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Squeezing of a thermal bath introduces features absent in an open quantum system interacting with an
uncorrelated �zero squeezing� thermal bath. The resulting dynamics, governed by a Lindblad-type evolution,
extends the concept of a generalized amplitude damping channel, which corresponds to a dissipative interaction
with a purely thermal bath. Here we present the Kraus representation of this map, which we call the squeezed
generalized amplitude damping channel. As an application of this channel to quantum information, we study
the classical capacity of this channel.
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I. INTRODUCTION

The concept of open quantum systems is a ubiquitous one
in that any real system of interest is surrounded by its envi-
ronment �reservoir or bath�, which influences its dynamics.
They provide a natural route for discussing damping and
dephasing. One of the first testing grounds for open system
ideas was in quantum optics �1�. Its application to other areas
gained momentum from the works of Caldeira and Leggett
�2� and Zurek �3�, among others. Depending upon the
system-reservoir �S-R� interaction, open systems can broadly
be classified into two categories, viz., quantum nondemoli-
tion �QND� or dissipative. A particular type of quantum non-
demolition �QND� S-R interaction is given by a class of
energy-preserving measurements in which dephasing occurs
without damping the system. This may be achieved when the
Hamiltonian HS of the system commutes with the Hamil-
tonian HSR describing the system-reservoir interaction, i.e.,
HSR is a constant of the motion generated by HS �4–6�. A
dissipative open system would be when HS and HSR do not
commute resulting in dephasing along with damping �7�. A
prototype of dissipative open quantum systems, having many
applications, is the quantum Brownian motion of harmonic
oscillators. This model was studied by Caldeira and Leggett
�2� for the case where the system and its environment were
initially separable. The above treatment of the quantum
Brownian motion was generalized to the physically reason-
able initial condition of a mixed state of the system and its
environment by Hakim and Ambegaokar �8�, Smith and Cal-
deira �9�, Grabert, Schramm, and Ingold �10�, and for the
case of a system in a Stern-Gerlach potential �11�, and also
for the quantum Brownian motion with nonlinear system-
environment couplings �12�, among others. The interest in
the relevance of open system ideas to quantum information
and quantum computation has burgeoned in recent times be-
cause of the impressive progress made on the experimental
front in the manipulation of quantum states of matter toward
quantum information processing and quantum communica-
tion.

A number of open system effects can be given an
operator-sum or Kraus representation �13�. In this represen-

tation, a superoperator E due to interaction with the environ-
ment, acting on the state of the system, is given by

� → E��� = �
k

�ek�U�� � �f0��f0��U†�ek� = �
j

Ej�Ej
†, �1�

where U is the unitary operator representing the free evolu-
tion of the system and reservoir, as well as the interaction
between the two, 	�f0�
 is the environment’s initial state, and
	�ek�
 is a basis for the environment. The environment and
the system are assumed to start in a separable state. The Ej
��ek�U�f0� are the Kraus operators, which satisfy the com-
pleteness condition � jEj

†Ej =I. It can be shown that any
transformation that can be cast in the form �1� is a com-
pletely positive �CP� map �14�.

To connect the predicted effects to actual experiments, a
detailed model of the interaction between the principal sys-
tem and the environment is required. However, from the
viewpoint of a number of applications to quantum computa-
tion and information processing, these details may not be of
immediate relevance. In such a case, the Kraus representa-
tion is useful because it provides an intrinsic description of
the principal system, without explicitly considering the de-
tailed properties of the environment �14�. The essential fea-
tures of the problem are contained in the operators Ek. This
not only simplifies calculations, but often provides theoreti-
cal insight. An example we will encounter below is the in-
terplay between environmental squeezing and thermal effects
for the case of dissipative system-reservoir interactions.
Moreover, the reduced dynamics of a number of, seemingly
different, physical systems could be modeled in the quantum
operations formalism �14� by the same noisy channel. This
would help in the development of insight into the common
features of the reduced dynamics of the above systems. For
example, for the case of a two-level system interacting, via a
quantum nondemolition �QND� interaction, either with a
bath of two-level systems �in the weak-coupling limit� or
harmonic oscillators �at zero temperature T and zero bath
squeezing�, the reduced dynamics in the quantum operations
formalism can be shown to be governed by the phase damp-
ing channel �15,16�. Another example would be the reduced
dynamics of a simplified Jaynes-Cummings model consisting
of a two-level atom coupled to a single cavity mode, which
in turn is interacting with a vacuum bath of harmonic oscil-
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lators. This can, considering only a single excitation in the
atom-cavity system, be shown to be generated by an ampli-
tude damping channel. Since as shown below, an amplitude
damping channel results generally from the interactions gov-
erned by the Lindblad type of evolution �at zero T and zero
bath squeezing�, this enables us to get an understanding of
the reduced dynamics of the above system without having to
concern ourselves with particular details.

