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Motivated by the interest in the role of stiff polymers like actin in cellular processes and as components of
biopolymer networks like the cytoskeleton, we present a statistical mechanical study of the twist elasticity of
stiff polymers. We obtain simple, approximate analytical forms for the writhe distribution at zero applied force.
We also derive simple analytical expressions for the torque-twist relation and discuss buckling of stiff polymers
due to the applied torques. The theoretical predictions presented here can be tested against single-molecule
experiments on neurofilaments and cytoskeletal filaments like actin and microtubules.
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I. INTRODUCTION

In recent years, statistical mechanics of semiflexible poly-
mers has emerged as an area of active theoretical and experi-
mental investigation. Interest in this direction has been trig-
gered by single-molecule experiments designed to
understand the role of elasticity of these polymers. Polymers
abound in biological systems, for example the cytoskeleton
which controls cell mechanics �1,2� is a biopolymer network;
study of polymer elasticity is consequently of substantial rel-
evance to biological research. The stiffness of a polymer is
determined by a parameter �, the ratio of its contour length L
to the persistence length LP. In this paper we focus attention
on rigid filaments; examples of such filaments are actin and
microtubules which constitute the cytoskeletal structure and
serve as tracks for motor proteins like myosin and kinesin
�2,3�. Recently, filaments of intermediate rigidity like neu-
rofilaments have also been studied in some detail �4�. It has
been shown that the elastic properties of a single stiff fila-
ment are relevant to a study of the elasticity of cross-linked
biofilament networks �2�. To understand the elastic response
of the network, we need to understand the elastic properties
of its constituent filaments. Twist elasticity of biopolymers
has important relevance to biological processes; for example
packaging of DNA in a cell nucleus a few micrometers
across involves DNA-histone association which makes use
of DNA supercoiling.

Experiments on single molecules can broadly be of two
types—one can experimentally study the response of a semi-
flexible polymer molecule to forces and torques by measur-
ing its extension as a function of applied forces and torques
�5� or one can tag the ends with fluorescent dye �6,7� to
determine the distribution of end-to-end distance. Such ex-
periments furnish valuable information on the mechanical
properties of single molecules and a theoretical model that
can capture the essential features of the experimental results
is needed; one such model is the wormlike chain model �8�.

In this paper, we derive a simple analytical expression for
the writhe distribution at zero forces. We study the elastic
response of a stiff polymer to forces and torques applied at
one of its ends and discuss the buckling of stiff polymers
under applied torques. We also derive simple analytical ex-
pressions for the torque-twist relations. We consider bound-
ary conditions in which both the ends of the polymer are

clamped. The tangent vectors at the clamped ends are kept in
a fixed direction. In an earlier study �9� a pure bend model
for stiff polymers was developed. In a stiff polymer, the tan-
gent vector never wanders too far away from the north pole
of the unit sphere of directions. We refer to this approxima-
tion as the paraxial approximation. This approximation has
been previously used to study the elasticity of twist-storing
flexible stretched polymers �10–13� in the paraxial wormlike
chain �PWLC� model. For stiff polymers, a convenient and
accurate analytical approximation is well motivated because
a numerical scheme that had been developed earlier in Ref.
�14� to study semiflexible polymers has a limitation in de-
scribing stiff polymers due to convergence problems.

The mean values of the experimentally measurable physi-
cal quantities depend on the choice of ensemble �15�, an
effect of the finite-size fluctuations, which are entirely absent
in the elasticity of a classical rod. For example, the qualita-
tive features of the force-extension curves in the constant
force ensemble differ distinctly from those in the constant
extension ensemble �16–18�. In this paper, we remain
throughout in the Gibbs ensemble, where the applied forces
and torques are held fixed, and we measure the mean exten-
sion and writhe, respectively.

The organization of this paper is as follows. We first de-
rive simple analytical forms for the partition function with
the tangent vector at both the ends fixed in the direction of
the applied force. We develop simple analytical expressions
for the writhe distribution at zero pulling force; this is the
central result of our paper �Fig. 1�. We also study the mean
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FIG. 1. Normalized writhe distribution for the boundary condi-
tion in which the tangent vectors at both the ends of the polymer are
held fixed for f =0 and �=0.5,1. Larger values of the average link
�or writhe� are suppressed for the smaller value of �.
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extension of the polymer in response to applied forces and
torques and display the hat-shaped curves �Figs. 2 and 3�; we
study the buckling phenomenon in analogy with the classical
Euler buckling phenomenon in thin rods and the consequent
breakdown of the paraxial approximation �Fig. 4�. Finally,
we conclude the paper with derivation of simple analytical
expressions for the torque-twist relation �Fig. 5�.

