum nondemolition type of interaction, squeezing
and temperature work in tandem, producing a diffusive effect on the phase distribution. In contrast, in the case
of a dissipative interaction, the influence of temperature can be counteracted by squeezing, which manifests as
a resistance to randomization of phase. We make use of the phase distributions to bring out a notion of
complementarity in atomic systems. We also study the variance of the phase using phase distributions condi-
tioned on particular initial states of the system.

DOI: 10.1103/PhysRevA.76.062109 PACS number�s�: 03.65.Yz, 42.50.Ct

I. INTRODUCTION

Open quantum systems are ubiquitous in the sense that
any system can be thought of as being surrounded by its
environment �reservoir or bath� which influences its dynam-
ics. They provide a natural route for discussing damping and
dephasing. One of the first testing grounds for open system
ideas was in quantum optics �1�. Its application to other areas
gained momentum from the works of Caldeira and Leggett
�2� and Zurek �3�, among others. Depending upon the
system-reservoir �S-R� interaction, open systems can be
broadly classified into two categories: viz., quantum non-
demolition �QND� or dissipative. A particular type of QND
S-R interaction is given by a class of energy-preserving mea-
surements in which dephasing occurs without damping the
system. This may be achieved when the Hamiltonian HS of
the system commutes with the Hamiltonian HSR describing
the system-reservoir interaction; i.e., HSR is a constant of the
motion generated by HS �4–6�. A dissipative open system
would be when HS and HSR do not commute, resulting in
dephasing along with damping �7�. A prototype of dissipative
open quantum systems, having many applications, is the
quantum Brownian motion of harmonic oscillators. This
model was studied by Caldeira and Leggett �2� for the case
where the system and its environment were initially sepa-
rable. The above treatment of quantum Brownian motion
was generalized to the physically reasonable initial condition

of a mixed state of the system and its environment by Hakim
and Ambegaokar �8�, Smith and Caldeira �9�, and Grabert,
Schramm, and Ingold �10� and for the case of a system in a
Stern-Gerlach potential �11� and also for quantum Brownian
motion with nonlinear system-environment couplings �12�,
among others.

The interest in the relevance of open system ideas to
quantum information has increased in recent times because
of the impressive progress made on the experimental front in
the manipulation of quantum states of matter towards quan-
tum information processing and quantum communication.
Myatt et al. �13� and Turchette et al. �14� have performed a
series of experiments in which they induced decoherence and
decay by coupling the atom �their system-S� to engineered
reservoirs, in which the coupling to, and the state of, the
environment are controllable. An experiment reported in Ref.
�15� demonstrated and completely characterized a QND
scheme for making a nondeterministic measurement of a
single photon nondestructively using only linear optics and
photodetection of ancillary modes, to induce a strong nonlin-
earity at the single-photon level. The dynamics of decoher-
ence in continuous atom-optical QND measurements has
been studied by Onofrio and Viola �16�. In addition to its
relevance in ultrasensitive measurements, a QND scheme
provides a way to prepare quantum mechanical states which
may otherwise be difficult to create, such as Fock states with
a specific number of particles. It has been shown that the
accuracy of atomic interferometry can be improved by using
QND measurements of the atomic populations at the inputs
to the interferometer �17�. QND systems have also been pro-
posed for engineering quantum dynamical evolution of a sys-
tem with the help of a quantum meter �18�. In a recent study
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of QND open system Hamiltonians for two different models
of the environment describable as baths of either oscillators
or spins, an interesting connection was found between the
energy-preserving QND Hamiltonians and the phase-space
area-preserving canonical transformations �19�.

A class of observables that may be measured repeatedly
with arbitrary precision, with the influence of the measure-
ment apparatus on the system being confined strictly to the
conjugate observables, is called QND or back-action evasive
observables �20–23�. Such a measurement scheme was origi-
nally introduced in the context of the detection of gravita-
tional waves �24,25�. The energy-preserving measurements,
referred to above, form an important class of such a general
QND measurement scheme. Since they describe dephasing
without dissipation, a study of phase diffusion in such a situ-
ation is important from the context of a number of experi-
mental situations.

The quantum description of phases �26,27� has a long
history �28–32�. Pegg and Barnett �31�, following Dirac �28�,
carried out a polar decomposition of the annihilation opera-
tor and defined a Hermitian phase operator in a finite-
dimensional Hilbert space. In their scheme, the expectation
value of a function of the phase operator is first carried out in
a finite-dimensional Hilbert space, and then the dimension is
taken to the limit of infinity. However, it is not possible to
interpret this expectation value as that of a function of a
Hermitian phase operator in an infinite-dimensional Hilbert
space �33,34�. To circumvent this problem, the concept of a
phase distribution for the quantum phase has been introduced
�33,35�. In this scheme, one associates a phase distribution to
a given state such that the average of a function of the phase
operator in the state, computed with the phase distribution,
reproduces the results of Pegg and Barnett.

A study of the quantum phase diffusion in a number of
QND systems was carried out in Ref. �36� using the phase
distribution approach. In this work we extend the above
study to include the effect of dissipation on phase diffusion.
Throughout this paper, the bath is assumed to be a collection
of harmonic oscillators starting from a squeezed thermal ini-
tial state. An advantage of using a squeezed thermal bath is
that the decay rate of quantum coherences can be suppressed,
leading to preservation of nonclassical effects �37–39�. It has
also been shown to modify the evolution of the geometric
phase of two-level atomic systems �40�. The plan of the pa-
per is as follows. In Sec. II, we recollect some results on the
quantum phase distribution in QND systems from �36,39�.
We extend the previous expressions, for a single two-level
atomic system, to the case of two two-level atoms and fur-
ther plot the quantum phase distribution for ten two-level
atoms. Following Agarwal and Singh �41� we also introduce
the number distribution and use it to discuss the complemen-
tary between the number and phase distributions. In Sec. III,
we study the quantum phase distribution of a two-level
atomic system interacting with its bath via a dissipative in-
teraction. The evolution is governed by a Lindblad equation.
The phase distribution is studied for the system initially �a�
in an atomic coherent state and �b� in an atomic squeezed
state. For the system in an atomic coherent state, comple-
mentarity between the number and phase distributions is dis-
cussed. In Sec. IV, the quantum phase distribution of the

system of a harmonic oscillator, in a dissipative interaction
with its bath, is obtained. In Sec. V, an application is made of
the quantum phase distributions obtained for various initial
system states and S-R interactions, to study the correspond-
ing phase dispersion. In Sec. VI, we present our conclusions.

II. QUANTUM PHASE DISTRIBUTION: QND

Here we recapitulate, from �36�, the results of quantum
phase distributions for a two-level atomic system as well as
that of a harmonic oscillator which undergo interaction with
their environments via a QND type of interaction. We con-
sider the following Hamiltonian which models the interac-
tion of a system with its environment, modeled as a bath of
harmonic oscillators, via a QND type of coupling �39�:

H = HS + HR + HSR

= HS + �
k

��kbk
†bk + HS�

k

gk�bk + bk
†� + HS

2�
k

gk
2

��k
.