In this paper we study an open system, taken to be a
two-level system or qubit, where the bath is taken to be
initially in a squeezed thermal state. The resulting dynamics,
governed by a Lindblad-type evolution, generates a com-
pletely positive map that extends the concept of a general-
ized amplitude damping channel, which corresponds to a dis-
sipative interaction with a purely thermal bath. We present
the Kraus representation of this map, which we call the
squeezed generalized amplitude damping channel. An advan-
tage of using a squeezed thermal bath is that the decay rate of
quantum coherence can be suppressed leading to preserva-
tion of nonclassical effects �15,17,18�. It has also been
shown to modify the evolution of the geometric phase of
two-level atomic systems �16�. The preservation of entangle-
ment in the presence of a squeezed bath has been investi-
gated in Ref. �19�.

The paper is organized as follows. In Sec. II, we obtain
the evolution of a qubit in a dissipative �non-QND� interac-
tion with its bath. In Sec. II A, we consider, specifically, a
system interacting with a squeezed thermal bath in the weak
Born-Markov rotating-wave approximation. In Sec. II B, we
consider a single-mode Jaynes-Cummings model in a
vacuum bath. The amplitude damping and generalized am-
plitude damping channels are introduced in Sec. III, where it
is pointed out that the simplified Jaynes-Cummings model
realizes an amplitude damping channel, while the weak
Born-Markov interaction without bath squeezing realizes a
generalized amplitude damping channel. We introduce the
squeezed generalized amplitude damping channel, which ex-
tends the concept of generalized amplitude damping noise, to
the case where environmental squeezing is included, in Sec.
IV. Of particular interest is the fact that unlike the case of a
purely dephasing channel, where the action of squeezing and
temperature are concurrently decohering, in the case of a
squeezed generalized amplitude damping channel, they can
exhibit counteractive behavior �16,20�. Specifically, in Sec.
V, where we study the classical capacity of a squeezed gen-
eralized amplitude damping channel, we show that squeezing
can improve the channel capacity, whereas temperature nec-
essarily degrades it. We make our conclusions in Sec. VI.

II. TWO-LEVEL SYSTEM IN NON-QND INTERACTION
WITH BATH

In this section we study the dynamics of a two-level sys-
tem in a dissipative interaction with its bath, which is taken
as one composed of harmonic oscillators. We first consider
the case of the system interacting with a bath which is ini-
tially in a squeezed thermal state, in the weak-coupling
Born-Markov rotating-wave approximation. Next we con-
sider a simple single-mode Jaynes-Cummings model in a
vacuum bath.

A. System interacting with bath in the weak Born-Markov,
rotating-wave approximation

Here we take up the case of a two-level system interacting
with a squeezed thermal bath in the weak Born-Markov,
rotating-wave approximation. The system Hamiltonian is
given by HS= ��� /2��z. The system interacts with the bath
of harmonic oscillators via the atomic dipole operator, which

in the interaction picture is given as D� �t�=d��−e−i�t

+d���+ei�t, where d� is the transition matrix elements of the
dipole operator. The evolution of the reduced density matrix
operator of the system S in the interaction picture has the
following form �7,21�:

d

dt
�s�t� = �0�N + 1���−�s�t��+ −

1

2
�+�−�s�t� −

1

2
�s�t��+�−


+ �0N��+�s�t��− −
1

2
�−�+�s�t� −

1

2
�s�t��−�+


− �0M�+�s�t��+ − �0M��−�s�t��−. �2�

Here �0 is the spontaneous emission rate given by �0

= �4�3�d� �2� / �3�c3�, and �+,�− are the standard raising and
lowering operators, respectively, given by �+= �1��0�= 1

2 ��x

+ i�y� and �−= �0��1�= 1
2 ��x− i�y�. Equation �2� may be ex-

pressed in a manifestly Lindblad form as �16�

d

dt
�s�t� = �

j=1

2

�2Rj�
sRj

† − Rj
†Rj�

s − �sRj
†Rj� , �3�

where R1= ��0�Nth+1� /2�1/2R, R2= ��0Nth /2�1/2R† and R
=�− cosh�r�+ei��+ sinh�r�. This observation guarantees that
the evolution of the density operator can be given a Kraus or
operator-sum representation �14�, a point we return to in Sec.
IV. If T=0, then R2 vanishes, and a single Lindblad operator
suffices to describe Eq. �2�.

