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We propose that the entanglement of mixed states is characterized properly in terms of a probability density
function P��E�. There is a need for such a measure since the prevalent measures �such as concurrence and
negativity� for two-qubit systems are rough benchmarks and not monotones of each other. Focusing on the
two-qubit states, we provide an explicit construction of P��E� and show that it is characterized by a set of
parameters of which concurrence is but one particular combination. P��E� is manifestly invariant under
SU�2��SU�2� transformations. It can, in fact, reconstruct the state up to local operations—with the specifi-
cation of at most four additional parameters. Finally, the measure resolves the controversy regarding the role of
entanglement in quantum computation in NMR systems.
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I. INTRODUCTION

Quantum entanglement is a unique resource for novel
�nonclassical� applications such as quantum algorithms �1�,
quantum cryptography �2�, and more recently, metrology �3�.
Thus, it plays a pivotal role in quantum information theory. It
is also central to the study of the foundations of quantum
mechanics �4�. It is not surprising that an abiding interest in
quantum entanglement persists to this date.

Entanglement of a bipartite system in a pure state is un-
ambiguous and well defined. In contrast, mixed-state en-
tanglement �MSE� is relatively poorly understood mainly be-
cause entanglement, as an observable �denoting a property of
the state�, cannot be represented by a linear operator in Hil-
bert space. Although many criteria such as entanglement of
formation and separability have been proposed, there is a
realization �5� that no single quantity can adequately repre-
sent the entanglement contained in a mixed state. It may,
therefore, be worthwhile to investigate whether a complete
description of MSE is possible in a manner such that the
current criteria emerge as particular, albeit useful bench-
marks.

We propose in this paper a characterization of MSE in
terms of a suitably defined probability density for entangle-
ment, P��E�. The proposal is operational for any bipartite
system. In this work, we focus on two-qubit systems �2QSs�
for which we fully implement the definition. We find that
P��E� is characterized by its points of nonanalyticity of vari-
ous orders which completely capture the information on
MSE. This central result is employed to shed light on various
aspects and manifestations of MSE.

The plan of the paper is as follows. In the next section we
review briefly the existing criteria of MSE and their draw-
backs. Section III proposes our definition in terms of a prob-
ability density function, which will be constructed fully for
the two-qubit case in Sec. IV. Section V discusses several

examples illustrating the proposal, and we show how an
existing criterion—the concurrence—emerges as but one
benchmark. In Sec. VI we discuss an interesting application,
viz., to the problem of entanglement in NMR quantum com-
putation �QC�. In Sec. VII, we address the question of the
reconstructibility of the state given its entanglement density.
We show that, unlike in the case of every other definition,
our prescription allows for an almost complete reconstruc-
tion of the state up to local SU�2��SU�2� operations. Sec-
tion VIII concludes with a summary and outlook.

II. CRITERIA AND BENCHMARKS OF MSE

In this section we review very briefly various criteria and
definitions of MSE. It is not our purpose to provide an ex-
haustive description of all the definitions of MSE. We refer
the reader to the literature �6� for details. Our intention is to
merely provide a motivation and a proper setting for our
definition.

Consider a bipartite spin system in a pure state, ���
=�m1,m2

cm1m2
�m1m2�, where the expansion is understood in

any separable basis. The entanglement in the state is unam-
biguously quantified by the entropy carried by the reduced
density matrix of either of the subsystems, S��r�. In the par-
ticular case of two qubits, equivalent criteria �in the sense of
being relative monotones� include the degree of mixedness,
1−Tr�r

2, the determinant ��r�, and the concurrence C
=2�c↑↑c↓↓−c↓↑c↑↓�, in writing which we employ the equiva-
lent and a convenient notation ↑ �↓�↔ 1

2
�− 1

2
�. Operationally

speaking, it is necessary and sufficient to measure a single
quantity, the degree of polarization P1= P2� P of either of
the qubits. We note parenthetically that knowledge of P al-
lows a reconstruction of the parent state up to local
SU�2��SU�2� operations �LOs�. Equivalently, entanglement
determines the state up to LOs. Indeed, writing ���
=cos�� /2��↑↑�+sin�� /2��↓↓� in its canonical basis, we ob-
tain the relation P= �sin ��, which demonstrates the claim.

A description of MSE is not that straightforward, even in
the two-qubit case. It is not difficult to realize that there
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exists no single parameter that characterizes MSE �5�. Nev-
ertheless, a number of concepts and associated quantities
have been introduced in an attempt to capture the entangle-
ment content in a mixed state, the two prominent of them
being separability �7� and entanglement of formation �EOF�
�5,8�. In addition, other concepts such as entanglement cost,
distillable entanglement, relative entropy of entanglement,
and entanglement witnesses have been introduced. It is in-
structive to look at the extent to which the above-mentioned
definitions �i� satisfy the requirements of entanglement, �ii�
are quantifiable, and �iii� are equivalent.

�i� Compatibility with the requirements. An entanglement
measure is expected to satisfy continuity, additivity, subaddi-
tivity, convexity, and a nonincreasing nature under LOs, to-
gether with classical communication �LOCC� �6�. Much
work has been done in checking for the compatibility of the
above measures. It is found that �i� distillable entanglement
violates convexity �9� and that �ii� the relative entropy of
entanglement violates additivity �10�. It has not been estab-
lished whether the entanglement cost is compatible with con-
tinuity and if EOF is compatible with additivity �6�. In short,
there seems to be no single measure which is consistent with
all of the above constraints.

