
Chapter 6 

Thermal and Transport properties of Chromium 
Alloys 

6.1 Introduction 

Pure Chromium is antiferromagnetic below 311 K. Above this temperature, known 

as the Neel temperature, it transforms to a paramagnetic phase. The antiferromag- 

netism of Chromium (Cr) has some unique features. I t  is an itinerant spin-density 

wave antiferromagnet, i.e, the antiferromagnetism is due to  itinerant or conduction 

electrons. Therefore the magnetic moments are not localized a t  the atomic sites. 

Paramagnetic neutron scattering studies on isotopically enriched specimens have 

shown that there exist no localized moments in Chromium above the Neel temper- 

ature [I]. 

A unique feature of the spin-density wave in Chromium is that the wave-vector 

is incommensurate with the lattice, i.e, if $is the wave-vector for the spin-density 

wave, then {has the value 

in terms of the lattice translation vectors. Here 6, is a temperature dependent 

quantity between 0.05 and 0.035. Hence the spin-density wave is almost on the verge 

of becoming commensurate. 

The presence of a lattice makes a+ (where is a reciprocal lattice vector) 

an equivalent representation of q'. Consequently, the spin-density wave (SDW) can 

also be defined , for instance by 

From the above equations, it is evident that the spin-density wave exists only 
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in the (100) plane. 

The origin of the incommensurate spin-density wave in Cr was recognized by 

Overhauser [2] to be the nesting electron and hole Fermi surfaces. The electron and 

hole Fermi surfaces in the (100) plane are shown in Fig 6.1. 

As seen from the figure , the wave-vector $connects , two 'flat' pieces of the 

so-called hole octahedron and electron-jack. The flat portions of the Fermi surface 

are crucial for the occurrence of magnetic order, because the direction of magne- 

tization is the same for a large portion of the Fermi surface. The portions of the 

Fermi surface which are more free-electron like (spherical) do not contribute to the 

antiferromagnetic ordering as the direction of the SDW is different a t  each point . 

The flat portions of the Fermi surface are the d-like states while the 'knobs', which 

are spherical in shape correspond to the s-like electrons. Since the d-like states are 

flat they have a larger surface area and hence can accommodate more number of 

states. This is the origin of the fact that the d-states have a higher density of states 

a t  the Fermi level when compared to  the s-states. Also because of this flat nature 

of the Fermi surface, d r l d k  a t  r f  (which is equal to the velocity of the electrons 

a t  the Fermi surface), is quite small. Therefore the electrical conduction is mainly 

due to the s-like portions of the Fermi surface. Moreover, the d-states reduce the 

conductivity by providing states to which the s-electrons can be scattered into by 

phonons. 

The interaction between the electrons and the holes which are connected by 

q'leads to a gap in the energy spectrum. If the paramagnetic energy spectrum of 

the electrons is described by a band structure ~ ( k ) ,  the antiferromagnetic energy 

spectrum has gaps whenever the condition 

is satisfied. n is any non-zero integer. 

It has been proven experimentally and theoretically that values of the gaps with 

n # 1 are in general very small and can be neglected. Consequently above equation 

reduces to 

The magnitude of these antiferromagnetic gaps is proportional to Mq, where 

Mq is the magnetization. 
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Key : 

Electrons Holes 

Figure 6.1: The Fermi surface of Chromium showing the electron and hole sheets 
and the wave-vectors connecting them [3] 
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Due to the appearance of the energy gaps, considerable portions of the Fermi 

surface are annihilated , i.e, the density of states in those portions is zero. 

The reduction in the density of states a t  the Fermi energy in turn reduces the 

conductivity. Mcwhan and Rice [4] have calculated the reduction in the conductivity 

due to the electron-hole condensation in the nesting octahedra. They divided the 

conductivity into two components, a, and a,, where oT comes from the noncondens- 

ing reservoir and on from the nesting parts of the Fermi surface that  condense to  

form electron-hole pairs. 

Thus a, is unaffected by the condensation, with a, = a,, a t  all temperatures 

T , whereas the conductivity an in the AFM phase is decreased relative to  the con- 

ductivity onp a t  the same temperature, extrapolated from the paramagnetic phase 

in the ratio 

where 2A(T) is the temperature-dependent energy gap. 

Since resistivity is the quantity which is usually measured in experiments, the 

reduction in the conductivity is seen as a corresponding increase in the resistivity. 