A number of methods of generating bath squeezing have
been proposed in the literature. A squeezed reservoir may be
constructed on the basis of establishment of a squeezed light
field �22�. A single-mode squeezed state created in a degen-
erate parametric amplifier operated in an appropriate cavity,
when coupled to an infinite number of external “output”
modes, transfers the squeezing into correlations between
sidebands of the multimode light field. A subthreshold opti-
cal parametric oscillator �OPO� can be used as the basis for
the implementation of a stable, reliable source of continuous-
wave squeezed vacuum �23�. Experiments probing the
squeezed-light-atom system have been carried out in Refs.
�24,25�. In particular, the latter reference details a method in
which an OPO operated below threshold down converts a
high energy photon into two correlated low energy photons
generating a close-to-minimum-uncertainty squeezed
vacuum state. At the output of the OPO, the squeezed
vacuum is mixed on a 99-1 beam splitter with a phase-
coherent reference oscillator with controlled relative phase to
the squeezing, resulting in a combined electromagnetic field
that is equivalent to a displaced squeezed state.
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An infinite array of beam splitters can be used to model a
squeezed reservoir �26�. The signal is injected from the left
of the array, with independent squeezed fields �all with the
same properties� injected into the other ports. The output of a
given beam splitter serves as input to the subsequent one. In
the limit of an infinite number of beam splitters, the dynam-
ics generated by Eq. �2� is simulated. In Ref. �27�, quantum
reservoir engineering with laser-cooled trapped ions is used
to mimic the dynamics of an atom interacting with a
squeezed vacuum bath �Eq. �2� with temperature T set to
zero�. Another way to engineer a quantum reservoir to mimic
coupling with a squeezed bath has been proposed in Ref.
�28�. They consider a four-level system with two �degener-
ate� ground and excited states, driven by weak laser fields
and coupled to a vacuum reservoir of radiation modes. Inter-
ference between the spontaneous emission channels in opti-
cal pumping leads to a squeezed-bath-type coupling for the
two-level system constituted by the two ground levels. The
properties of the squeezed bath are shown to be controllable
by means of the laser parameters. An experimental study of
the decoherence and decay of quantum states of a trapped
atomic ion’s harmonic motion with several types of engi-
neered reservoirs, including amplitude damping, and gener-
alized amplitude damping channels, have been made in Refs.
�29,30�.

In Eqs. �2� and �3�, we use the nomenclature �1� for the
upper state and �0� for the lower state and �x ,�y ,�z are the
standard Pauli matrices. In Eq. �2�,

N = Nth�cosh2�r� + sinh2�r�� + sinh2�r� , �4�

and M =− 1
2sinh�2r�ei��2Nth+1�, and Nth=1 / �e��/kBT−1�.

Here Nth is the Planck distribution giving the number of ther-
mal photons at the frequency � and r,� are bath squeezing
parameters �31�. The analogous case of a thermal bath with-
out squeezing can be obtained from the above expressions by
setting these squeezing parameters to zero. We solve Eq. �2�
using the Bloch vector formalism as

�s�t� =
1

2
�I + ��� �t�� · �� � = � 1

2 �1 + ��z�t��� ��−�t��

��+�t�� 1
2 �1 − ��z�t���


 .

�5�

In Eq. �5� by the vector �� �t� we mean (�x�t� ,�y�t� ,�z�t�),
and ��� �t�� denotes the Bloch vectors, which are solved using
Eq. �2� to yield �16�

��x�t�� = �1 +
1

2
�e�0at − 1��1 + cos�����e−�0/2�2N+1+a�t��x�0��

− sin���sinh��0at

2

e−�0/2�2N+1�t��y�0�� ,

��y�t�� = �1 +
1

2
�e�0at − 1��1 − cos�����e−�0/2�2N+1+a�t��y�0��

− sin���sinh��0at

2

e−�0/2�2N+1�t��x�0�� ,

��z�t�� = e−�0�2N+1�t��z�0�� −
1

�2N + 1�
�1 − e−�0�2N+1�t� .