�ii� Quantifiability. The measures listed above are quanti-
fiable, at best, in a limited sense: Concurrence which quan-
tifies EOF is defined only for a 2QS �11�, and its generaliza-
tion to higher-spin systems is not available. Negativity as a
measure of nonseparability is a necessary and sufficient con-
dition only for two-qubit and qubit-qutrit systems �12,13�;
for higher-spin systems, it is only a necessary condition.
Other operational criteria such as majorization �14� and re-
duction �15� are, again, only necessary �but not sufficient�
conditions for separability. Entanglement cost and distillable
entanglement have eluded any quantification so far.

�iii� Mutual equivalence. All of the above criteria are
equivalent only for a pure state. Concurrence and negativity
are, for instance, not relative monotones and are hence in-
equivalent �16�: States with the same concurrence can have
differing negativities and vice versa, although for any given
state, its negativity is never greater than concurrence.

To summarize, none of the above quantities can, by itself,
capture fully the entanglement that is contained in a mixed
state. This observation strongly suggests that a complete de-
scription of MSE requires more than the specification of a
parameter.

To further emphasize the need for a better description of
MSE, we note that a pure-state description is almost always
an idealization and that any future experimental realization
of quantum information processes will be with quantum sys-
tems in mixed states. An unsatisfactory understanding of
MSE will reflect, in turn, an imprecise appreciation of the
nonclassical features that render quantum information pro-
cessing possible. An explicit example is provided by NMR
quantum computers �17,18�. Here, the qubits are prepared
experimentally in what is known as a pseudopure state

�ps =
1

4
�1 − ��I + ����	�� ,

where ��� is a Bell state. The concurrence and negativity of
�ps survive if ��

1
3 , while experimentally, �
10−6 �see �18��.

These states would be essentially classical if we employ
concurrence as a criterion for MSE, and no quantum gate
operation should be possible with these states since the sole
feature that distinguishes a quantum system from its counter-
part is entanglement �19�. Yet notwithstanding the vanishing
of this measure, nontrivial nonclassical gate operations with
up to 8 qubits have been reported �20�. More recently, a
12-qubit pseudopure state has been reported for a weakly
coupled NMR system �21�. While one could entertain the
possibility of QC without entanglement �22�, it is perhaps
more fruitful to unravel the sense in which the inherent
entanglement—not captured by EOF or nonseparability—is
a resource for QC in these systems. Thus, there is a clear
need to go beyond the above-mentioned benchmarks and at-
tempt to obtain a more complete description. We address this
problem and propose an alternative definition of MSE in the
next section.

III. DESCRIPTION OF MSE BY A PROBABILITY
DENSITY FUNCTION

A. Motivation for the definition

The definition of MSE which we propose differs from
existing criteria in that we describe MSE in terms of a prob-
ability density for the entanglement. To motivate the idea, we
recall that a mixed-state description is required when the
system is an ensemble of quantum systems, each of which is
in a pure state �23�. Entanglement has a sharp value for each
pure state, and it should be natural that MSE be described
properly by a distribution defined over the microstates.

This task is, however, not as straightforward as it might
seem. Because of the principle of superposition, the en-
semble description of a quantum system in a mixed state, as
a weighted distribution over a set of pure states, is not
unique. Expressed equivalently, there is no way of knowing
how a system has been “prepared,” unless it is in a pure state,
for only a pure state ��� belongs to a unique one-dimensional
projection ���	��, with an eigenvalue of 1 �24�. Thus, al-
though MSE may be expected to acquire a statistical charac-
ter and be characterized by a suitably defined probability
density function �PDF�, care must be exercised such that the
PDF for a given � is not an artifact of its resolution in terms
of any particular incoherent superposition of pure states. As
the first step in finding the way out, we consider the class of
special systems whose density operators are projection op-
erators. Note that both the pure states and the fully unpolar-
ized state belong to this class.

B. Definition of the PDF when � is a projection

Consider the case �= 1
M �M, where the projection operator

�M has rank M. Let H��M� be the subspace projected by
�M. Observe that for all ����H��M�, 	������=const, which
merely expresses the fact that the probability density in the
M-dimensional manifold H��M� is uniform. The density in
the complementary subspace is, of course, zero. This state-
ment is exact and does not depend on the eigenbasis �or any
other set of states� chosen to expand �. The probability den-
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sity for the entanglement associated with the subspace may
be defined as follows.

Definition 1 (PDF when � is a projection). Let the state
�= 1

M �M be an M-dimensional projection operator. The prob-
ability density function for entanglement of this state is given
by

P�M
�E� =

� dH�M
	�E� − E�

� dH�M

, �1�

where dH�M
is the volume measure for the manifold H�M

.
To fix the volume measure in �1�, we observe that the

group of automorphisms G of the subspace H��� leaves �
invariant. The measure should naturally be invariant under
this group action and is, therefore, intimately related to the
Haar measure of G. Indeed, let H��� be generated by the
group action on any reference state ��0�. Any state ���
�H��� can be obtained by the action of some g�G: ���
=g��0�. Let H be the stabilizer group of the ray associated
with the reference state. The measure dH� is simply ob-
tained by the Haar measure for G after factoring out the Haar
measure for H �25�. Since the Haar measure is invariant un-
der the group action and pure-state entanglement is invariant
under LOs, it follows that the PDF is invariant under LOs.

The extension of the pure-state entanglement �one-
dimensional projections� to states which are higher-
dimensional projections has thus turned out to be straightfor-
ward and unambiguous. As we shall see in the explicit case
of 2QSs which we study in detail, they have a rich structure
which can nevertheless be captured by specifying a few pa-
rameters which are invariant under LOs. It remains to further
extend the definition to mixed states which are not projec-
tions. We take that up in the next subsection.