II. THE PARAXIAL HAMILTONIAN
AND THE PARTITION FUNCTION

Our starting point is the wormlike chain �WLC� model in
which the polymer is modeled as a framed space curve C
= �x��s� , êi�s��, i=1,2 ,3, where 0�s�L is the arc-length pa-
rameter along the curve. The unit tangent vector ê3=dx� /ds to
the curve describes the bending of the polymer while the
twisting is captured by a unit vector ê1 normal to ê3; ê2 is
then fixed by ê2= ê3� ê1 to complete the right-handed mov-
ing frame êi�s�, i=1,2 ,3.

The evloution of the moving frame is described with re-
spect to a reference frame �ei

0� �i=1,2 ,3� where �e3
0� points

along a constant direction which we choose to call the z axis.
The moving frame is obtained from the reference frame by
the application of an element of the rotation group R�s� that
is parametrized by the Euler angles �� ,� ,��. The rate of
change of the moving frame along the curve can be measured
by its “angular velocity vector” �, whose components are
given by �i=� · êi. The components of the angular momen-
tum can be expressed in terms of the Euler angles �10�. The
statistical physics of such twist-storing polymers has been

studied in detail �10,11,19�. Here we briefly outline the deri-
vation of the relevant Hamiltonian for the sake of complete-
ness; the details can be found in the above references. The
energy E�C� /kBT of a configuration of the polymer is a sum
of contributions coming from its bending and twisting
modes. In units of kBT, the bending and twist energies are
given by

Ebend = A/2�
0

L

��1
2 + �2

2�ds = A/2�
0

L

�dt̂/ds�2 �1�

and

Etwist = C/2�
0

L

�3
2ds , �2�

respectively. The potential energy associated with stretching
is

Estretch = − ê3 · F� /kBT = − �
0

L

ds cos���s��F/kBT �3�

and that due to the torsional constraint is

Etorsion = − 2	
L . �4�

The last two terms appear as Lagrange multipliers to en-
sure the constant force f and the constant torque 
 ensemble.
L is the total link, which can be split, using Fuller’s theorem
�20�, into two parts—L=T+W. Twist �T� involves rotation
of the normal vector about the tangent vector to the curve,
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FIG. 2. Mean extension vs torque 
 for �=0.5 and f =30,40 for
a setup with both ends clamped.
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FIG. 3. Mean extension as a function of the torque 
 for a
pulling force f =30 for a stiff polymer with both the ends clamped
for �=0.5 and 1.
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FIG. 4. Buckling of the stiff polymer for f =0 and �=0.7,0.8
with the tangent vectors at both ends of the polymer held fixed.
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FIG. 5. Torque-link relation for f =30 and �=0.5,1. For the
same applied torque, larger values of the average link �or writhe�
are suppressed for the stiffer polymer.
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T = �
0

L

�3ds �5�

Writhe �W�, which involves one part of the polymer crossing
another part, is expressed by a nonlocal formula due to
Călugăreanu and White �21�. A simpler formula due to Fuller
relates the difference between the writhes of two curves that
can be deformed smoothly into each other without self-
intersections and such that their tangent vectors never point
in opposite directions �20�. Taking the e3

0 axis to be the ref-
erence curve, the writhe of all conformations of the polymer
that satisfy the above criteria can be written as W=�0

L�̇�1
−cos ��ds. This can be written as �0

Lds�dr� /ds ·A� m�r���. A� m�r��,
as obtained from Fuller’s formula, is the vector potential
produced by a magnetic monopole of unit charge; A�= �1
−cos ��. This gets multiplied by a factor of 
 when substi-
tuted in the energy term due to the torsional constraint. For
reasons explained later, it is convenient to put 
=−iB. We
now express the partition function as a path integral,

Z†E�C�‡ =� D��,�,��exp�− E�C�/kBT� . �6�

The integral over � is just a Gaussian path integral that
can be integrated out to be exp�−B2L /2C� up to a trivial
constant. We perform an analytic continuation toward the
imaginary s axis; in the writhe integral, the factor i appearing
with B disappears and we arrive at the action integral of a
particle with unit charge moving on the unit sphere under the
action of an electric field −F /kBT and a magnetic monopole
of charge B �10�. To get the corresponding Hamiltonian, we

replace p� by �p� −A� �; we introduce two dimensionless vari-
ables f =FLBP /kBT and �=LBP /LTP where LBP is the bend
persistence length and LTP is the the twist persistence length.
The form of the Hamiltonian obtained finally is