�6�

In these equations a=sinh�2r��2Nth+1�. Using Eqs. �6� in
Eq. �5� and then reverting back to the Schrödinger picture,
the reduced density matrix of the system can be written as

�s�t� = � 1
2 �1 + A� Be−i�t

B�ei�t 1
2 �1 − A�


 , �7�

where, in view of Eq. �5�,

A � ��z�t�� = e−�0�2N+1�t��z�0�� −
1

�2N + 1�
�1 − e−�0�2N+1�t� ,

�8�

B = �1 +
1

2
�e�0at − 1��e−�0/2�2N+1+a�t��−�0��

+ sinh��0at

2

ei�−�0/2�2N+1�t��+�0�� . �9�

From Eq. �6�, it is seen that the system evolves toward a
fixed asymptotic point in the Bloch sphere �15�, which in
general is not a pure state, but the mixture

�asymp = �1 − q 0

0 q

 , �10�

where q= N+1
2N+1 . If T=0 and r=0, then q=1, and the pure state

�0� is reached asymptotically, an observation that serves as
the basis for the quantum deleter �32�.

B. Simplified Jaynes-Cummings model

Here we consider a simplified Jaynes-Cummings model
taking into account the effect of the environment, which is
modeled as a zero temperature bath. In this model we con-
sider the case of only a single excitation in the atom-cavity
system with the bath modeling the effect of imperfect cavity
mirrors. Also, the cavity frequency is assumed to be in reso-
nance with the atomic frequency �7,33�. The total Hamil-
tonian is

H = HS + HR + HSR = �0�+�− + �
k

�kbk
†bk + �+�

k

gkbk

+ �−�
k

gk
�bk

†. �11�

Here HS, HR, and HSR stand for the Hamiltonians of the
system, reservoir, and system reservoir interaction, respec-
tively. In the case of a single excitation in the atom-cavity
system, the cavity mode can be eliminated in favor of the
following effective spectral density:

I��� =
1

2�

�0�2

��0 − ��2 + �2 . �12�

Here �0 is the atomic transition frequency and � is the spec-
tral width of the system-environment coupling. Tracing over
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the vacuum bath and assuming that initially there are no
photons, the reduced density matrix of the atom �two-level
system� can be obtained in the Schrödinger representation as

�s�t� = � a be−i�0t

b�ei�0t �1 − a�

 , �13�

where

a = �1/2,1/2�0�e−�t�cosh� lt

2

 +

�

l
sinh� lt

2

�2

, �14a�

b = �1/2,−1/2�0�e−�t/2�cosh� lt

2

 +

�

l
sinh� lt

2

� . �14b�

Here l=��2−2�0�, where �0 ,� are as in Eq. �12�. Initially
the system is chosen to be in the state

�	�0�� = cos�
0

2

�1� + ei�0 sin�
0

2

�0� . �15�

From the above equation, it can be easily seen that
�1/2,1/2�0�=cos2� 
0

2
� and �1/2,−1/2�0�= 1

2e−i�0 sin�
0�.

III. AMPLITUDE DAMPING AND GENERALIZED
AMPLITUDE DAMPING CHANNELS

The generalized amplitude channel is generated by the
evolution given by the master equation �2�, with the bath
squeezing parameters r and � set to zero. Generalized am-
plitude damping channels capture the idea of energy dissipa-
tion from a system, for example, in the spontaneous emission
of a photon, or when a spin system at high temperature ap-
proaches equilibrium with its environment �also, cf. Refs.
�29,30��. A simple model of an amplitude damping channel is
the scattering of a photon via a beam splitter. One of the
output modes is the environment, which is traced out. The
unitary transformation at the beam splitter is given by B
=exp�
�a†b−ab†��, where a ,b and a† ,b† are the annihilation
and creation operators for photons in the two modes.

A. Amplitude damping channel

This channel is generated by the evolution given by the
master equation �2�, with temperature T, and bath squeezing
parameters r and � set to zero. The corresponding Kraus
operators are

E0 � ��1 − ��t� 0

0 1
�, E1 � � 0 0

���t� 0
� . �16�

The effect of these operators is to produce the completely
positive map

�
j

Ej�A B�

B 1 − A

Ej

† = �A�1 − �� �1 − �B�

�1 − �B 1 − A + �A

 , �17�

where, in comparison with Eq. �15�, we see that A
=cos2�
0 /2�, B= �1 /2�ei�0 sin�
0�. The simplified Jaynes-
Cummings model of the previous subsection is easily seen to

realize an amplitude damping channel. It is straightforward
to verify that with the identification

1 − ��t� � e−�t�cosh� lt

2

 +

�

l
sinh� lt

2

�2

, �18�

the operators �16�, acting on the state �15�, reproduce the
evolution �13� �in the interaction picture�.