C. PDF for any mixed state

To extend the above definition to mixed states without any
restriction, we adopt the guiding principle that two states
which are close to each other should possess “similar” en-
tanglement densities. For example, the entanglement of a
state with distinct but nearly equal eigenvalues should not
differ from the entanglement of a completely unpolarized
system. To accomplish this, we write � as a weighted sum of
projection operators �M which satisfy the following prop-
erty. Let H��M� be the subspace �of dim M� projected by
�M. We then require that H��M��H��M+1�, M =1, . . . ,N
−1, where N is the dimension of �. In terms of these nested
projections �M, we define the following.

Definition 2 (PDF for a mixed state). Let a state � be
resolved in terms of nested projection operators as �
=�M=1

N 
M�M, with �M satisfying the normalization �M
M
=1. The PDF for the entanglement of � is given by

P��E� = �
M=1

N


MP�M
�E� , �2�

where the PDF for a projection is defined in �1�.

The definition given above is unambiguous since the
weights can be easily determined in terms of the eigenvalues
of �. Let �i

↓ be the eigenvalues of �, arranged in a nonin-
creasing order, belonging to the respective eigenstates ��i�.
The eigenstates are not unique if the eigenvalues are degen-
erate, but they are of no consequence to us here. We first
write the trivial identity

� = ��1 − �2��1 + ��2 − �3��2 + ¯

+ ��N−1 − �N��N−1 + �N�N

� �
M=1

N

�M�M , �3�

where the projections �M =� j=1
M �� j�	� j�, M =1, . . . ,N, satisfy

the nestedness condition stated above. The weights 
M in �2�
are easily read off as 
M =�M /�1.

With this identification, we see that the non-negative vec-
tors  and �, defined by = �
1 , . . . ,
N��� /�1, have
natural but rather different interpretations. The norm of � is
a measure of the purity of the state and lies in the range
�1,1 /N�, the limiting cases corresponding to the pure and
completely mixed states, respectively. The norm of  repre-
sents, on the other hand, the degree of projection onto a
subspace. Thus, �� takes its maximum value of 1 when � is
a pure projection. In any case, the form of � in �3� demon-
strates the assertion made above—viz., that if the members
of a set of eigenvalues are close to each other, the state is
then predominantly in the subspace spanned by their respec-
tive eigenstates, with only a small spillover to the individual
states. In the other case when an eigenvalue is much larger
than the other, the spillover to the projection to higher-
dimensional subspaces is small. These observations establish
the physical viability of the definition.

We remark that the definition of MSE is valid for any
bipartite system and is operational in the sense that it can, in
principle, always be evaluated. The entanglement distribu-
tion is governed by the invariant Haar measure associated
with the group of automorphisms of each subspace, as also
the entanglements of the pure states belonging to it. Since
they are invariant under LOs, their structure cannot be arbi-
trary. Thus, e.g., the PDF for an �N−1�-dimensional projec-
tion will be characterized by a single parameter—the en-
tanglement of the pure state orthogonal to the subspace.
Postponing an investigation to higher spins to a future work,
we now implement the above definition to the most impor-
tant case in quantum information theory—viz., the two-qubit
system.

IV. PDF FOR A TWO-QUBIT SPIN SYSTEM

Two-qubit systems are the most important from the view-
point of applications, and also because of the extensive the-
oretical analyses that they have received. We focus our atten-
tion exclusively on 2QSs in the rest of the paper. We �a�
analyze entanglement in states which are pure projections
and �b� their extension to general states, �c� illustrate the
distribution in a number of examples, and �d� discuss the role
of concurrence, �e� the problem of reconstructing the state
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given the PDF for entanglement, and �f� the reconciliation of
NMR QC with entanglement. As our pure-state measure, we
choose concurrence defined in the Introduction. As pointed
out, this choice does not amount to any loss of generality
since all the measures of pure-state entanglement are mono-
tones of each other.

We first consider the special class of states, �= 1
M �M, M

=1, . . . ,4. The spectrum consists of only two eigenvalues,
zero and 1 /M, with respective degeneracies 4−M and M.
The two limiting cases d=1,4 correspond to the completely
polarized �pure states� and the completely unpolarized
�mixed states�, respectively. Each of the above cases will be
analyzed in detail. First the simplest of them all—viz., a pure
state.

A. One-dimensional projections: The pure states

The Haar measure for the case �= ���	�� is trivial since
the group of automorphisms is given by the subgroup con-
sisting only of the identity element. Thus, the PDF has the
form

P1�E� = 	�E − E�� ,

in terms of the entanglement of ���. The PDF has a support
only at E�, and the entanglement is characterized by a single
number. Note that any other choice of pure-state entangle-
ment simply rescales E�→E�� in a monotonic manner. The
form of the PDF is unaffected. It may also be noted that the
PDF determines the one-dimensional projection up to LOs.

B. Two-dimensional projection �= 1
2�2

This particular class of states has the richest and most
interesting entanglement distribution. Since the definition of
PDF in �2� takes care of the normalization through the group
volume factor, we pay no attention to the trace factor 1

M
henceforth. The form of the PDF crucially depends on the
nature of the subspace H��2�. Suppose that H��2� is
spanned by the basis �m1m2� , �m1m2���. Without any further
computation, we see that every state ��H��2� is separable,
giving a PDF which vanishes everywhere, except at E=0. It
is not difficult to see that the above statement holds for all
subspaces related to the specified subspace by local
operations—i.e., SU�2��SU�2� transformations. Such an
equivalence under LOs is valid for other PDFs as well. It is,
therefore, necessary and sufficient to study the PDFs for
H��2� which belong to inequivalent classes under LOs. To
that end, we construct a canonical basis in H��2� by freely
employing LOs.