�1�

Here HS, HR, and HSR stand for the Hamiltonians of the
system, reservoir, and system-reservoir interaction, respec-
tively. The gk’s are dimensionless coupling constants. The
last term on the right-hand side of Eq. �1� is a
renormalization-inducing “counterterm.” Since �HS ,HSR�=0,
Eq. �1� is of QND type. Here HS is a generic system Hamil-
tonian which will be used subsequently to model different
physical situations. Assuming separable initial conditions
with the bath being initially in a squeezed thermal state and
tracing over the bath degrees of freedom, the reduced density
matrix of the system of interest, S, in the system eigenbasis,
is obtained as �39�

�nm
s �t� = e−�i/���En−Em�tei�En

2−Em
2 ���t� exp�− �Em − En�2��t���nm

s �0� ,

�2�

where

��t� = − �
k

gk
2

�2�k
2 sin��kt� �3�

and

��t� =
1

2�
k

gk
2

�2�k
2 coth����k

2
���ei�kt − 1�cosh�rk�

+ �e−i�kt − 1�sinh�rk�ei2�k�2. �4�

For the reservoir R to be considered as a proper bath causing
decoherence and �possibly� dissipation, we need to assume a
“quasicontinuous” bath spectrum with spectral density I���
such that for an arbitrary function f��� the continuum limit
implies �6�

�
k

gk
2

�2 f��k� → 	
0

�

d�I���f��� . �5�
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We consider the case of an Ohmic bath with spectral density,

I��� =
�0

	
�e−�/�c, �6�

where �0, having the dimension of 1 / �energy�2 �6�, and �c

are two bath parameters characterizing the quantum noise.
Using Eqs. �5� and �6� in Eq. �3�, we obtain �39�

��t� = −
�0

	
tan−1��ct� . �7�

Using Eqs. �5� and �6� in Eq. �4� and using the T=0 limit,
��t� is obtained as �39�

��t� =
�0

2	
cosh�2r�ln�1 + �c

2t2�

−
�0

4	
sinh�2r�ln
 1 + 4�c

2�t − a�2

�1 + �c
2�t − 2a�2�2�

−
�0

4	
sinh�2r�ln�1 + 4a2�c

2� , �8�

where the resulting integrals are defined only for t
2a �42�.
Using Eqs. �5� and �6� in Eq. �4� and using the high-T limit,
��t� is obtained as �39�

��t� =
�0kBT

	��c
cosh�2r�
2�ct tan−1��ct� + ln� 1

1 + �c
2t2��

−
�0kBT

2	��c
sinh�2r�
4�c�t − a�tan−1�2�c�t − a��

− 4�c�t − 2a�tan−1��c�t − 2a�� + 4a�c tan−1�2a�c�

+ ln� �1 + �c
2�t − 2a�2�2

�1 + 4�c
2�t − a�2�

� + ln� 1

1 + 4a2�c
2�� , �9�

where, again, the resulting integrals are defined for t
2a
�42�. Here we have for simplicity taken the squeezed bath
parameters as

cosh�2r���� = cosh�2r�, sinh�2r���� = sinh�2r� ,

���� = a� , �10�

where a is a constant depending upon the squeezed bath.
Note that the results pertaining to a thermal bath can be
obtained from the above equations by setting the squeezing
parameters r and � to zero. It is interesting to note that in the
context of quantum information, the open system effect de-
picted in this section can be modeled by a familiar quantum
noisy channel: viz., the phase damping channel �40,43,44�.

A. Two-level atomic systems

Here we consider the case where our system S is a two-
level atom. The system Hamiltonian HS is

HS =
��

2
�z, �11�

where �z is the usual Pauli matrix. The form of the system
Hamiltonian HS, Eq. �11�, when substituted into Eq. �1� has
been used in the context of quantum computation �45–47�. In
the context of a system of multiple two-level atoms, which is
equivalent to an angular momentum system, we set HS
=��Jz. The Wigner-Dicke state �48–50� �j ,m�, which are the
simultaneous eigenstates of the angular momentum operators
J2 and Jz, serves as the basis states for HS, and we have

HS�j,m� = ��m�j,m�

= Ej,m�j,m� . �12�

Here −j�m� j. Using this basis and the above equation in
Eq. �2� we obtain the reduced density matrix of the system as

� jm,jn
s �t� = e−i��m−n�tei����2�m2−n2���t�e−����2�m − n�2��t�� jm,jn

s �0� .

�13�

Following Agarwal and Singh �41� we introduce the phase
distribution P�
�, 
 being related to the phase of the dipole
moment of the system, as

P�
� =
2j + 1

4	
	

0

	

d� sin���Q��,
� , �14�

where P�
�
0 and is normalized to unity—i.e.,

0

2	d
P�
�=1. Here Q�� ,
� is defined as

Q��,
� = ��,
��s��,
� , �15�

where �� ,
� are the atomic coherent states �51,52� given by
an expansion over the Wigner-Dicke states �49� as

��,
� = �
m=−j

j � 2j

j + m
�1/2

��sin��/2�� j+m�cos��/2�� j−m�j,m�e−i�j+m�
. �16�

Using Eq. �15� in Eq. �14�, with insertions of partitions of
unity in terms of the Wigner-Dicke states, we can write the
phase distribution function as

P�
� =
2j + 1

4	
	

0

	

d� sin � �
n,m=−j

j

��,
�j,n�

��j,n��s�t��j,m��j,m��,
� . �17�

Now we take up two physically interesting initial conditions
for the system S.

1. System initially in an atomic coherent state

Here we consider the system S to be initially in an atomic
coherent state which is the atomic analog of the Glauber
coherent state �49�. Thus the initial system density matrix is

�s�0� = ���,������,��� . �18�
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Using Eqs. �13� and �18� in Eq. �17� we obtain the phase
distribution for a two-level atom, with j= 1

2 , as �36�

P�
� =
1

2	

1 +

	

4
sin����cos��� + �t − 
�e−����2��t�� .

�19�

It can be easily checked that this P�
� is normalized to unity.
As can be seen from Eq. �19�, only ��t� plays a role in the
effect of the environment on the phase distribution.

2. System initially in an atomic squeezed state

Now we consider our system S to be initially in an atomic
squeezed state �51–54� expressed in terms of the Wigner-
Dicke states as

��,p� = Ap exp��Jz�exp�− i
	

2
Jy��j,p� , �20�

where

e2� = tanh�2���� �21�

and Ap is usually obtained by normalization. Thus the initial
density matrix of the system S is

�s�0� = ��,p���,p� . �22�

Using Eqs. �13� and �22� in Eq. �17� we obtain the phase
distribution for a two-level atom, with j= 1

2 for p= ± 1
2 , as

�36�

P�
� =
1

2	

1 ±

	

4 cosh���
cos�
 − �t�e−����2��t�� .