B. Generalized amplitude damping channel

This channel is generated by the evolution governed by
the master equation �2�, with bath squeezing parameters r
and � set to zero, but T not necessarily zero. The corre-
sponding Kraus operators are

E0 � �p��1 − ��t� 0

0 1
�, E1 � �p�0 0

���t� 0
� ,

E2 � �1 − p�1 0

0 �1 − ��t�
�, E3 � �1 − p�0 ���t�

0 0
� ,

�19�

where 0
 p
1 �14,16�.
The effect of these operators is to produce the completely

positive map

�
j

Ej�A B�

B 1 − A

Ej

†=p�A�1 − �� �1 − �B�

�1 − �B 1 − A + �A

 + �1 − p�

��A + ��1 − A� �1 − �B�

�1 − �B 1 − A + �1 − ���1 − A�

 .

�20�

It is straightforward to verify that with the identification

��t� � 1 − e−�0�2Nth+1�t, p �
Nth + 1

2Nth + 1
, �21�

the operators �19� acting on the state �15� reproduce the evo-
lution �6�, with squeezing set to zero but temperature nonva-
nishing, by means of the map given by Eq. �1�. If T=0, then
p=1, reducing Eq. �19� to the amplitude damping channel,
given by Eq. �16�.

IV. SQUEEZED GENERALIZED AMPLITUDE DAMPING
CHANNEL

This channel is generated by the evolution given by the
master equation �2�, with neither the bath squeezing param-
eters r and �, nor the temperature T necessarily zero. Thus
this is a very general �completely positive� map generated by
Eq. �2�. To generalize Eq. �19� to include the effects of
squeezing, we construct the following set of Kraus operators:
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E0 � �p1��1 − ��t� 0

0 �1 − ��t�
�, E1 � �p1�0 ���t�

���t�e−i��t� 0
� ,

E2 � �p2��1 − ��t� 0

0 �1 − ��t�
�, E3 � �p2�0 ���t�

���t�e−i
�t� 0
� . �22�

It is readily checked that Eq. �22� satisfies the completeness
condition

�
j=0

3

Ej
†Ej = I , �23�

provided

p1 + p2 = 1. �24�

Substituting the Kraus operator elements given by Eq.
�22� in Eq. �1�, and using Eq. �5�, yields the following Bloch
vector evolution equations:

��x�t�� = ��p1
��1 − ��t���1 − ��t��� + p2

��1 − ��t���1 − ��t��

+ �p1
���t���t�cos � + p2

���t���t�cos 
����x�0��

− ��p1
���t���t� sin � + p2

���t���t� sin 
����y�0�� ,

�25a�

��y�t�� = ��p1
��1 − ��t���1 − ��t�� + p2

��1 − ��t���1 − ��t���

− �p1
���t���t� cos � + p2

���t���t� cos 
����y�0��

− ��p1
���t���t� sin � + p2

���t���t� sin 
����x�0�� ,

�25b�

��z�t�� = �1 − p2���t� + ��t�� − p1���t� + ��t�����z�0��

− p2���t� − ��t�� − p1���t� − ��t�� . �25c�

Comparing Eqs. �24� with Eqs. �6�, we can read off the cor-
responding terms. In fact, the system is underdetermined as
there are more variables than constraints. An inspection of
Eqs. �6� shows that they yield a total of five constraints on
the channel variables, p1, p2, �, �, �, �, 
, and �, with a
further constraint coming from Eq. �24�. The two redundant
variables may be conveniently chosen to be � and �. Setting
�=�=0, a comparison of Eqs. �25a�–�25c� and �6� produces
the following relations:

p1
��1 − ��t�� + p2

��1 − ��t���1 − ��t��

= cosh��0at

2

exp�−

�0

2
�2N + 1�t
 , �26a�

p2
���t���t� cos 
 = cos���sinh��0at

2

exp�−

�0

2
�2N + 1�t
 ,

�26b�

p2
���t���t� sin 
 = sin���sinh��0at

2

exp�−

�0

2
�2N + 1�t
 ,

�26c�

p1��t� + p2���t� − ��t�� =
1

�2N + 1�
�1 − e−�0�2N+1�t� ,

�26d�

1 − p1��t� − p2���t� + ��t�� = e−�0�2N+1�t, �26e�

and the required squeezed generalized amplitude damping
channel is given, in place of Eq. �22�, by the Kraus operators

E0 � �p1��1 − ��t� 0

0 1
�, E1 � �p1�0 0

���t� 0
� ,

E2 � �p2��1 − ��t� 0

0 �1 − ��t�
�,

E3 � �p2�0 ���t�
���t�e−i
�t� 0

� . �27�

It is seen from Eqs. �26a�–�26e� that at time t=0, ��0�
=��0�=��0�=0. We now determine the remaining channel
parameters. From Eqs. �26b� and �26c�, we find

tan 
 = tan � , �28�

allowing us to set 
=�, and to identify the channel param-
eter 
 with the bath squeezing angle. The remaining channel
parameters may be identified as follows.