Canonical basis in H��2�. Let ����H��2�. Let ��1� , ��2�
be orthonormal and span H��2�. We have

��� = cos
�

2
ei�/2��1� + sin

�

2
e−i�/2��2� , �4�

where 0���� and 0���2�. The Haar measure is sim-
ply read off as dH=sin� d� d�.

We assert that in any H��2�, there is a state which is
separable.

Proof. The demonstration is straightforward. Let ��1� , ��2�
be an orthonormal basis in H��2�. Let the entanglement of
��1�, E�1

= �sin ��. Its canonical form is then given by

��1� = cos
�

2
�↑↑� + sin

�

2
�↑↓� ,

from which

��2� = a�− sin
�

2
�↑↑� + cos

�

2
�↓↓�� + b�↑↓� + c�↓↑� , �5�

with the condition �a�2+ �b�2+ �c�2=1. Let us expand ��� in the
above basis employing �4�. The condition that E�=0 yields
the quadratic equation in z=tan� �

2
�exp�i��,

�a2sin �

2
− bc�z2 − az +

sin �

2
= 0,

whose solutions are always physical, by virtue of the bijec-
tive mapping between the points on a sphere and the com-
plex plane.

Let the separable state be chosen as a basis state and be
brought to its canonical form ��1�= �1,0 ,0 ,0� in writing
which we have ordered the basis states as
�↑↑� , �↑↓� , �↓↑� , �↓↓��. Employing the residual LO �which
leaves ��1� invariant�, we may write the orthogonal basis
vector as ��2�= �0,x ,y ,z=�1−x2−y2�, where x ,y ,z�0. The
subspace H��2� is, therefore, characterized by two non-
negative parameters—say, x ,y. The PDF would also be char-
acterized by the two parameters and gets implicitly deter-
mined by �1�.

1. Determination of the PDF

The determination of the distribution function is rather
involved, and we give the details in the Appendix. Here, we
present the results and discuss the salient features.

The generic form of the PDF for �2 is shown in Fig. 1
�solid curve�. We observe that it has three markers: �i� Ecusp,
the entanglement at which the probability density diverges as
a cusp; �ii� Emax, the maximum entanglement allowed; and
�iii� P2�Emax�, the probability density at Emax. In fact, any two
of them suffice to characterize the PDF completely. One may
specify, e.g., (Emax,P2�Emax�) or, equivalently,
(Ecusp ,P2�Emax�) for characterizing the curve. A straightfor-
ward computation establishes the relations

Emax = xy + �z2 + x2y2, �6�

Ecusp =
z2

Emax
= Emax cos � , �7�

� = sin−1� 1

EmaxP2�Emax�
� = sin−1�2�xy�xyEmax + z2�

Emax
3/2 � ,

�8�

which allow us to determine the parameters x ,y that define
�2. � is well defined by virtue of the inequality P2�Emax�
�1 /Emax.
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The details of the nature of the PDF are presented in the
Appendix, where the above statements are proved. It is also
shown that the PDF itself is an incomplete elliptic integral.
For our purposes here, it is important that the curve is char-
acterized by the two locally invariant parameters x ,y.

More importantly, we note that unlike with the other mea-
sures, the state itself can be reconstructed up to LOs. For, we
can reexpress �x ,y ,z� in terms of the characteristics of the
PDF thus:

z = �EmaxEcusp = Emax
�cos � , �9�

x =
1

2
���1 + Emax��1 − Ecusp� + ��1 − Emax��1 + Ecusp�� ,

�10�

y =
1

2
���1 + Emax��1 − Ecusp� − ��1 − Emax��1 + Ecusp�� ,

�11�

xy =
1

2
�Emax − Ecusp� = Emax sin2��/2� . �12�

The above equation expresses the result that the entangle-
ment of a state which is a two-dimensional projection is
completely characterized by its SU�2��SU�2� invariant pa-
rameters, which are essentially 2 in number.

2. Relation with concurrence and negativity

We briefly discuss the status of two well-known bench-
marks, concurrence and negativity, in this description. It is,
in fact, sufficient to consider concurrence since it bounds
negativity from above. As a warm-up, it is instructive to look
at two extreme cases which occur when Ecusp=0 and Ecusp
=Emax. In the first case, the PDF is a step function, terminat-

ing at some Emax. In the second case, the density increases
monotonically, diverging at Emax �see Fig. 1�. The relative
abundance of the entangled states is more in the latter case.
One may per se expect that the associated concurrence
should also be larger. Interestingly, however, concurrence for
a two-dimensional projection is related to the parameters by

C = �Emax − Ecusp�/2. �13�

Thus, contrary to naive expectations, concurrence—as a
quantifier of entanglement of formation—vanishes when
Ecusp=Emax. In other words, it is sensitive not to the relative
abundance of the microstates at zero �or small entangle-
ments� at all, but to the difference between Ecusp and Emax. In
any case, C emerges as a particular benchmark of the prob-
ability density, describing it only partially.

We note that if �=�3 or �4, then its concurrence vanishes
identically. By virtue of its convexity, we conclude that con-
currence of any state C� obeys the inequality

C� � ��1 − �2�C�1
+ ��2 − �3�C�2

.

Incidentally, the entanglement distribution of a subspace
H��2

c� orthogonal to H��2� is the same as that of H��2�.
The proof of this statement is given in the Appendix.

C. Three-dimensional projection �= 1
3�3

We now move on to the case �=�3, whose PDF has a
simpler structure. The simplicity is afforded by the fact that
�3 is completely characterized by its dual ������3. Ac-
cordingly, its PDF is characterized by a single parameter E�,
which is the entanglement of the orthogonal state ����.