�23�

It can be seen that Eq. �23� is normalized to unity.
The above expressions may be extended to the case of

multiple two-level atoms. For example, the quantum phase
distribution for two two-level atoms, with j=1, is

P�
� =
1

2	
�1 ±

3	

4�1 + cosh�2���

�„cos�
 − �t�cos�����2��t��cosh���

− sin�
 − �t�sin�����2��t��sinh���…

�exp�− ����2��t��

+
1

2�1 + cosh�2���
cos�2�
 − �t��

�exp�− 4����2��t��� , �24�

for p= ±1, and

P�
� =
1

2	
�1 −

1

2 cosh�2��
cos�2�
 − �t��

�exp�− 4����2��t��� , �25�

for p=0.

In comparison with Eq. �23�, which gives the quantum
phase distribution for a single two-level atom, it can be seen
that Eq. �24� �phase distribution for two two-level atoms�
involves both ��t� and ��t�. This procedure may be carried to
any number of two-level atoms using the Wigner-d function
�55�:

dn,p
j �	/2� = 2−j��j + n�!�j − n�!�j + p�!�j − p�!

��
q

�− 1�q

q!�j + n − q�!�j − p − q�!�p + q − n�!
,

�26�

where dn,p
j ��� is the standard Wigner symbol for the rotation

operator �55�,

dn,p
j ��� = �j,n�e−i�Jy�j,p� . �27�

In Fig. 1, we plot the quantum phase distribution for ten
two-level atoms. It can be clearly seen from the figure that
compared to the unitary case, interaction with the bath �char-
acterized by finiteness of �0� causes phase diffusion. A com-
parison of the small- and large-dashed curves indicates that
with an increase in bath exposure duration t, the phase dis-
tribution diffuses as well as shifts to the right. It is also
evident from the figure that an increase in the bath squeezing
r and temperature T also causes phase diffusion. The phase
distributions are normalized to unity.

In the case of a QND type of interaction, the system is
decohered without its energy being affected. This is reflected
in the fact that with higher noise, the “phase” gets com-
pletely randomized, resulting in a flattening of the distribu-
tion P�
�, as depicted in Fig. 1, whereas the “number” dis-
tribution, given by

-3 -2 -1 0 1 2 3
Φ

0.2

0.4

0.6

0.8

P�Φ�

FIG. 1. Quantum phase distribution P�
� with respect to 
 �in
radians� for ten atoms, starting in an atomic squeezed state �Eq.
�22��, with j= p=5, a=0 �Eq. �10��, �=−0.01832 �Eq. �21��, and
�0=0.025, undergoing a QND system-bath interaction. Here �=1
and �c=100. The bold curve represents unitary evolution for t
=0.1, while the small-dashed and large-dashed curves are for the
bath squeezing parameter r=1.0, temperature �in units where �
�kB�1� T=0.0, and evolution times t=0.1 and 1, respectively. The
dot-dashed curve represents the case r=2.0, t=0.1, and T=0.0 and
the dotted curve the case r=1.0, t=0.1, and T=300.0.
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p�m� = �j,m��s�t��j,m� ��m� � j� �28�

=�� 2j

j + m
��sin���/2��2�j+m��cos���/2��2�j−m� for initial atomic coherent state, Eq. �18� ,

�Ap�2e2m��dmp
j �	/2��2 for initial atomic squeezed state, Eq. �22� ,

� �29�

remains unaffected. The distributions p�m� and P�
� may be
thought of as complementary �41� in the sense of conjugate
Hermitian observables. For example, it may be verified that a
“number” state—i.e., Wigner-Dicke state—corresponds to a
phase distribution of maximum uncertainty �in the entropic
sense� �56�. This process may be understood as the selection
of states in a preferred pointer basis �3,5�, which in this case
are the Wigner-Dicke states, because of the nature of the
system-reservoir interaction, whereby the environment
“monitors” the system in the preferred basis. As p�m� repre-
sents information in the preferred basis �5�, the influence of
the environment is not seen explicitly in Eq. �29�.

B. Harmonic oscillator system

Here the system of interest, S, is taken to be a harmonic
oscillator with the Hamiltonian

HS = ���a†a +
1

2
� . �30�

The number states serve as an appropriate basis for the sys-
tem Hamiltonian and the system energy eigenvalue �30� in
this basis is

En = ���n +
1

2
� . �31�

Following Agarwal et al. �35� we define a phase distribution
P��� for a given density operator �̂ associated with a state ���
as

P��� =
1

2	
������� �0 � � � 2	�

=
1

2	
�

m,n=0

�

�m,nei�n−m��, �32�

where the states ��� are the analogs of the Susskind-
Glogower �29� phase operator and are defined in terms of the
number states �n� as

��� = �
n=0

�

ein��n� . �33�

The sum in Eq. �32� is assumed to converge and the phase
distribution normalized to unity. Now we take up two physi-
cally interesting initial conditions for the system S.

1. System initially in a coherent state

The initial density matrix of the system is

�s�0� = ������ , �34�

where

� = ���ei�0 �35�

is a coherent state �57�. Using Eqs. �31� and �34� in Eq. �2�
and then using it in Eq. �32�, the phase distribution is ob-
tained as �36�

P��� =
1

2	
�

m,n=0

� ���n+m

��n�!�m�!
ei�n−m���−�0�e−���2

� e−i��m−n�tei����2�m−n��n+m+1���t�e−����2�n − m�2��t�.

�36�

2. System initially in a squeezed coherent state

The initial density matrix of the system is

�s�0� = ��,����,�� , �37�

where the squeezed coherent state is defined as �57�

��,�� = S���D����0� . �38�

Here S denotes the standard squeezing operator and D de-
notes the standard displacement operator �57�. Using Eqs.
�31� and �37� in Eq. �2� and then using it in Eq. �32�, the
phase distribution is obtained as �36�

P��� =
1

2	
�

m,n=0

�

ei�n−m�� ei��/2��m−n�

2�m+n�/2��m�!�n!�
�tanh�r1���m+n�/2

cosh�r1�

� exp�− ���2�1 − tanh�r1�cos�2�0 − ����

� Hm
 ���ei��0−�/2�

�sinh�2r1�
�Hn

*
 ���ei��0−�/2�

�sinh�2r1�
�

� e−i��m−n�tei����2�m−n��n+m+1���t�e−����2�n − m�2��t�.