H = p�
2/2 + �p� − A��2/2 sin2� − f cos � + �B2/2. �7�

For a stiff polymer with one end clamped along the ẑ direc-
tion, we can approximate the sphere of directions by a tan-
gent plane at the north pole of the sphere as the angular
coordinate � always remains small. In this limit where the
tangent vector never wanders too far away from the north
pole of the sphere of directions �the paraxial limit�, the poly-
mer Hamiltonian �10–12,19,22� reduces to

HPWLC =
p�

2

2
+

�p� − A��2

2�2 +
B2�

2
− f	1 −

�2

2



= HP − f +
B2�

2
,

where HP is the Hamiltonian of interest in the paraxial limit
after we take out a constant piece. Without loss of generality,
we can set �=0 �see below�, and we consider twist to be
infinitely expensive energetically and all of the link resulting
from the applied torque goes into the writhe. Thus the PWLC
maps onto the problem of a particle moving on a plane in the
presence of a magnetic field B and an oscillator confining
potential, which stems from the small-� approximation

−f cos ��−f�1− �2

2 �=−f + f �2

2 �10,11�. Notice that in the stiff
limit ���1�, because of the paraxial approximation, the con-
figurations in which the polymer folds back onto itself are
suppressed; consequently self-avoidance effects are unimpor-
tant. The polymer cannot release an imposed twist by passing
through itself and so, in contrast to the WLC model �19�, the
free energy is not a periodic function of the imposed twist in
the PWLC model. We introduce Cartesian coordinates �1
=� cos � and �2=� sin � on the tangent plane R2 at the north
pole.

In terms of the Cartesian coordinates we can express the
small-� Hamiltonian H as H=HP− f where HP is

HP =
1

2
�p�1

− A�1
�2 +

1

2
�p�2

− A�2
�2 +

f

2
��1

2 + �2
2� �8�

where A�1
=−B�2 /2 and A�2

=B�1 /2. In an azimuthally sym-
metric situation, the above Hamiltonian becomes

HP =
1

2
p�1

2 +
1

2
p�2

2 +
�f − 
2/4�

2
��1

2 + �2
2� . �9�

We immediately notice that HP is the Hamiltonian of a
two-dimensional harmonic oscillator with a frequency 
=�f +B2 /4�=�f −
2 /4�. For a single oscillator in real time
the propagator is given by �23�

K��i,� f,T� = F�T�exp
i

2 sin T
���i

2 + � f
2�cos T − 2�i� f�

�10�

where F�T�= 
2	i sin�T� .

Setting �i=� f =0 in Eq. �10� and continuing the expression
to imaginary time, we find that the trigonometric functions
are replaced by hyperbolic ones. We can express the partition
function Z�f� as exp��f� times the product of the propagators
of two independent harmonic oscillators:

Z�f ,
� = f − 
2/4 exp��f�/�2	 sinh��f − 
2/4�� �11�

in Euclidean time �.

III. WRITHE DISTRIBUTION

In this section, we obtain explicit analytical expressions
for the writhe distribution at zero pulling force for the tan-
gent vectors at both the ends of the polymer held fixed. Con-
sider the link distribution

Z̃�f ,Lk� =� Z�f ,B�eiBLdB , �12�

where we have used Z�f ,B� instead of Z�f ,
�. We recall that
we have assumed twist to be energetically infinitely expen-
sive and so the link goes completely into the writhe; in this
limit, the link distribution reduces to the writhe distribution.
Setting �=0 does not result in any loss of generality; on
obtaining the writhe distribution in this limit, the full link
distribution P�f ,L� can be obtained by convolving the writhe
distribution with the twist distribution for all values of �; in
the generating function space, the writhe partition function

WRITHE DISTRIBUTION OF STIFF BIOPOLYMERS PHYSICAL REVIEW E 77, 041804 �2008�

041804-3



ZW�f ,B� needs to be multiplied by the factor exp�−�B2 /2�
which pertains to the pure twist distribution at finite �
�10,12�. We shall now derive simple analytical expressions
for the writhe distribution.