Let ��i��, i=1,2 ,3, be an orthonormal basis spanning the
subspace H��3� under consideration. The integrating
measure �26� may be conveniently written as dH3
=sin2� sin2� sin2� d� d� d� d�, with the state expanded as

��� = cos ���1� + ei��+�� sin� cos���2� − ei��−�� sin� sin���3� .

The ranges of integration are given by � ,���0, �
2
� and

� ,�� �0,��. Using arguments similar to the ones employed
for two-dimensional subspaces, one may, conveniently,
choose two of the basis states—say, �1,2—to be separable; by
a suitable LO, they can be brought to the form �↑↑� , �↓↓�.

In this basis, the state ��3�=c1�↑↓�+c2�↓↑� has the same
entanglement E� as the state ����=c2

��↑↓�−c1
��↓↑�. In this

canonical form the state looks like

� =�
1

3
0 0 0

0
�c1�2

3

c1c2
�

3
0

0
c1

�c2

3

�c2�2

3
0

0 0 0
1

3

� .

Here, in terms of c1 and c2, we have E�=2�c1c2�.
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FIG. 1. �Color online� Some typical probability density func-
tions for �2. Note the solid curve, which shows all the features of
P2�E�. It has a cusp at Ecusp=0.8 and goes to zero at Emax=0.89. The
step function is an extreme example, where Ecusp=0, and the other
dotted curve has Ecusp=Emax=1.
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We have verified that the resulting probability density can
be cast into the simple form

P3�E� =
2E

�1 − E�
2

cosh−1� 1

E�
� , �14�

where E�=max�E ,E��.
A typical curve for P3�E� is shown in Fig. 2, which ex-

hibits the required characteristic. The curve possesses a dis-
continuity in its derivative at E�. Significantly, concurrence
�being identically zero� fails to distinguish different three-
dimensional projections—e.g., E�=0 or 1—although their
PDFs are vastly different. It simply picks up E=0, at which
the probability density, in fact, vanishes.

Since P3�E� is characterized entirely by E�, it is clear that
the state itself can be reconstructed up to LOs.

D. Full Hilbert space

Last, we consider the full space H��4�, whose PDF is
universal. This curve is obtained by using the Haar measure
on SU�4� �27�. Note that the curve is smooth everywhere, as
shown in Fig. 3.

E. General mixed state

The generalization of the pure-state entanglement to
higher-dimensional projections has been accomplished so
far. It remains to merely illustrate the nature of the PDF for
entanglement when we have a superposition of nested pro-
jections, as given in �3�. The entanglement density, as de-
fined in �2�, does retain information on the contribution from
the constituent nested projections, with appropriate weights

M. Indeed, each dimension produces a PDF with its indel-
ible characteristic. The PDF for �1 is highly singular, being
a Dirac 	 distribution. The PDF for �2 is less singular, but
has a cusp as well as a step function discontinuity at Emax.
The PDF for �3 is smoother, possessing only a discontinu-
ous derivative at E�. Finally, the PDF for the fully unpolar-
ized state �4 is entirely smooth everywhere. Thus, the defi-

nition of mixed-state entanglement given in �2� captures all
the features and stands vindicated. Recall that the weights
have been so chosen that the continuity requirement is main-
tained naturally.

Before going on to discuss more interesting examples, we
pause to illustrate explicitly how P3�E� may be determined
for a rather arbitrarily chosen state. Consider the density ma-
trix � with eigenvalues �i�= 0.385,0.288,0.231,0.096� and
the respective eigenvectors given by

��1� = �0.998,0.000,0.031,0.050� ,

��2� = �0.059,− 0.009,− 0.528,− 0.847� ,

��3� = �0.000,0.924,0.325,− 0.202� ,

��4� = �0.000,0.383,− 0.784,0.489� .

Now, for the one-dimensional �1D� subspace, we simply
have E1
0.1 and the weight associated with this 	-function
PDF is ��1−�4� /�1
0.25. Similarly, for the 2D subspace
spanned by ��1� , ��2� it is easy to verify that the canonical
basis in �2 can be chosen to be ��1�= �1,0 ,0 ,0�, ��2�
= �0,x ,y ,z�= �0,0.00945,0.5290,0.8485�. From this it fol-
lows that Emax
0.9 and Ecusp
0.8 using �6�–�8�. Also, we
can easily see that E�
0.6 directly from ��4�.

Figure 4 illustrates the PDF for this general case. Note
how all the essential features stand out in the graph.

V. EXAMPLES

We proceed to study P�E� for states which are often en-
countered and also those which have a natural geometric
structure. The exercise serves to highlight the richness of the
definition.

A. Strongly separable states

As the first example we consider states which are strongly
separable, �=�1��2. Conventional definitions attribute no

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
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FIG. 2. �Color online� A typical probability density for �3. Note
the point of discontinuity in the derivative at E=E�.
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FIG. 3. �Color online� The probability density P4�E� for the
entire Hilbert space.
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entanglement to this class of states. We can very readily look
at what form the PDF will take by making simple local ro-
tations so that �1 and �2 are both written as 1

2 (1+ki�z
�i�)

�where i=1,2, respectively�, with k1 ,k2�0. Thus � acquires
the form

1

4
diag�1 + k1 + k2 + k1k2,1 − k1 + k2 − k1k2,1 + k1 − k2

− k1k2,1 − k1 − k2 + k1k2� .

The eigenvector corresponding to the largest eigenvalue, in
this case, is clearly �↑↑�; therefore, the 1D part of the PDF
has no entanglement. The 2D subspace is also separable
since the eigenvector with the next largest eigenvalue is ei-
ther �↓↑� or �↑↓�, both of which form a separable subspace
with �↑↑�. In other words, the PDF in �2 vanishes every-
where, except at E=0. Therefore the first nonzero contribu-
tion to the PDF comes from the 3D subspace. In this case
too, it is the least possible contribution that is possible from
a 3D subspace because E�=0. Thus, our measure of en-
tanglement, the PDF, gives the minimum possible PDF to
separable states. Thus the PDF is a simple superposition of
Figs. 2 and 3. The entanglement vanishes of course if the
state is pure.