�39�

Here the system squeezing parameter �=r1ei� and Hn�z� is a
Hermite polynomial. The phase distributions depicted by
Eqs. �36� and �39� have been plotted in Ref. �36�, where they
were seen to exhibit a phase diffusion pattern with the phase
distributions being normalized to unity.
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III. QUANTUM PHASE DISTRIBUTION OF A
TWO-LEVEL ATOMIC SYSTEM IN A

NON-QND INTERACTION WITH A BATH

Here we will obtain the quantum phase distribution of a
two-level atomic system in an interaction with a squeezed
thermal bath such that it undergoes both decoherence and
dissipation. The reduced density matrix operator of the sys-
tem S is given by �7,57�

d

dt
�s�t�

= − i
�

2
��z,�

s�t��

+ �0�N + 1���−�s�t��+ −
1

2
�+�−�s�t� −

1

2
�s�t��+�−�

+ �0N��+�s�t��− −
1

2
�−�+�s�t� −

1

2
�s�t��−�+�

− �0M�+�s�t��+ − �0M*�−�s�t��−. �40�

In the context of quantum information, the open system
effect depicted by Eq. �40� can be modeled by a familiar
noisy channel called the generalized amplitude damping
channel �40,43,44� for zero bath squeezing. For the case of
finite bath squeezing and temperature, the corresponding
noisy channel has been obtained by us recently �58� and
could appropriately be called the squeezed generalized am-
plitude damping channel.

In Eq. �40�, �0, having the dimension of �time�−1, is the
spontaneous emission rate given by

�0 =
4�3�d� �2

3�c3 �41�

and �+ and �− are the standard raising and lowering opera-
tors, respectively, given by

�+ = �1��0� =
1

2
��x + i�y� ,

�− = �0��1� =
1

2
��x − i�y� , �42�

with �z being the standard Pauli operator related to the rais-
ing and lowering operators as ��+ ,�−�=�z. In the above
equations, �a ,b�=ab−ba. In Eq. �40�,

N = Nth�cosh2�r� + sinh2�r�� + sinh2�r� , �43�

M = −
1

2
sinh�2r�ei��2Nth + 1� � Rei�, �44�

and

Nth =
1

e��/kBT − 1
. �45�

Here Nth is the Planck distribution giving the number of ther-
mal photons at the frequency � and r and � are squeezing
parameters. The analogous case of a thermal bath without
squeezing can be obtained from the above expressions by
setting these squeezing parameters to zero. Equation �40� can
be solved using the Bloch vector formalism �cf. �7,40��.
However, the solutions obtained thus are not amenable to
treatment of the quantum phase distribution by use of Eq.
�17�. For this purpose we briefly detail the solution of Eq.
�40� in an operator form. We closely follow the derivation
given by Nakazato et al. �59� and extend it to the case of a
squeezed thermal bath.

Equation �40� can be written as

d

dt
�s�t� = A�s�t� + �s�t�A†

+ ��+�−�s�t��+ + �−�+�s�t��−

− �0M�+�s�t��+ − �0M*�−�s�t��−� , �46�

where

�+ = �0�N + 1�, �− = �0N , �47�

and

A = −
1

4
�� −

1

4
�� + 2i���z,

�� = �+ + �− = �0�2N + 1� ,

� = �+ − �− = �0. �48�

The following transformation is now introduced in Eq. �46�:

�s�t� = eAt�I�t�eA†t, �49�

yielding

d

dt
�I�t� = �+�−�I�t��+e−�t + �−�+�I�t��−e�t

− �0M�+�I�t��+ei2�t − �0M*�−�I�t��−e−i2�t.

�50�

The solution of Eq. �50� is facilitated by the introduction of
superoperators having the following action:

P−� = �−��+, P+� = �+��−,

P−
a� = �−��−, P+

a� = �+��+. �51�

Using Eqs. �51�, Eq. �50� can be written as

d

dt
�I�t� = ��+e−�tP− + �−e�tP+��I�t�

− ��0Mei2�tP+
a + �0M*e−i2�tP−

a��I�t� . �52�

Integrating we get
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�I�t� = �I�0� +
1

�� ��+�e�−t − e−�+t�P− + ��+e�−t + �−e−�+t − ���P−P+��I�0�

+
1

�� ��−�e�+t − e−�−t�P+ + ��−e�+t + �+e−�−t − ���P+P−��I�0�

− �0M
 sinh��t�
�

ei�tP+
a −

1

�0M
�ei�t�cosh��t� −

i�

�
sinh��t�� − 1�P+

aP−
a��I�0�

− �0M*
 sinh��t�
�

e−i�tP−
a −

1

�0M*�e−i�t�cosh��t� +
i�

�
sinh��t�� − 1�P−

aP+
a��I�0� , �53�

where

� = ��0
2�M�2 − �2. �54�

All the other terms are as given above. Using Eq. �49� in Eq. �53� we finally obtain the solution of Eq. �40� as

�s�t� =
1

4
�s�0��1 + e−��t + 2 cosh��t�e−��t/2� +

1

4
�z�

s�0��z�1 + e−��t − 2 cosh��t�e−��t/2�

−
1

4
�s�0��z� �

�� �1 − e−��t� −
2i�

�
sinh��t�e−��t/2� −

1

4
�z�

s�0�� �

�� �1 − e−��t� +
2i�

�
sinh��t�e−��t/2�

+ �1 − e−��t���+

���−�s�0��+ +
�−

���+�s�0��−� − �0
sinh��t�

�
e−��t/2�M�+�s�0��+ + M*�−�s�0��−� . �55�

This is the desired form of the solution of the master equa-
tion �40�. For the case of a thermal bath without squeezing, r
and � are zero and it can be seen that Eq. �55� reduces to the
solution obtained by Nakazato et al. �59� for the case of a
two-level atom interacting with a thermal bath. We will use
Eq. �55� in the following subsections to investigate the quan-
tum phase distribution.

A. System initially in an atomic coherent state

Taking the initial density matrix of the system S to be as
in Eq. �18�, using it in Eq. �55�, and then in Eq. �17�, with
j= 1

2 , we obtain the quantum phase distribution as

P�
� =
1

2	

1 +

	

4�
sin������ cosh��t�cos�
 − ���

+ � sinh��t�sin�
 − ���

− �0R sinh��t�cos�� + �� + 
��e−��t/2� . �56�

Here R and � come from Eq. �44� and �� and � are as in
Eqs. �48� and �54�, respectively. Equation �56� can be seen to
be normalized to unity. When �0 is set equal to zero—i.e., for
the case where the effects of the bath are neglected—Eq.
�56� becomes

P�
,�0 = 0� =
1

2	
�1 +

	

4
sin����cos��� + �t − 
�� .

�57�

In the analogous case of the QND system-bath interaction,
the phase distribution was given by Eq. �19� which, with the

bath coupling parameter �0 set to zero, is easily seen to re-
duce to Eq. �57�. This is a nice consistency check for these
equations.