The increase of the resistivity in comparison to the linear extrapolation from the 

paramagnetic phase is given by: 

where &(T) is a linear extrapolation into the SDW phase of the resistivity in 

the paramagnetic phase. 

The resistivity defined above is related to  the reduction in conductivity by the 

following expression: 

Where 

is the fraction of the nesting octahedra that condenses, and 
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Figure 6.2: Resistivity of Cro,995Reo.oo5 as a function of temperature. The solid line 
is the linear extrapolation from the paramagnetic phase into the antiferromagnetic 
(AFII) phase 

is the fraction of the total Fermi surface in the octahedra. 

In the calculations to  be described in the next section, this fraction has been 

taken to be 0.3. This is the approximate figure for pure Chromium [ 5 ] .  This fraction 

might change with alloying or with pressure 141. However since there is no data 

available to take into account these effects, we assume this fraction to be a constant 

for all pressures and compositions. Obviously, this will introduce systematic errors 

in the calculation of various quantities. 

Fig. 6.2 shows the variation in the resistivity for the alloy Cr0.995Re0.005 near 

its See1 temperature. It is seen from the figure that the resistivity in the AFM 

phase (R) is higher than the linear extrapolation (b) of the resistance from the 
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paramagnetic phase. This increase in the resistivity in the AFM phase is shown in 

Fig. 6.3. 

0- 

The antiferromagnetic state in Cr is clearly critically dependent on the elec- 

tronic band structure and therefore it is of interest to study the change in the 

magnetic properties as the electronic structure is changed. The electronic structure 

of Chromium can be changed by alloying. If Chromium is alloyed with Mn, Tc, Ru, 

Rh and Re, the electron to atom (e/a) ratio and hence the Neel temperature and the 

magnetic moment are increased. If Cr is alloyed with V, Nb or Ta, the e/a ratio and 

the Neel temperature decrease. This can be understood in a simple manner. Let us 

consider the case when Cr is alloyed with Re. While the electronic configuration of 

Cr is 3d54s', the configuration of Re is 5d56s2. Hence, electrons are introduced into 

the system, this increases the number of electron-hole pairs, as initially the number 
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Figure 6.3: The resistivity anomaly (defined by equation 6.6) for Cro.995Reo.oo5 as a 
function of temperature. 
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of holes is greater than the number of electrons. The Neel temperature will continue 

to increase till a limit when any further increase in the number of electrons will lead 

to an excess of electrons as compared to holes. Beyond this the Neel temperature 

will start to decrease [6]. The injection of electrons into the system will also increase 

the wave-vector q'as the electron jack has increased in size. This will reduce 6. With 

increasing concentration of Re, 6 will reduce continuously, until1 a t  a concentration 

of around 0.4 % Re [5], the SDW becomes commensurate with the lattice. The 

phase diagrams for different Cr alloys, showing the commensurate and incommen- 

surate AFM phases has been experimentally determined by various workers [7].The 

SDW remains 'locked' to the reciprocal lattice vector for even higher concentrations 

of Re. The SDW remains commensurate except for the highest Re concentrations. 

For very high concentrations of Re, q' no longer 'follows' the Fermi surface. 

while the Fermi energy goes on increasing with increasing electron concentration, 

the wave-vector remains 'locked' to the reciprocal lattice vector. This means that 

there is little mutual annihilation of the Fermi surface on magnetic ordering. The 

states near the Fermi surface are relatively little affected. In such a situation the 

resistivity is mainly due to superzone plane boundaries which cut the Fermi surface. 

A superzone plane which cuts the Fermi surface causes a resistance change (9) 
proportional to the magnetic moment. 

Hence it is seen that the explanation of the transport properties depends on 

whether we are dealing with a commensurate SDW or an incommensurate SDW. 

*Inother convenient way of changing the electronic structure is by the applica- 

tion of pressure. Pressure is found to  have an effect which is analogous to decreasing 

electron concentration [7]. A combination of alloying and pressure has also been tried 

by various workers. The effect of pressure on Cr alloy systems has been studied for a 

number of solutes, since the atomic volume is a fundamental parameter whose effect 

on the magnetic properties should give considerable physical insight. 

We have studied the thermal and transport properties of Cro.gg5Reo.oo5 and 

Cro.g9Reo.ol as a function of temperature as well as pressure. 
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6.2 Resistivity studies for C r o . g g 5  Reo.oos and Croasg Reoaol al- 
loys 

6.2.1 Experimental 

Chromium alloys were prepared by arc melting and homogenized at  1200' C and 

then furnace cooled. The resistivity studies were carried out using an ac 4-probe 

technique, which is described in detail in chapter 2. 