Consider the expression for Z�f ,
� derived earlier in Eq.
�11�; replacing 
2 by −B2, we derive, for f =0, the scaled
writhe distribution function as

P�f ,W� = 1/cosh�	W/��2. �13�

The integration in Eq. �12� can be done by going to the
complex-B plane and using a semicircular contour closed in
the upper half plane. The integrand has simple poles at B
= i2n	 /� at which the residues are evaluated. Finally the
sum over residues turns out to be the derivative of a simple
geometric series that can be easily evaluated.

Figure 1 shows the plot of the scaled writhe distribution
for two different values of �; we notice that, for a stiffer
polymer, the higher values of writhe are suppressed. This is
because, for higher rigidity, the bending freedom of the poly-
mer is restricted and high writhe becomes extremely expen-
sive energetically.

IV. TORQUE-EXTENSION RELATIONS
AND EULER BUCKLING

From the expression of the partition function derived be-
fore �Eq. �11��, we calculate the free energy

G�f ,
� = − ln Z�f ,
�/� =
− 1

2�
ln�f − 
2/4� − f +

1

�
ln�2	�

+
1

�
ln�sinh��f − 
2/4�� . �14�

The mean extension ���= �z� /L=−�G�f� /�f is given by

��� = 1 + 1/�2��f − 
2/4�� − coth��f − 
2/4�/�2f − 
2/4� ,

�15�

where ��� is the ẑ component of the extension �or the end-
to-end distance vector�.

For a stiff polymer even at a zero force, there is a nonzero
extension, because of the boundary condition which fixes the
tangent vector at the two ends of the polymer in the direction
of the z axis and the stiffness of the polymer. The pure bend
model has been studied in Ref. �9�; here we study the depen-
dence of the mean extension on the applied torque 
. We
find, as expected, that for the a certain applied pulling force,
the extension decreases as the torque is increased. The mean
extension is a symmetric function of 
, a feature that is re-
flected in the symmetry of the hat-shaped curve. Figure 2
shows that for a constant � the mean extension is larger for
a larger value of the pulling force. In Fig. 3, we show the �
dependence—the smaller the � �i.e., the stiffer the polymer�,
the larger is the extension for the same pulling force. These
intuitively clear results follow from our simple analytical
expressions.

For positive forces, the mean extension increases with
increase in force for a fixed value of the torque and decreases
with increase of torque when the force is kept fixed. There is

a competition between the pulling force and the applied
torque. If the force is compressive �negative�, the mean ex-
tension decreases with increase in the magnitude of the com-
pressive force until, at a critical value of the force, the ex-
tension sharply decreases �9�; this is a signature of the Euler
buckling instability which is seen in thin rods �24�. Let x
= f −
2 /4; for negative x, the hyperbolic functions appearing
in Eq. �15� go over to circular functions. For instance, when
both the end tangent vectors are clamped along the ẑ direc-
tion, for negative x, the analytical form for the extension
becomes

��� = 1 + 1/�2�x� − cot��− x�/�2− x� , �16�

which can be rewritten in the form

��� = 1 + �u�y� , �17�

where y=�−x and

u�y� =
cot�y�

2y
−

1

2y2 .

The criterion for the onset of the buckling instability is the
divergence of ���� /�
. From Eq. �17� this is equivalent to the
divergence of �u /�y, which takes place at a value of yc=	.
This gives us the following expression for the critical torque
for buckling at a fixed value of the applied force �24�:

�
c/2�2 = f + 		

�

2

. �18�

Figure 4 shows a plot of the mean extension vs the ap-
plied torque for the the tangent vectors when both the ends of
the polymer are fixed. We notice that, beyond a certain mag-
nitude of the torque, the extension decreases sharply with
very small increase in the torque—this can be interpreted as
a signature of buckling instability. From Eq. �18�, we see that
for f =0 the critical torque 
c=2	 /�; the approximate values
of the critical torque for �=0.7 and 0.8 are 9 and 7.85 re-
spectively. While the �=0.8 plot shows a distinct signature
of buckling at �
��7.5, the plot for �=0.7 shows no buck-
ling behavior at this range of the value of the torque. This
agrees with our intuition that a stiffer polymer buckles at a
higher value of the torque. A stiff polymer is energy domi-
nated and its buckling is very similar to that of a classical rod
subject to identical boundary conditions and a compressive
force �9� and/or torques �24�. The effect of thermal fluctua-
tions is to slightly smudge the transition point from the
straight to the buckled configuration. This is due to thermally
activated processes that permit the polymer to overcome the
elastic energy barrier. As a result, the critical torque for a stiff
polymer is slightly smaller in magnitude than that predicted
by the expression for 
c given above �Eq. �18��.