B. Purely vector polarized states

In the previous example, we had a nonvanishing tensor
polarization which was not independent of its vector polar-
ization. We now consider states which are purely vector po-
larized. These states are not factorizable. Further, they are
never in a pure state. Writing �= 1

4 �1+ p�1 ·�� 1+ p�2 ·�� 2�, we can
bring it to the canonical form �= 1

4 �1+ p1�1
z + p2�2

z�. An easy
adaptation of the previous case shows again that the nonva-
nishing contribution comes from �3.

C. Purely tensor polarized states

These states come in three classes, each of which we
study below.

1. Pseudopure states

An important but an easily analyzable state is a
pseudopure state which is an incoherent superposition of a
one-dimensional projection and the projection operator for
the full space. These states are employed in NMR QC, and
unraveling their entanglement is not without interest.
Pseudopure states have the form �= 1

4 �1+k��1 ·��2�. Unlike in
the previous cases, the sign of k cannot be altered by a local
transformation and it lies in the range −1�k�1 /3. The ei-
genvalue decomposition of � is given by

� =
1 + k

4
�↑↑ + �↓↓ + �B� +

1 − 3k

4
�B� �

1 − �

4
1 + ��B� ,

�15�

where �=−k and �↑↑ and �↓↓ are the projection operators for
the states �↑↑�, �↓↓�; �B and �B� are the projection operators
for the respective Bell states

��B� =
1
�2

�↑↓� + �↓↑�� ,

��B�� =
1
�2

�↑↓� − �↓↑�� .

The state is pure at the extremal value k=−1 and is the com-
pletely entangled singlet state. It is completely unpolarized at
k=0; at the other extremal value k=1 /3, it is a three-
dimensional projection, orthogonal to the singlet state. Thus,
for k�0, E� gets a contribution from the Bell state �the Dirac
	 has its support at E=1� with a weight 
1= −4k

1−3k and the full
space with a weight 
4= 1+k

1−3k . Similarly, when k�0, its en-
tanglement gets a contribution from the full space with a
weight 1−3k

1+k and the three-dimensional subspace �orthogonal
to the singlet� with a weight 4k

1+k . The curve corresponding to
�3 is a straight line since E�=1. There is no contribution
from the two-dimensional projection in either case. We take
up a discussion of the import of this example to NMR QC in
the next section.

2. States of the form �= 1
4†1+p� · „�\1Ã�\2…‡

We can easily utilize local rotations to align p� along the z
axis, thus converting the density matrix to the form

� =
1

4
1 + p��1

x
� �2

y − �1
y

� �2
x� ,

� =�
1

4
0 0 0

0
1

4
2ip 0

0 − 2ip
1

4
0

0 0 0
1

4

� .

Thus, we have the eigenvalues  1
4 +2p , 1

4 , 1
4 , 1

4 −2p�, with the
respective eigenvectors  �↑↓�−i�↓↑��2 , �↑↑� , �↓↓� , �↑↓�+i�↓↑�

�2
�.
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FIG. 4. �Color online� The overall probability density P4�E� for
a typical mixed state, �, with eigenvalues 0.385,0.288,0.231,
0.096�. The features of the individual subspaces are vividly pre-
served. Note that the delta function is represented as a vertical line
of height equal to its weight at the abscissa of its support

CHARACTERISTICS AND BENCHMARKS OF … PHYSICAL REVIEW A 77, 022322 �2008�

022322-7



From the above structure, the PDFs for various subspaces
and the associated weights may be easily obtained. For the
one-dimensional projection, we have the PDF and its associ-
ated weight given by

P1�E� = 	�E − 1�, 
1 =
2p

�1

4
+ 2p� .

There is no contribution from the 2D subspace, since 
2
=�2−�3=0. Considering the 3D subspace, since E�=1, the
probability density and the weights are read off as

P3�E� = 2E, 
3 =
2p

�1

4
+ 2p� .

Interestingly, 
1=
3.
Thus the states belonging to the above class simply have

PDFs that are linear with a slope varying from 0 to 1, with a
weighted 	-function at E=1.

3. States with traceless symmetric tensor polarization

Finally, we consider tensor-polarized states in their most
familiar—the quadrupolar—form �= 1

4 1+Aij · ��1
i

� �2
j ��,

where Aij is a traceless symmetric matrix. This matrix is
diagonalizable by a local SU�2��SU�2� transformation. We
bring the matrix to the form A=diag�Axx ,Ayy ,−Axx−Ayy�,
where Axx�Ayy �0. In this basis, � acquires the form

� =�
1

4
− � 0 0 �

0
1

4
+ � � 0

0 �
1

4
+ � 0

� 0 0
1

4
− �

� ,

where �=Axx+Ayy and �=Axx−Ayy. This gives us the eigen-
values

��1,�2,�3,�4� = �1

4
+ 2�,

1

4
,
1

4
− � + �,

1

4
− � − �� ,

where �1��2��3��4, and the corresponding eigenvectors
are the Bell states

��1� =
1
�2

��↑↓� + �↓↑�� ,

��2� =
1
�2

��↑↓� − �↓↑�� ,

��3� =
1
�2

��↑↑� + �↓↓�� ,

��4� =
1
�2

��↑↑� − �↓↓�� .

The rest of the analysis is straightforward. The probability
density function and the associated weight for the Bell state
��1� are simply read off as

P1�E� = 	�E − 1�, 
1 =
2�

1

4
+ 2�

.