The high pressure experiments were carried out in a Teflon cell (Fig. 2.4) us- 

ing a piston-cylinder apparatus. Silicone oil was used as the pressure transmitting 

medium. The high pressure resistivity runs were performed by keeping the pressure 

at  a constant value and varying the temperature. 

The entire experimental arrangement, including the lock-in amplifier was inter- 

faced to a personal computer using the IEEE 488.2 interface. The temperature of 

the sample was read using a Keithley 2001 multimeter. The sample temperature 

can be controlled to an accuracy of f 0.05C using a PID algorithm implemented in 

the software. The sample is heated by a small disk shaped heater which is placed 

just below the sample. The heat is conducted to the sample through the oil. The 

resistance of the sample was measured a t  intervals of 0.5'C and stored in a file. 

6.2.2 Resistivity results on Cro.995 Reo.oo5 alloy 

The resistance of Cro.995Reo.oo5 is shown as a function of temperature a t  different 

pressures in Fig. 6.4. 

Fig. 6.4 shows the resistance at  0.2,0.5, 1,2,3 and 10 kbars. Except for the run 

a t  500 bars, all the other runs show the normal trend of decreasing resistance with 

increase in pressure. The resistance in the paramagnetic phase is quite linear. This 

is due to the fact that this is in the region near the Debye temperature (OD), which is 

630 k for pure Chromium. It is only below OD/4 that non-linearities in the resistiv- 

ity due to the temperature dependent electron-phonon scattering become apparent 

[9]. The antiferromagnetic transition is seen as a flattening of the resistance. The 

Neel temperature is usually identified as the temperature a t  which dp/dT is a min- 

imum. This procedure is convenient if the anti-ferromagnetic transition manifests 

itself as a 'hump', i.e., an increase in the resistivity below the Neel temperature. 

Such a 'hump' is clearly seen in the work of Arajs [6]. This 'hump' becomes more 

prominent a t  higher concentrations of Re. However for the low concentrations of Re 

which we have worked with, there is no actual 'hump', only a flattening of the curve 
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Figure 6.4: The resistance of Cro.gg5Reo.oos as a function of temperature at  different 
pressures 
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Figure 6.5: The resistivity anomaly in Cro.995Reo.oo5 a t  different pressures. Key:'ol- 
200 bars, 'x'- 500 bars, '.' - 1 kbar, '+'- 2 kbar, '*'- 3 kbar, 'X'- 10 kbar 

near the Neel temperature. In these cases, a more reliable identification of the Neel 

temperature can be achieved by using the resistivity anomaly (see Fig. 6.3). The 

Neel temperature is identified as the temperature at which the resistivity anomaly 

becomes zero. However even this procedure is not fool-proof in practice, as it is 

found that the resistivity anomaly does not become exactly zero a t  the Neel tem- 

perature. This is due to the fact the some magnetic order persists well above the 

Neel temperature. This persistence of magnetic order above the Neel temperature 

has been observed using Neutron scattering. 

From the resistivity anomaly it is possible to calculate the value of the energy 

gap which gives rise to this anomaly. The procedure for calculating the value of the 

energy gap at  0 k as also the identification of the Neel temperature is given in the 
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next section. 

6.2.3 Calculation o f t heze ro  temperatureenergygap 

The zero temperature energy gap is calculated by the following procedure: 

1) Assume some value for the energy gap which is almost zero. 

2)Evaluate the value of g corresponding to  this value of A. 

3)Calculate the corresponding value of the resistivity anomaly. 

4) Calculate the difference between the experimental and theoretical values of 

the resistivity anomaly. 

5 )  Iteratively calculate the value of A which minimizes this difference. This 

gives the value of A for that temperature. 

6) This procedure is repeated for all 'the temperatures for which the experimen- 

tal data is available. 

7 )  From this a curve of A as a function of temperature is generated. 

This procedure is slightly different from that of Mcwhan and Rice [4] who 

assumed that the energy gap obeys an equation similar t o  a superconductor, i.e, the 

exponent ,b' in Eq. 6.10 is 0.5. We have tried to  arrive a t  the value of P using the 

resistivity data. 

\Ye are able to  fit an equation of the form 

The fit is performed by using a least squares fit on a log-log plot as shown in 

Fig. 6.6. 