Figure 2 illustrates the combined effects of temperature,
evolution time, and bath squeezing �r ,�� on the quantum
phase distribution. Comparison of the small- and large-
dashed curves brings out the diffusive influence of tempera-
ture, while a comparison of the bold and small-dashed curves

-3 -2 -1 0 1 2 3
Φ

0.05

0.1

0.15

0.2

0.25

P�Φ�

FIG. 2. Quantum phase distribution P�
� �Eq. �56�� with respect
to 
 �in radians� for a two-level dissipative system initially in an
atomic coherent state �18�. Here �=1.0, �=	 /8, ��=��=	 /4, and
�0=0.25. The bold and small-dashed curves correspond to tempera-
ture �in units where ��kB�1� T=0 and bath squeezing parameter
r=0, but with bath exposure times t=0.1 and 1.5, respectively. The
large-dashed and dot-dashed curves correspond to T=300 and t
=0.1, but r=0 and 2, respectively. Comparing the last two curves,
we note that, counterintuitively, squeezing resists diffusion.
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shows that the phase distribution shifts with an increase in
bath exposure time. On the other hand, a comparison be-
tween the large- and dot-dashed curves illustrates an interest-
ing feature of squeezing in dissipative systems governed by
Lindblad-type equations, Eq. �40�, in that squeezing tends to
counteract the influence of temperature, which in this case
manifests as resistance to randomization of phase. A similar
behavior is observed in the joint effect of temperature and
squeezing on the geometric phase of a qubit �two-level sys-
tem� interacting dissipatively with its environment �40�. The
normalization of the phase distribution is preserved.

We plot in Fig. 3 the function

p�m = 1/2,t� = �1/2��s�t��1/2�

=
1

2

�1 −

�0

��� + �1 +
�0

���e−��t�sin2���/2�

+
�−

�� �1 − e−��t�cos2���/2� . �58�

Figure 3 depicts an expected behavior of a two-level sys-
tem subjected to a dissipative channel. In particular, for T
=0 and r=0, it drives the system toward a pure state �with
m=−1 /2� and thus behaves as a quantum deleter �43�. Cor-
respondingly, the phase distribution P�
� tends to level out
for large bath exposure time t, as seen in Fig. 4. This brings
out nicely the complementarity between p�m� and P�
� �41�.
It is to be noted that, in contrast to the QND case, here the
Wigner-Dicke states are not the preferred basis, and hence
the environmental effects manifest themselves in the func-
tion p�m� as seen in Eq. �58�.

B. System initially in an atomic squeezed state

Taking the initial density matrix of the system S to be as
in Eq. �22�, using it in Eq. �55�, and then in Eq. �17�, with

j= 1
2 , we obtain the quantum phase distribution for p= ± 1

2 as

P�
� =
1

2	

1 ±

	

4 cosh����cosh��t�cos�
�

+
�

�
sinh��t�sin�
�

−
�0R

�
sinh��t�cos�
 + ���e−��t/2� . �59�

Here � is as defined in Eq. �21� and all the other terms are as
given above. Equation �59� is easily seen to be normalized to
unity. Also, by setting �0 to zero in them, they are seen to
reduce to the cases of �0 set to zero in their QND counter-
parts, Eq. �23�, respectively. This serves as a consistency
check for these equations. On comparing the above equa-
tions, for the quantum phase distributions, with the corre-
sponding ones for the case of a QND system-bath interac-
tion, these are easily seen to be more complicated. This is a
reflection of the fact that the phase distributions developed in
this section are for a process that involves both dephasing as
well as dissipation, in contrast to the QND case, which in-
volves only dephasing.

We plot in Fig. 5 the quantum phase distributions P��� for
a two-level system starting in an atomic squeezed state �22�.
An interesting feature in Fig. 5 is brought out by a compari-
son of the bold and large-dashed curves. Squeezing is seen to
have the effect of resisting the diffusive effect of temperature
on the phase. This is similar to the behavior seen in Fig. 2
and suggests that this is a generic property of squeezing in a
dissipative interaction. A comparison of the small-dashed
and bold curves brings out the diffusive effect of temperature

20 40 60 80 100 120
t

0.2

0.4

0.6

0.8

1
p��1�2�

FIG. 3. The distribution p�m=1 /2, t� �Eq. �58�� for a two-level
dissipative system starting in an atomic coherent state �Eq. �18��, as
a function of time for different environmental conditions. The bold
curve corresponds to temperature T=100, �0=0.0025, r=�=0, �
=1, and ��=��=	 /4, illustrative of a system becoming maximally
mixed with time. The large-dashed curve corresponds to T=0, �0

=0.025, and r=0 and depicts quantum deletion �Ref. �43��. The
small-dashed curve represents the case T=0, �0=0.025, and r=1.
Here time and temperature are in units where ��kB�1.
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FIG. 4. Quantum phase distribution P�
� �Eq. �56�� with respect
to 
 �in radians� for a two-level dissipative system starting in an
atomic coherent state �Eq. �18��, at various times with temperature
�in units where ��kB�1� T=0 and bath squeezing parameters r
=�=0, �0=0.025, �=1, and ��=��=	 /4. The large-dashed,
small-dashed, and bold curves correspond, respectively, to evolu-
tion times t=250, 50, and 10. The large-dashed curve depicts the
randomization of phase distribution at long times. Comparison of
this figure with Fig. 3 clearly brings out complementarity between
the “number” and “phase” variables. In particular, comparison be-
tween the large-dashed curves in both figures shows how as the
state becomes increasingly pure, tending to m=−1 /2, with time, the
corresponding complementary distribution P�
� levels out.
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on the phase distribution while a comparison between the
small-dashed and dot-dashed curves shows that the distribu-
tion shifts with time. The phase distribution normalization is
preserved.

IV. QUANTUM PHASE DISTRIBUTION OF A
HARMONIC-OSCILLATOR SYSTEM IN A
NON-QND INTERACTION WITH A BATH

Here we will obtain the quantum phase distribution of a
harmonic-oscillator system, Hs=���a†a+ 1

2
�, in a dissipative

interaction with a squeezed thermal bath. The reduced den-
sity matrix operator of the system S, in the interaction pic-
ture, is given by �7,57�

d

dt
�s�t� = �0�N + 1��a�s�t�a† −

1

2
a†a�s�t� −

1

2
�s�t�a†a�

+ �0N�a†�s�t�a −
1

2
aa†�s�t� −

1

2
�s�t�aa†�

+ �0M�a†�s�t�a† −
1

2
�a†�2�s�t� −

1

2
�s�t��a†�2�

+ �0M*�a�s�t�a −
1

2
�a�2�s�t� −

1

2
�s�t��a�2� .