The PDF for the two-dimensional projection spanned by
��1,2� also has a simple expression and the weight given by

P2�E� =
E

�1 − E2
, 
2 =

� − �

1

4
+ 2�

.

Since ��4� is a Bell state, we obtain for the three-dimensional
subspace

P3�E� = 2E, 
3 =
2�

1

4
+ 2�

.

Finally the weight for the full space is given by
1 / 4−�−�

1 / 4+2�
. It is

remarkable that for this class of states, the details of the state
manifest only in the weights. The density function for each
dimension is itself universal. Furthermore, we have con-
straints on the coefficients �+��

1
4 and ����0.

Figure 5 illustrates the PDF for a typical state of this
class.

Before we conclude this section, we wish to add the cau-
tionary remark that although the above analysis reveals en-
tanglement in a host of states which are otherwise considered
to be classical, it does not imply that all of them may be
harnessed with equal facility. For instance, the entanglement
of the uniform distribution cannot be accessed by standard
gate operations which are unitary and the corresponding PDF
�Fig. 3� has to be treated as a background. While more study
is needed to discern the role of the entanglement density in
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FIG. 5. �Color online� A typical quadrupolar state, with the val-
ues �=0.15 and �=0.08. Note that the weighted 	 function at E
=1 is not shown in the plot since the PDF goes to � at this point.
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various quantum information processes, there is one applica-
tion of topical interest which we take up below.

VI. ENTANGLEMENT IN NMR QUANTUM
COMPUTATION

As an application of our description, we address the issue
of the role played by entanglement in QC with NMR. NMR
QC employs the so-called pseudopure states which have the
form 1−�

4 1+��B� , Eq. �15�. It has been experimentally dem-
onstrated that the quantum logic operations used in QC are
implementable with NMR, and we know that no quantum
logic operation is possible with classical states. Interestingly,
concurrence and negativity vanish when ��

1
3 , while in ex-

periments, ��10−6.
This has led to a debate on the role of entanglement in

NMR QC �22� although, as we saw, experiments clearly
show that such states cannot be completely classical.

The PDF constructed for the pseudopure states in the pre-
vious section resolves this problem naturally. First of all, its
P��E� is given by a weighted Dirac 	 which is nonvanishing
for all ��0, superposed on the background contribution
from the uniform distribution. We know that the NMR signal
is sensitive only to the pure component, the so-called devia-
tion density matrix. Thus, although the uniform background
is invariant under unitary operations, the one-dimensional
fluctuation is not, allowing for nontrivial gate operations. In
other words, NMR QC exploits the excess of entangled
states over the unpolarized background as a resource and this
feature is correctly captured by the PDF of the state. Inciden-
tally, this analysis also raises the interesting possibility of QC
with more general pseudoprojection states.

VII. RECONSTRUCTIBILITY OF � FROM THE PDF

Last, we return to the issue of the reconstructibility of the
state �up to LOs�. We have seen that when � is a projection,
the reconstructibility is assured by construction. When � is
more general, the reconstruction is somewhat partial; we are
not permitted to perform independent LOs on various sub-
spaces if the reconstruction is desired. Indeed, the action of
SU�2��SU�2� on � produces an orbit of dimension 6, char-
acterized by nine invariants. The parameters which charac-
terize the entanglement are 7 in number, which may be cho-
sen, for example, to be �1 ,�2 ,�3 ,E1 ,Ecusp ,Emax,E��. Thus
we need two additional parameters which would determine
�. To understand their role, we note that, geometrically,
P��E� is invariant under independent local operations Li act-
ing on the subspaces �i, where �i��i+1. If � is to be unique
up to a global LO, one needs the additional constraint Li

=ULi
�0�, where Li

�0� may be chosen freely. Let us choose
L2

�0�=1 �where 1 is the identity operator�. The nestedness
condition—viz., that ��1���2 and ��4���2

c—entails that

L1
�0� and L3

�0� get specified by two1 parameters each.
We make the above argument more explicit. If we have

�2 in its canonical form, it is spanned by ��1� and ��2� given,
respectively, as �1, 0, 0, 0� and �0,x ,y ,z�. Therefore, we can
specify ��1�= ��1�cos�

2ei�/2+ ��2�sin�
2e−i�/2 by giving the val-

ues of �� ,��. Similarly, ���� can be specified by ��� ,���
when it is expanded in the canonical basis of �2

c = �1−�2�,
given by ��1

c�= �0,0 ,c /�c2+b2 ,−b /�c2+b2� and ��2
c�

= �0,�c2+b2 ,ab /�c2+b2 ,ac /�c2+b2�. The above construc-
tion completes the argument. It is noteworthy that the ques-
tion of reconstructibility cannot even be raised with other
criteria.

VIII. CONCLUSION

In conclusion, we have shown that mixed-state entangle-
ment has a rich structure and is properly described via a
suitably defined probability density. We have explicitly
implemented the definition to the most important case—the
two-qubit systems—and shown how criteria such as concur-
rence emerge as specific benchmarks. Their precise role in
describing the entanglement is also clarified. The role of en-
tanglement in NMR QC is resolved and the issue of the
reconstructibility of the state discussed. Nevertheless, the
study is incomplete since possible applications to teleporta-
tion, quantum algorithms, and error-correcting codes still
need to be explored. The generalization to higher-spin sys-
tems would also provide a deeper and a better appreciation of
quantum information processes.

APPENDIX

The properties of the entanglement density P��E� for a
two-dimensional projection �2 will be worked out in detail
here.