From Eqs. �26d� and �26e�, we find

��t� =
N

p2�2N + 1�
�1 − e−�0�2N+1�t� . �29�
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Substituting Eq. �29� into Eq. �26c�, we find

��t� =
2N + 1

2p2N

sinh2��0at/2�
sinh��0�2N + 1�t/2�

exp�−
�0

2
�2N + 1�t
 .

�30�

Using Eqs. �29� and �30� in Eq. �26e�, we obtain

��t� =
1

p1
	1 − p2���t� + ��t�� − e−�0�2N+1�t
 , �31�

where ��t� and ��t� are given by Eqs. �29� and �30�, respec-
tively.

Substituting Eqs. �29�–�31� and �24� into Eq. �26a�, we
obtain after some manipulations,

p2�t� =
1

�A + B − C − 1�2 − 4D
	A2B + C2 + A�B2 − C − B�1 + C� − D� − �1 + B�D − C�B + D

− 1� ± 2�D�B − AB + �A − 1�C + D��A − AB + �B − 1�C + D�
 , �32�

where

A =
2N + 1

2N

sinh2��0at/2�
sinh��0�2N + 1�t/2�

exp�− �0�2N + 1�t/2� ,

B =
N

2N + 1
�1 − exp�− �0�2N + 1�t�� ,

C = A + B + exp�− �0�2N + 1�t� ,

D = cosh2��0at/2�exp�− �0�2N + 1�t� . �33�

If the squeezing parameter r is set to zero, then a=0, and it
follows from Eqs. �32� and �33�, that p̂2=Nth / �2Nth+1�,
where the hat indicates that squeezing has been set to zero. It
can be seen from Eq. �30�, that for zero squeezing �a=0�,
�̂�t�=0. Substituting p̂2=Nth / �2Nth+1� in Eq. �29�, we find
�̂�t�=1−e−�0�2Nth+1�t. Now, a comparison of Eqs. �27� with
Eqs. �19� shows that �̂�t�=��t�, given by Eq. �21�.

Further, in view of Eq. �24�, p̂1= �Nth+1� / �2Nth+1�. Sub-
stituting Eq. �29� and the conditions a=0 and �̂�t�=0 into
Eq. �31�, it is easily verified that

�̂�t� =
1

p1
	1 − p2��̂�t� + �̂�t�� − e−�0�2Nth+1�t


=
2Nth + 1

Nth + 1
��̂�t� −

Nth

2Nth + 1
�̂�t�


=
2Nth + 1

Nth + 1
� Nth + 1

2Nth + 1

�̂�t� = �̂�t� . �34�

We thus have �̂�t�= �̂�t�=��t�, and hence the generalized am-
plitude damping channel �19� is recovered from Eq. �27� in
the limit of vanishing squeezing.

Figure 1 is a representative plot, showing that for large
bath exposure time, ��t� approaches 1. This figure also brings
out the concurrent behavior of temperature and squeezing
with respect to ��t�. At large t, ��t� also approaches unity.

However, unlike the case of ��t�, temperature and squeezing
can have a contrastive effect on ��t�, as brought out in Fig. 2.
This contrastive effect of squeezing with respect to time has
been observed in the case of mixed state geometric phase
�16� and quantum phase diffusion �20�. The dot-dashed curve
in Fig. 2 represents a squeezed amplitude damping channel,
i.e., a channel given by zero temperature but finite squeezing.

The fact that as time progresses, squeezing effects tend to
die out, leaving thermal effects alone to govern the system
evolution, is illustrated in Fig. 3. Squeezing of the bath
modes introduces nonstationary effects due to correlations
between the modes. This figure also shows the washing out
of these effects with time being accentuated with an increase
in temperature.