�60�

In the above equation, N and M are bath parameters which
will be given below and �0 is a parameter which depends
upon the system-bath coupling strength. Equation �60� can
be solved using a variety of methods �cf. �7,57��. However,
the solutions obtained thus are not amenable to treatment of
the quantum phase distribution by use of Eq. �32�. For this
purpose we again briefly detail the solution of Eq. �60� in an
operator form. We closely follow the derivation given by Lu
et al. �60�. The following transformations are introduced
�61�:

��s�t� = S†����s�t�S���, a� = S†���aS��� , �61�

where

S��� = e��*a2−�a†2�/2. �62�

Using Eqs. �61� we get

a� = cosh�����a −
�

���
sinh�����a†. �63�

Using Eqs. �61� and �63� in Eq. �60�, we get

d

dt
��s�t� = 
�K+ + �K− + �� + ��K0 +

�0

2
���s�t� , �64�

where

� = �0N cosh�2���� + �0 cosh2�����

−
�0

2���
sinh�2�����M�* + M*�� ,

� = �0N cosh�2���� + �0 sinh2�����

−
�0

2���
sinh�2�����M�* + M*�� . �65�

The parameters involved in the above equation need to sat-
isfy the following consistency condition:

���
�

M coth����� +
�

���
M* tanh����� = 2N + 1. �66�

It can be seen that

M =
1

2
sinh�2r��2Nth + 1�ei�,

N = Nth�cosh2�r� + sinh2�r�� + sinh2�r� ,

Nth =
1

e��/kBT − 1
, � = rei� �67�

satisfy Eq. �66�. In Eq. �64�, K+, K−, and K0 are superopera-
tors satisfying

K+��s = a��sa†, K−��s = a†��sa ,
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FIG. 5. Quantum phase distribution P�
� �Eq. �59�� with respect
to 
 �in radians� for a two-level system starting in an atomic
squeezed state �22�. Here �=1.0, �=	 /8, �=−0.01832, and �0

=0.025. �Top� refers to p= 1
2 and �bottom� to p=− 1

2 . In both figures,
the large-dashed and bold curves correspond to temperature �in
units where ��kB�1� T=300 and evolution time t=0.1. The bath
squeezing parameter r is, respectively, 0.5 and 0.0. The small-
dashed and dot-dashed curves correspond to T=0 and r=0.0, with
time t being 0.1 and 1.5, respectively.
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K0��s = −
1

2
�a†a��s + ��sa†a + ��s� . �68�

These superoperators can be seen to satisfy:

�K−,K+���s = 2K0��s, �K0,K±���s = ± K±��s, �69�

which coincides with the commutation relations of the
su�1,1� Lie algebra. This brings out the intimate connection
between the solutions of the master equation �60� and the
generators of the su�1,1� Lie algebra. Using the disentangling
theorems of the su�1,1� Lie algebra, Eq. �64� can be solved to
yield

��s�t� = e�0t/2ey−�t�K−eln�y0�t��K0ey+�t�K+��s�0� , �70�

where

y0�t� = ��e�0t/2 − �e−�0t/2

�0
�2

,

y+�t� =
��e−�0t − 1�
�e−�0t − �

,

y−�t� =
��e−�0t − 1�
�e−�0t − �

. �71�

Using Eqs. �70� and �61�, the solution of Eq. �60� can be
written as

�s�t� = S����e�0t/2ey−�t�K−eln�y0�t��K0ey+�t�K+S†����s�0�S����S†��� .

�72�

This is the form of solution of the master equation which we
will use for investigation of the quantum phase distribution.
We will use a special initial state of the system, the squeezed
coherent state,

�s�0� = ��,����,�� , �73�

where

��,�� = S���D����0� . �74�

Here �0� is the vacuum state and D��� is the standard dis-
placement operator. Substituting Eq. �73� into Eq. �72�, the
solution of Eq. �60� starting from the initial state �73�, fol-
lowing Lu et al. �60�, is obtained as

�s�t� =
1

1 + �̃�t�
e−�̃�t���̃�t��2�

k=0

� � �̃�t�

1 + �̃�t�
�k

1

k! �
l,p=0

k �k

l
�

��k

p
��l!p!��̃*�t��k−l��̃�t��k−p��,�̃�t�,l��p,�̃�t�,�� ,

�75�

where

��,�̃�t�,l� = S�����̃�t�,l� = S���D„�̃�t�…�l� �76�

and

�̃�t� =
�

�0
�1 − e−�0t�, �̃�t� = �

e−�0t/2

1 + �̃�t�
, �77�

where � is given by Eq. �65�. In Eq. �76�, D(�̃�t�)
=e�̃�t�a†−�̃*�t�a and D(�̃�t�)�l� is known as the generalized
coherent state �GCS� �62,63� and thus the state �� , �̃�t� , l�
would be the generalized squeezed coherent state �GSCS�
�63�. The GCSs were introduced by Roy and Singh �62�,
where they demonstrated that the harmonic oscillator pos-
sesses an infinite string of coherent states. We see from Eqs.
�75� and �73� that under the action of the master equation
�60�, which is of a Lindblad kind, a harmonic oscillator start-
ing in a squeezed coherent state ends in a mixture that can be
expressed as a sum over GSCSs. Thus the above case can be
thought of as a concrete physical realization of GSCSs.

This is an example of ultracoherence pertaining to master
equations governing the Lindblad type of evolution such as
Eq. �60�. Ultracoherence refers to the structure induced into
the Fock space F�H�, over a finite- or infinite-dimensional
Hilbert space H, by the action of all canonical transforma-
tions, both homogeneous �e.g., squeezing operation� and in-
homogeneous �Weyl operators� �64,65�. Starting from the
squeezed coherent state �73� of the harmonic oscillator,
obtained by applying the canonical transformation U
=S���D���, Eq. �74�, to the vacuum state and applying a
canonical transformation �61� to the master equation �60�,
results in a mixture of ultracoherent states, which in this case
is the GSCSs.

Making use of the Fock-space representation of GCSs
�62�,

�n,��t�� = e−���t��2/2�
l=0

� �n!

l!
�1/2

Ln
l−n
„���t��2…���t��l−n�l� ,

�78�

where Ln
l−n�x� is the generalized Laguerre polynomial, and

substituting Eq. �75� into Eq. �32�, reverting back to the
Schrödinger picture, we obtain the quantum phase distribu-
tion of a dissipative harmonic oscillator starting in a
squeezed coherent state �73� as

P��� =
1

2	
e−��̃�t��2 e−�̃�t���̃�t��2

1 + �̃�t�
�
m,n

e−i��m−n�tei�n−m��

� �
u,v,k

Gu,m
* ���Gv,n��� � � �̃�t�

1 + �̃�t�
�k

1

k! �
l,p=0

k �k

l
��k

p
�

�
l!p!

��u!v!�
��̃*�t��v−p+k−l��̃�t��u−l+k−p

�Ll
u−l
„��̃�t��2…Lp

*v−p
„��̃�t��2… . �79�

In the above equation, Gm,n���= �m�S����n� and is explicitly
given, with �=r1ei
, as �63�
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G2m,2p =
�− 1�p

�p�!�m�!� �2p�!�2m�!
cosh�r1� �1/2

exp�i�m − p�
�

� � tanh�r1�
2

��m+p�

F1
2
− p,− m;

1

2
;−

1

�sinh�r1��2� .