Buckling indicates the breakdown of the paraxial approxi-
mation because the small-� condition does not hold good for
a buckled conformation. This sets a limit on the applicability
of the paraxial approximation.

V. TORQUE-TWIST RELATION

In this section, we present and discuss a simple analytical
expression for the torque-twist relation. As mentioned earlier,
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we restrict ourselves to the case of an infinite twist rigidity so
that, from Fuller’s relation link=twist+writhe �20�, we see
that all of the link resulting from the applied torque goes into
the writhe, which pertains to the rotation of the axis curve of
the polymer in space.

We differentiate the expression for the free energy �Eq.
�14�� with respect to the applied torque 
 to obtain the
torque-twist or, in our case, the torque-writhe relation

�W� = 
 coth��f − 
2/4�/�4f − 
2/4� − 
/�4��f − 
2/4�� .

�19�

For the same pulling force, large values of writhe are sup-
pressed for a stiffer polymer �i.e., smaller ��. Figure 5 shows
a plot of the torque-twist relation. From Fig. 5 as well as
from the analytical expression, we see that the torque-link
relation is linear for small applied torques.

VI. DISCUSSIONS

Path integral techniques have proved to be very useful in
polymer physics �9,14,25�. In this paper, standard results in
path integrals �the propagator for the harmonic oscillator�
have been used to study the physics of stiff biopolymers. Our
main results are contained in the analytic forms displayed in
Eqs. �11�–�19� and Figs. 1–5.

We have theoretically studied the twist elasticity of stiff
biopolymers. We have treated a boundary condition that is
realizable in single-molecule experiments. One can attach a
magnetic bead at one end of a polymer and apply forces by
magnetic field gradients and torques by magnetic fields. Such
techniques allow a variety of boundary conditions to be re-
alized. In Ref. �9�, a second boundary condition, in which the
tangent vector at one end of the polymer is fixed and that at
the other end is free, was treated. In the context of studying
twist elasticity, this boundary condition is untenable because
the molecule can release links and relax by the process of
“geometric untwisting” �26�.

To understand the elasticity of the biopolymer networks,
we have to understand the elastic properties of its constituent
biopolymers at the single-molecule level �2�. An understand-
ing of the bending and torsional elastic properties of actin is
vitally important for understanding biological phenomena
like muscle contraction, motion of motor proteins, and the
role of the cytoskeleton in determining the shape of the cell
�27�. A cytoskeleton is made up of a large number N of stiff
polymers. A knowledge of the elastic properties of a single
polymer constituting such a network will enable us to draw

conclusions regarding the stability of the polymeric cytosk-
eletal structure. Here we have presented simple analytical
expressions for the elastic response of a single stiff filament
which can be tested against single-molecule experiments.
These analytical results are expected to shed light on the
structural stability of biopolymer networks.

We have derived an analytical expression for the writhe
distribution for zero pulling forces. The writhe distribution
has important implications in the context of transcription and
gene regulation. Therefore, knowledge of writhing of a
biopolymer backbone and its stabilization is crucial for un-
derstanding the cellular processes mentioned above. We have
also derived simple analytical expressions for the torque-link
relation. This result can be tested in single-molecule experi-
ments.

In future it would be interesting to obtain a closed form
expression for the writhe distribution for nonzero forces as
well. For nonzero forces, all the moments of the writhe dis-
tribution Z�f ,W� can be obtained by differentiating the gen-
erating function Z�f ,B�; thus effectively we have the infor-
mation that can be obtained from the writhe distribution
function itself. We would also like to investigate buckling of
stiff filaments like actin in greater detail. This is an issue that
is of relevance at the single-molecular level as well as at the
level of a biopolymer network like the cytoskeletal structure
and is expected to shed light on its structural stability �2,28�
and collapse under stress. The stiffness and collapse of the
cytoskeletal structure of a red blood cell �28� has a direct
connection to its functional aspects and is used, for instance,
as a diagnostic for detection of sickle cell anemia. In study-
ing the cytoskeletal structure it would be useful to have a
good understanding of the individual polymers that make up
the structure.

We have restricted ourselves to the regime of the paraxial
approximation, which breaks down for large values of the
applied torque, in which case the polymer explores configu-
rations that deviate considerably from the straight conforma-
tion. The present work will provide a limiting check on cal-
culations done in the regime beyond the paraxial
approximation. We expect our results to trigger interest in
and efforts to explore the physics of stiff biopolymers at both
the theoretical and experimental ends.
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