Unlike the case of the generalized amplitude damping
channel, here the probabilities p1�t� and p2�t� are time depen-
dent on account of the presence of nonstationary effects in-
troduced by the bath squeezing �Fig. 4�, and p2�t� eventually
reaches a stationary value of N / �2N+1�, as may be inferred
from Eqs. �32� and �33�. Substituting this asymptotic value in

20 40 60 80 100
t
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0.6

0.8

1

Ν

FIG. 1. ��t� �Eq. �29�� with respect to t, with �0=0.05. Asymp-
totically, ��t� reaches the value 1. The solid and small-dashed
curves correspond to the temperature �in units where ��kB�1�
T=1, with the bath squeezing parameter r=0,1, respectively, while
the large-dashed curve corresponds to T=3 and r=1.
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Eqs. �29�–�31�, we find ����=1, ����=0, and ����=1, as
was seen in Figs. 1, 3, and 2, respectively.

In the absence of squeezing, p2��� becomes Nth / �2Nth

+1�, consistent with the expression for p in Eq. �21� for the
generalized amplitude damping channel. The solid line in
Fig. 4 corresponds to the squeezed amplitude damping chan-
nel, which for the case of zero bath squeezing yields the
action of a quantum deleter �32� via the amplitude damping
channel.

If we have a=0 and T=0, then ��t�a�=T=0�=0, as seen
from Eq. �30�, and p2�t�=0 because p2�t� in Eq. �32� reduces
to Nth / �2Nth+1� when squeezing vanishes. Further, ��t�a�
=T=0�=��t�T�=0� by Eq. �34�. Substituting these values in
Eqs. �27�, we obtain the amplitude damping channel. Equa-
tions �27� thus furnish a complete representation of a
squeezed generalized amplitude damping channel.

V. CLASSICAL CAPACITY OF A SQUEEZED
GENERALIZED AMPLITUDE DAMPING CHANNEL

A quantum communication channel can be used to per-
form a number of tasks, including transmitting classical or
quantum information, as well as for the cryptographic pur-
pose of creating shared information between a sender and
receiver, that is reliably secret from a malevolent eavesdrop-
per �34�. A natural question is as to how information com-
municated over a squeezed generalized amplitude damping
channel �denoted E�, and given in the Kraus representation
by Eq. �27�, is degraded. In this section, we briefly consider
the communication of classical information across the chan-
nel �35�. The problem can be stated as the following game
between sender Alice and receiver Bob: Alice has a classical
information source producing symbols X=0, . . . ,n with
probabilities p0 , . . . , pn. She encodes the symbols as quantum
states � j �0
 j
n� and communicates them to Bob, whose
optimal measurement strategy maximizes his accessible in-
formation, which is bounded above by the Holevo quantity

� = S��� − �
j

pjS�� j� , �35�

where �=� jpj� j, and � j are various initial states �36�. In the
present case, we assume Alice encodes her binary symbols of
0 and 1 in terms of pure, orthogonal states of the form �15�,
and transmits them over the squeezed generalized amplitude
damping channel.

We further assume that Alice transmits her messages as
product states, i.e., without entangling them across multiple
channel use. Then, the �product state� classical capacity C of
the quantum channel is defined as the maximum of ��E� over
all ensembles 	pj ,� j
 of possible input states � j �37,38�. In
Fig. 5, we plot ��E� over pairs of orthogonal input states
�
0 ,�0� and �
0+� ,�0�, which correspond to the symbols 0

20 40 60 80 100
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0.8
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Α

FIG. 2. ��t� �Eq. �31�� with respect to time t, with �0=0.05,
bringing out the counteractive effect of squeezing on temperature.
Asymptotically, ��t� reaches 1. We find that increasing squeezing
reduces � at any fixed temperature, and thus counteracts the thermal
effects. The solid and dot-dashed curves correspond to temperature
�in units where ��kB�1� T=0, with environment squeezing pa-
rameter r=0 and 1, respectively. The small-dashed and large-dashed
curves correspond to temperature T=5, with r=0 and 1,
respectively.
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FIG. 3. ��t� �Eq. �30�� as a function of time t, with �0=0.05 and
r=1. The asymptotic value of ��t� is 0. The solid, large-dashed and
small-dashed curves correspond to temperature �in units where �
�kB�1� T equals 20, 5, and 1, respectively.
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FIG. 4. Probability p2 �Eq. �32�� as a function of time t ap-
proaches the asymptotic value of N / �2N+1�. Here �0=0.05. The
solid curve corresponds to temperature �in units where ��kB�1�
T=0 and r=0.05. The small-dashed and large-dashed curves corre-
spond to T=2, with r equal to 0.1 and 0.5, respectively. We note
that the solid line depicts the transformation of the squeezed ampli-
tude damping channel to the amplitude damping channel.
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and 1, respectively, with probability of the input symbol 0
being f =0.5. Here we take �=0, and the optimum coding is
seen to correspond to the choice �
0=� /2, �0=n��, where
n� I, i.e., the input states 1

�2
��0�± �1�� or 1

�2
��0�� �1��.