�80�

Similarly G2m+1,2p+1��� is given by

G2m+1,2p+1 =
�− 1�p

�p�!�m�!� �2p + 1�!�2m + 1�!
cosh3�r1� �1/2

�exp�i�m − p�
� � � tanh�r1�
2

��m+p�

�F1
2
− p,− m;

3

2
;−

1

�sinh�r1��2� . �81�

As has been pointed out in �63�, Gm,n is nonzero only for
either m and n both even or both odd. For convenience it is
sometimes assumed that 
 is zero and z=r1 is real. Here r1
=r, due to the initial condition �73� and F1

2 is the Gauss
hypergeometric function �66�.

In Fig. 6, we make a comparison of the quantum phase
distributions P��� for a harmonic-oscillator system starting
in a squeezed coherent state �38�, for a QND system-bath
interaction �Eq. �39��, with that for a dissipative system-bath
interaction �Eq. �79��. A comparison of the distributions
brings out the differing effects of the two types of system-
bath interactions on them. The phase distributions are nor-
malized.

V. APPLICATIONS: PHASE DISPERSION

From the perspective of experiments, a relevant quantity
is the quantum phase fluctuation, which may be quantified by
the variance �2= �
2�− �
�2. For example, Ref. �17� presents

a measurement of the phase variance on atomic populations
using interferometry improved by QND measurements at the
inputs to the interferometer. However, this measure of the
phase fluctuation has the drawback that it depends on the
origin of the phase integration. A measure of the phase fluc-
tuation that avoids this problem is the dispersion D
�27,67–69�,

D = 1 − �	
−	

+	

d
e−i
P�
��2

. �82�

In this section, as an application of the phase distribution
formalism employed above, we study the phase dispersion D
from these distributions. We also evaluated the variance for
these distributions �not presented in this work� and found
that in certain cases, there is in fact a qualitative difference of
the behavior of these two quantities.

Figure 7 depicts the behavior of the dispersion D of 
 of
a ten two-level atomic system, starting from an atomic
squeezed state, interacting with a squeezed thermal bath via a
QND interaction, with respect to the environmental squeez-
ing parameter r �Eq. �10��. The dispersion is found to in-
crease with temperature and squeezing, tending to the maxi-
mal value of 1, corresponding to the uniform distribution
P�
�=1 /2	. This indicates that for a QND-type system-bath
interaction both temperature and squeezing have a similar
effect of causing diffusion of the phase. Increasing the bath
exposure time t also leads to the effect of leveling out D to 1.
At T=0, this leveling out takes a much longer time on ac-
count of the logarithmic dependence of ��t� �Eq. �8�� on t,
indicating a power-law decay.

Figure 8 is analogous to Fig. 7, except that the dispersion
of 
 is plotted with respect to the system squeezing param-
eter � �Eq. �21��. As � appearing in the expression for P�
�
has a logarithmic dependence on �, Eq. �21�, dispersion is
insensitive to a change in � over the plotted range. However,
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FIG. 6. A comparison of the quantum phase distributions P���
for a harmonic-oscillator system starting in a squeezed coherent
state, for a QND system-bath interaction �Eq. �39��, with that for a
dissipative system-bath interaction �Eq. �79��. The former �latter� is
represented by the dashed �solid� curve. In both cases, temperature
�in units where ��kB�1� T=0, the squeezing parameters r=r1

=1, bath exposure time t=0.1, �0=0.025, and �=1. In the former
case, �=0 and �c=100, while in the latter, �=0.
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FIG. 7. Dispersion as a function of the environmental squeezing
parameter r for ten two-level atomic systems starting in an atomic
squeezed state �Eq. �22�� at various temperatures for a QND
system-environment interaction. Here a=0.0 �Eq. �10��, �0

=0.0025, �=−0.01832, t=1.0, j= p=5, �=1.0, and �c=100.0. The
bold, small-dashed, large-dashed, and dot-dashed curves correspond
to temperatures T �in units where ��kB=1� 0, 50, 100, and 1000,
respectively.
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as expected, the dispersion increases with temperature be-
cause of the diffusive effect of temperature on the phase
distribution.

Figure 9 illustrates the behavior of the dispersion D of 

of a harmonic oscillator starting from a squeezed coherent
state interacting with a squeezed thermal bath via a QND
interaction, with respect to the environmental squeezing pa-
rameter r �Eq. �10��. The dispersion is found to increase with
temperature and squeezing, tending to the maximal value 1.
Here the large-dashed curve, which represents the case of
unitary evolution, shows no variation with respect to a
change in the environmental squeezing parameter r �Eq.
�10��, as expected.

Figure 10 depicts the behavior of the dispersion D of 
 of
a two-level system starting in an atomic coherent state inter-
acting with a squeezed thermal bath via a QND interaction,
with respect to the environmental squeezing parameter r �Eq.
�10��. As before, dispersion is found to level out with an
increase in temperature and squeezing, tending to the value
1, which corresponds to a uniform distribution. We note that
the pattern in this figure is quite similar to that in Fig. 7,
whereas the use of variance for the data of Fig. 10 produces
a qualitatively different pattern.

Figure 11 shows the behavior of the dispersion D of 
 of
a two-level system starting in an atomic coherent state inter-
acting with a squeezed thermal bath via a dissipative inter-
action, with respect to the environmental squeezing param-
eter r �Eq. �10��. While in the case of a QND system-bath
interaction �Figs. 7, 9, and 10� the dispersion is symmetric
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FIG. 8. Dispersion as a function of the system squeezing param-
eter � for ten two-level atomic systems starting in an atomic
squeezed state �Eq. �22�� at various temperatures for a QND
system-environment interaction. Here a=0.0, �0=0.0025, t=1.0, j
= p=5, �=1.0, and �c=100.0. The logarithmic dependence of � on
� �Eq. �21�� implies a low sensitivity of the phase distribution to �.
The bold, dashed, and dotted curves correspond to the temperatures
�in units where ��kB=1� T=0.0, 50.0, and 100.0, respectively. The
dot-dashed curve represents unitary evolution ��0=0�.
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FIG. 9. Dispersion as a function of the environmental squeezing
parameter r for a harmonic oscillator starting in a squeezed coherent
state �Eq. �37�� at various temperatures for a QND system-
environment interaction. Here �=1, �c=100, ���2=5, �0=0.0025,
and t=0.1. Here the parameter a=0 and the system squeezing pa-
rameters are r1=0.5 and �=	 /4. The bold, small-dashed, and dot-
dashed curves correspond to temperatures �in units where ��kB