Consider �2 first. Recall that we are considering the sub-
space spanned by ���= �1,0 ,0 ,0� and ���= �0,x ,y ,z�. A gen-
eral state ���=cos�

2ei�/2���+sin�
2 ��� has its entanglement

given by

E2 = �2�z sin��/2�cos��/2�ei�/2 + xy sin2��/2���2. �A1�

It follows from the above expression that the maximum en-
tanglement allowed is given by

Emax = xy + �z2 + x2y2. �A2�

It is further convenient to introduce the variable � defined by
z=Emax

�cos � and xy=Emax sin2�� /2�. It follows that the en-
tanglement of every state in the subspace scales linearly in
Emax. Therefore, we can write

1In fact, we need only one parameter each to fix the states up to
discrete ambiguities. This is because from the Pi�E� we already
know the entanglement of the states, which fixes one parameter.
However, there remains a discrete ambiguity if only one of � or �
is specified.
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�P�E���Emax,�� =
1

Emax
�P��E/Emax���Emax� =1,��

if E�Emax and �P�E���Emax,��=0 if E�Emax. We shall now
utilize this scaling and concentrate on studying the distribu-
tion for Emax=1. At Emax, xy= �1−z2� /2 and

E2��,�� = z2 sin2 � + �1 − z2

2
�2

�1 − cos ��2

+ 2z�1 − z2

2
�sin ��1 − cos ��cos �

and

P�E� =
1

4�
�

0

�

sin � d��
0

2�

d� 	„E − E��,��…

=
E

2�
�

0

�

sin � d��
0

2�

d� 	„E2 − E2��,��… .

Now we can do the � integral fairly easily, and it leaves us
with

P�E� =
E

2�
�

0

�

2� sin � d�

2z�1 − z2

2
�sin ��1 − cos ���sin �0�� ,

where

cos �0 =

E2 − z2 sin2 � − �1 − z2

2
�2

�1 − cos ��2

2z�1 − z2

2
�sin ��1 − cos ��

.

However, we need this solution for cos �0 to lie in �−1,1�.
Therefore,

E � �z sin � + �1 − z2

2
��1 − cos ���

= U��� ⇒ E � �1 − z2

2
� − �1 + z2

2
�cos�� + �0�

�A3�

and

E � �z sin � − �1 − z2

2
��1 − cos ���

= L��� ⇒ E

� ��
1 + z2

2
�cos�� − �0� − �1 − z2

2
� , � � 2�0,

�1 − z2

2
� − �1 + z2

2
�cos�� − �0� , � � 2�0,�

�A4�

where �0=2 tan−1 z.
The integral for P�E� now becomes:

E
�
� sin� d�

��E2 − L2�����U2��� − E2�
,

where the integration is carried out over the region where
inequalities �A3� and �A4� are satisfied �see Fig. 6�. The
denominator of the integrand goes to zero only at the bound-
aries, and both U��� and L��� have nonzero slopes almost
everywhere �except L��� at �0�. Therefore, if we look near
such a point, �b, we see that

L2��b + �� − E2 = �E + L���b�� + O��2��2 − E2

= 2EL���b�� + O��2� .

Thus near the points where the integrand blows up the be-
havior is �1 /��, which is convergent. A special point to
check is when E=1−z2; then, near �=�, both terms in the
denominator of the integral behave as �1 /��, which is a
�1 /� behavior. However, the sin � in the numerator also
goes as ��; therefore, the integral is convergent for this
value as well. Therefore, we are left to consider the case
when E=z2. In this case near �0, the slope of L��� vanishes.
Therefore, for �=�0+�, E2−L2�����2. Thus the integrand
behaves as �1 /� and we have a logarithmic divergence at
E=z2=cos �. This is the cusp in the PDF. This will also scale
as Emax for values of Emax�1. Thus Ecusp=Emax cos � as
mentioned earlier.

It may be noted that the integral for the PDF can be recast
into the form

P�E� = ��t1

t2 dt
�R�t�

if E � z2,

�
t1�

t2� dt
�R�t�

+ �
t3�

t4� dt
�R�t�

if E � z2,� �A5�

where R�t� is a polynomial of degree 4 in t, if we make the
substitution t=cos �. This is basically an incomplete elliptic
integral �the limits t1 , t2 , . . . are obtained from the inequalities
�A3� and �A4��.

We last prove the result that the PDFs for two comple-
mentary two-dimensional projections are identical. This fol-
lows from the fact that there is a bijective mapping from
H��2� to H��2

c� which preserves the Haar volume �in fact,
this map is an SU�2��SU�2� transformation�. To demon-

z2

1 − z2

1

0 θ0 2θ0 π − θ0 π

Upper Bound on E
Lower bound on E

FIG. 6. The upper and lower bounds on E �y axis� from inequali-
ties �A3� and �A4� are plotted above as a function of � �x axis�.
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strate this we will once again choose our basis as ��1� and
��2� defined above. Now, H��2

c� consists of all states or-
thogonal to ��1� and ��2�. We now construct a basis for
H��2

c�, as ��1��= �0,z /�z2+x2 ,0 ,−x /�z2+x2� and ��2��
= �0,xy /�z2+x2 ,−�z2+x2 ,zy /�z2+x2�. It is easy to see that
��1�� is separable and E�2�

=E�2
. Furthermore, the entanglement

of a general state, ���=���1��+���2��, in the subspace is given

by E�� ,��=2�−��z−�2xy�. This is identical to the entangle-
ment of ���1�+���2�. Since the entanglement of each state in
the subspace is identical to that in H��2� and the SU�2�
measure is the same, we will have the same PDFs in both
these cases. In fact, the SU�2��SU�2� transformation that
takes from ��1�� to ��1� and from ��2�� to ��2� connects these
two subspaces.
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