Since the energy gap can be considered as the order parameter for this transi- 

tion. the exponent describing the temperature variation of A is the order parameter 

exponent p. 
The values of ,b' and Nee1 temperature obtained by this fitting procedure is given 

in the table below: 

The temperature variation of the energy gap is shown in Figure 6.7 for 3 different 

pressures. As is seen from the graph, the temperature variation of the energy gap 

seems to follow the nature of the resistivity anomaly. 

This is not surprising if we analyze Equation 6.5 a little carefully. The integrand 

of Eq. 6.5 is shown in Fig. 6.8 
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Figure 6.6: A log-log plot of Eq. 6.10. The solid line is a least squares fit to the 
data. 
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Figure 6.7: Variation of the energy gap with temperature. Key:- '0'- 1 bar,'+'- 500 
bars. 'x' - 200 bars 
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Figure 6.8: The integrand in Equation 6.5 as a function of the energy in electron 
volts 
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Table 6.1: Pressure dependence of the Neel temperature and the energy gap in 
Cr0.99jRe0.005 

As is evident from the figure, most of the contribution to  the integral comes 

from the region near E=O. Hence we can,approximate the integral to a / A  near E=O, 

under the assumption that A << kT. Hence the resistivity anomaly is given by: 

Here 'a' is some constant having the dimensions of energy. Hence it is seen that 

the resistivity anomaly increases in magnitude as the magnitude of the energy gap 

increases. 

In calculating the value of the energy gaps and in the determination of the 

exponent ,B, we have neglected data points which are very close to TN as these do 

not seem to fit into Equation 6.10. This is because of the persistence of the magnetic 

order even above the Neel temperature. The Neel temperature is determined after 

neglecting these points. The Neel temperature is taken as that temperature at  which 

the extrapolated resistivity anomaly becomes zero. 

It was not possible to calculate the values of the energy gap and the exponent 

,L? for pressures above 500 bars, as the number of experimental points are very 

less in these cases. In the experimental arrangement available, it is only possible to 

make measurements above room temperature. Since the Neel temperature decreases 

with increase in pressure, the number of data points available for analysis reduces 

drastically at  higher pressures. 

-4s expected the energy gap reduces with pressure. 

-4ccording to the two-band theory of Fedders and Martin [lo], the ratio of the 

zero-temperature energy gap and the Neel temperature TN is given by: 
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Where v is the arithmetic mean ( i(v, + vh)) and v* is the geometric mean of 

the electron and hole velocities a t  the Fermi surface. y is the mean overlap matrix 

element for electrons in the same band. 

In the theory of Fedders and Martin, ye = 1.78, so that 

From experiments on pure Chromium, it is found that 

Since v must be greater than or equal to v*, in the case of pure Chromium 

there seems to  be good agreement between theory and experiment. 

According to  the two-band model, 

where c(3) is the Reimann-Zeta function with argument 3. This gap varies 

with temperature as in a superconductor. Neutron-diffraction experiments seem to 

verify that this is the general shape of the gap although they give a small tail which 

goes past TN. The effects of the tail mentioned above are also seen in our resistivity 

data. This tail is only 3% of the total intensity (in neutron diffraction experiments) 

for single crystals of Cr but becomes significantly larger for more finely granulated 

samples. From our resistivity measurements , it is seen that the 'tail' becomes more 

and more prominent a t  higher pressures. 

From Eq. 6.13, it is seen that the ratio $ depends only on the ratio vlv*. 

The variation of vlv* with increasing electron concentration is shown in Fig. 6.9. 

The x-axis in the figure is for relative electron concentration, i.e, when the electron 

concentration is equal to 1 in the figure, it signifies a band completely filled with 

electrons and 0 is a band with no electrons. It  is seen that when the electron 

concentration is almost equal to the hole concentration, the ratio vlv* and hence 

A(O)/kT, , does not vary much with change in electron concentration. The ratio 

vlv*, has been calculated using the fact that electron velocity is proportional to 

(electron c~ncentra t ion) ' /~ .  The difference in mobility of electrons and holes has 

not been taken into account in this calculation. 
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Electron concentration 

Figure 6.9: Variation of the ratio v/v* with change in the relative concentration of 
electrons and holes. 
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From our resistivity measurements, it is seen that the ratio a (0 ) /kTN,  decreases 

with pressure. Also the decrease in the value of A(0)/kTN for Cro.995Reo.oo5 com- 

pared to the value for pure Cr can be understood from Fig. 6.9. Alloying with Re 

increases the concentration of electrons and increasing the electron concentration 

initially leads to a decrease in v/v* and consequently a decrease in A(0)/kTN. 