=1� T=0, 100, and 1000, respectively. The large-dashed curve cor-
responds to unitary evolution ��0=0�.
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FIG. 10. Dispersion as a function of the environmental squeez-
ing parameter r for a two-level system starting in an atomic coher-
ent state �Eq. �18�� at various temperatures for a QND system-
environment interaction. Here a=0.0, �0=0.0025, t=1.0, �=1.0,
�c=100, and ��=��=	 /4. The bold, small-dashed, large-dashed,
and dot-dashed curves correspond to temperatures �in units where
��kB=1� T=0, 50, 100, and 1000, respectively.
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FIG. 11. Dispersion as a function of the environmental squeez-
ing parameter r for a two-level system starting in an atomic coher-
ent state �Eq. �18�� at various temperatures for a dissipative system-
environment interaction. Here �0=0.0025, t=1.0, �=1.0, �c

=100.0, �=	 /8 �Eq. �44��, and ��=��=	 /4. The large-dashed,
small-dashed, dot-dashed, and bold curves correspond to tempera-
tures T �in units where ��kB=1� 0, 100, 300, and 1000,
respectively.
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about r=0, it is not so in this case of the dissipative interac-
tion. Further, unlike in the case of a QND interaction, here an
increase in the absolute value of squeezing �r� can cause a
decrease in the dispersion. This illustrates the counteractive
influence of the bath squeezing on the thermal diffusion of
the phase distribution. This opposing behavior of tempera-
ture and squeezing seems to be generic to dissipative systems
�40�. With an increase in time t, phase tends to become ran-
domized, increasing dispersion at any given squeezing to-
wards the maximal value of 1, indicative of the washing
away of the nonstationary effects due to the squeezed bath
�64�. From Fig. 2, we see that increasing the bath exposure
time �t� tends to shift and level out the distribution pattern.
For finite temperatures, the latter effect predominates and
one observes a steady leveling out with time, with the dis-
persion D tending to 1. Interestingly, the use of variance in
place of dispersion for the data in Fig. 11 results in a quali-
tatively different behavior.

VI. CONCLUSIONS

In this paper quantum phase distributions of a number of
physically interesting systems, interacting with their environ-
ment via a QND or a dissipative type of coupling, are ana-
lyzed. The system has been taken to be either a two-level
atom �or, equivalently, a spin-1 /2 system� or a harmonic
oscillator with the environment being modeled as a bath of
harmonic oscillators, initially in a squeezed thermal state,
from which the common thermal bath results may be easily
extracted by setting the squeezing parameters to zero. The
phase distributions are explicitly evaluated, taking into ac-
count the effect of the different environmental parameters on
the dynamics of the system starting from various initial
states.

In Sec. II, we recalled previous work on phase distribu-
tions for QND systems �36� of two-level atomic systems
�Sec. II A� for different initial conditions of the system, start-
ing �i� in an atomic coherent state and �ii� in an atomic
squeezed state, and also of a harmonic oscillator �Sec. II B�
with the oscillator starting initially in �i� a coherent state and
�ii� a squeezed coherent state. In Sec. II A, some of the above
results were extended by considering the phase distribution
for multiple two-level atoms. In particular, we studied, in
Fig. 1, the effect of the environmental parameters on the
distribution for ten atoms starting in an atomic squeezed state
and undergoing a QND system-bath interaction. The increase
in bath squeezing r and temperature T causes phase diffusion
while the increase in the bath exposure time t causes the
phase distribution to diffuse as well as shift. The phase dis-
tributions are normalized. We also introduced the number
distribution p�m�, the expectation of the reduced density ma-
trix �s�t� in the Wigner-Dicke states �j ,m�. By regarding the
variables m and 
 as the “number” and “phase” of the
atomic system, the relationship between the distributions
p�m� and P�
� may be considered as expressing complemen-
tarity in an atomic context.

In Sec. III, the reduced density matrix of a two-level sys-
tem interacting with a squeezed thermal bath via a dissipa-
tive system-bath interaction, resulting in a Lindblad form of
evolution, was obtained, which reduces to the one found by
Nakazato et al. �59� for the case of a thermal bath without
squeezing. This solution was used to study the phase distri-
bution for the system, starting �i� in an atomic coherent state
and �ii� in an atomic squeezed state. The phase distribution
curves preserve the normalization of the distribution. The
phase distribution exhibits diffusion as well as a shift with
time, as seen from Figs. 2 and 5. An interesting feature that
emerges from our work is that the relationship between
squeezing and temperature effects depends on the type of
system-bath interaction. In the case of a QND type interac-
tion, squeezing and temperature work in tandem and produce
a diffusive effect on the phase distribution. In contrast, in the
case of a dissipative interaction, with the reduced system
dynamics governed by a Lindblad equation �40�, squeezing
tends to counteract the influence of temperature, manifesting
as a resistance to randomization of phase. This was noted, for
example, in a comparison between the large- and dot-dashed
curves of Fig. 2 and also in comparison between the bold and
large-dashed curves in Fig. 5. A similar behavior is observed
in the joint effect of temperature and squeezing on the
geometric phase of a qubit �two-level system� interacting
dissipatively with its environment �40�. Complementarity
between the variables m and 
, by a comparison of the dis-
tributions p�m� and P�
�, was brought out in an interesting
manner for the case of a dissipative system-environment in-
teraction and seen from a comparison of Fig. 4 with Fig. 3.
In Fig. 3, for the case where the temperature T=0 and bath
squeezing parameter r=0, the system tends to the pure state
�j=1 /2,m=−1 /2�, as seen by the large-dashed curve. This
corresponds to the action of a quantum deleter �43� by means
of an amplitude damping channel �44�. Correspondingly the
complementary distribution P�
� is seen to level out �the
large-dashed curve in Fig. 4�, indicating complete random-
ization.

In Sec. IV, the quantum phase distribution for a harmonic
oscillator in a dissipative interaction with a squeezed thermal
bath, with the system starting out in a squeezed coherent
state, was obtained. An interesting fact that emerged was that
under the action of the master equation �60�, which is of a
Lindblad kind, a harmonic oscillator starting in a squeezed
coherent state ends in a mixture that can be expressed as a
sum over GSCSs. A comparison of this distribution with that
of the analogous case for a QND system-bath interaction
�Fig. 6� brings out the differing effects of the two types of
system-bath interactions on the phase distribution.

In Sec. V, as an application we studied the dispersion of
phase using the phase distributions conditioned on particular
initial states of the system. In the case of a QND system-bath
interaction, the profile of the dispersion D is symmetric
about r=0, as seen from Figs. 7, 9, and 10. In contrast, the
profile of the dispersion is not symmetric in the case of a
dissipative interaction �Fig. 11�, indicative of the greater
complexity of the latter type of interaction. Dispersion is a
measure of phase fluctuations. Since the phase distributions
used here are obtained taking the effect of environment into
consideration, the dispersions calculated using them would
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set a realistic estimate on phase measurements in a number
of experimental scenarios.

We hope that the treatment of phase distributions devel-
oped here will be of interest both from a technical point of
view and in the context of experimental situations.
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