Figure 6 depicts ��E� for various channel parameters,
with the pair of orthogonal input states given by �
0 ,�0=0�
and �
0+� ,�0=0�. As expected, longer exposure to the
channel, or higher temperature, degrades information more,
but the optimal choice of input states remains the same as
before. Interestingly, squeezing improves the accessible in-
formation for input states in a certain range of 
0, but impairs
it in another. This is consistent with the understanding that
the benefits of squeezing are quadrature dependent. Figure 7
demonstrates the contrastive effects of temperature and
squeezing on C. Comparing the solid and small-dashed
curves, one notes that thermal effects tend to degrade C,
whereas bath squeezing can improve it, as seen by compar-
ing the small- and large-dashed curves. In fact, the improve-
ment due to squeezing is brought out dramatically by a com-
parison of the solid and large-dashed curves. This highlights
the possible usefulness of squeezing to noisy quantum com-
munication.

VI. CONCLUSIONS

In this paper we have obtained a Kraus representation of a
noisy channel, which we call the squeezed generalized am-
plitude damping channel, corresponding to the interaction of
a two-level system �qubit� with a squeezed thermal bath via
a dissipative interaction. The resulting dynamics, governed
by a Lindblad-type evolution, generates a completely posi-
tive map that extends the concept of a generalized amplitude

damping channel, which corresponds to a dissipative interac-
tion with a purely thermal bath. The physical motivation for
studying this channel is that using a squeezed thermal bath
the decay rate of quantum coherence can be suppressed,
leading to preservation of nonclassical effects. This is in
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FIG. 5. �Color online� Plotting the Holevo bound � �Eq. �35��
for a squeezed amplitude damping channel with �=0 and f =0.5,
over the set 	
0 ,�0
, which parametrizes the ensemble of input
states 	�
0 ,�0� , �
0+� ,�0�
. Here temperature �in units where �
�kB�1� T=5, �0=0.05, time t=5.0, and bath squeezing parameter
r=1. The channel capacity C is seen to correspond to the optimal
value of 
0=� /2 �i.e., the input states 1

�2
��0�± �1�� for �0=0�.

0.5 1 1.5 2 2.5 3
Θ0
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Χ

FIG. 6. Optimal source coding for the squeezed amplitude
damping channel, with � plotted against 
0 corresponding to the “0”
symbol. Here �=0, �0=0.05, and f =0.5. It is seen that � is maxi-
mized for states of the form �15� when the pair of input states are
given by �
0= �

2 , �0=0� and �
0= �

2 +� , �0=0� �i.e., states
1
�2

��0�± �1���. The solid and small-dashed curves represent tempera-
ture �in units where ��kB�1� T=0 and bath squeezing parameter
r=0, but t=1 and 2, respectively. The large-dashed and dot-dashed
curves represent T=5 and t=2, but with r=0 and 2, respectively. A
comparison of the solid and small-dashed �small-dashed and large-
dashed� curves demonstrates the expected degrading effect on the
accessible information, of increasing the bath exposure time t �in-
creasing T�. A comparison of the large-dashed and dot-dashed
curves demonstrates the dramatic effect of including squeezing. In
particular, whereas squeezing improves the accessible information
for the pair of input states 1

�2
��0�± �1��, it is detrimental for input

states �
0 ,�0� given by �0,0� �i.e., �1�� and �� ,0� �i.e., �0��.
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FIG. 7. Interplay of squeezing and temperature on the classical
capacity C of the squeezed amplitude damping channel �with input
states 1

�2
��0�± �1��, and f =1 /2, corresponding to the optimal cod-

ing�. Here �=0 and �0=0.05. The solid and small-dashed curves
correspond to zero squeezing r, and temperature �in units where �
�kB�1� T=0 and 5, respectively. The large-dashed curve corre-
sponds to T=5 and r=2. A comparison between the solid and large-
dashed curves shows that squeezing can improve C.
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contrast to the case of a purely dephasing channel, where the
action of squeezing, like temperature, tends to decohere the
system. We studied the characteristics of the squeezed gen-
eralized amplitude damping channel, including its classical

capacity C. We showed that as a result of bath squeezing, it
is possible by a judicious choice of the input states, to im-
prove C over the corresponding unsqueezed case. This could
have interesting implications for quantum communication.
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