According to  Eq. 6.15, the value of P should be 0.5. From the data for 

Cro.995Reo.oo5, it is seen that for some of the cases, the value of ,8 obtained is less 

than 0.5. It has to be borne in mind that the theory of Fedders and Martin is not an 

exact one and the exact theory could have an exponent different from 0.5. Eq. 6.5 

is derived under the assumption that  the change in conductivity is only due to a 

change in the number of charge carriers. However there will also be a change in the 

relaxation time, due t o  the change in the density of states available for the scattered 

electrons. Another factor which could lead to a correction is that a t  temperatures 

lesser than O D / 2 ,  the number of phonons will reduce and consequently the scattering 

of electrons by phonons will also reduce. The predominant factor which affects the 

behaviour of the conductivity can only be known after a detailed analysis of the 

data after taking into account all these factors. Since the number of da ta  points for 

the Cro.995Reo.oo5 sample is less, such an analysis has been carried out only for the 

C~0.99Re0.01 sample. 

6.2.4 Variation of TN with pressure for Cro.995Reo.oo5 

The variation of TN with pressure is shown in the Table. 6.1. It  is shown diagram- 

matically in Figure 6.10. Initially the Neel temperature seems to  decrease quite 

rapidly with pressure a t  the rate of about 13" C/kbar. Beyond 1 kbar, i t  decreases 

a t  the slower rate of 2.5 " C/ kbar. The point marked 'x' in the figure is the triple 

point . Above this pressure the transition is from the incommensurate antiferromag- 

netic phase to the paramagnetic phase, while below this pressure ,the transition is 

from the commensurate to the paramagnetic phase. 

According to the two-band model, the Neel temperature variation is described 

by [lo]: 

where 
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Pressure (Bars) 

Figure 6.10: Variation of the Nee1 temperature with pressure in Cro.995Reo.oos. Key- 
'0'- T, from Resistivity data, '+' - T, from Thermopower data 
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E is the bandwidth of the order of several eV. 

V(0) is the average screened coulomb potential. 

Since kc N p1I3 , it is seen from Eq. 6.16 that 

where p is the hydrostatic pressure applied on the system and p, = 27r2/y2C'(0) 

is a constant having the dimensions of pressure. The bandwidth E does not vary 

much with pressure, hence the dominant behaviour will be due to  the exponential 

term. 

Since in the incommensurate phase, parts of the Fermi surface have been anni- 

hilated, y , which is the matrix element for the overlap between electrons in the same 

band, will become less and hence p, will be more in the incommensurate phase. This 

means that the slope of the TN vs p curve will be much less in the incommensurate 

phase. 

The theoretical phase diagram for Chromium alloys [ll, 121, is shown in Fig. 6.11. 

The experimental phase diagram (Fig. 6.10) differs from the theoretical prediction 

in some aspects. Firstly the curvature of the phase boundary between the com- 

mensurate (AF,) AFM phase and the paramagnetic phase is not given correctly in 

the theories of Rice as well as Shibatani. The curvature of the incommensurate- 

paramagnetic phase boundary fits the theory of Shibatani rather than that of Rice. 

This is due to  the fact that,  while the Rice model assumes spherical electron and 

hole surfaces of different radii, the Shibatani model uses octahedra of different sizes 

with planar nesting surfaces, with a reservoir of electrons corresponding to  the rest 

of the Fermi surface, which more closely approximates the situation in Cr. 

6.2.5 Resistivity results on Cro.saReo.ol 

Fig. 6.12 shows the resistivity anomaly for Cro,ggReo.ol as a function of the reduced 

temperature (TITN) for different pressures. It  is seen that while the curves for 1 

bar, 250 bars and 700 bars overlap one another when plotted as a function of the 

reduced temperature, the curve a t  2 kbar has a prominent 'tail', which extends to 

well above the Nee1 temperature. 

The other prominent feature of the curves is the dip in the resistivity anomaly 

on the low temperature side. There have been varying interpretations for the 'dip' 

in the anomaly a t  low temperatures. Arajs et a1 [6] made a thorough study of the 

resistivity of Cr-Re alloys for various compositions. They speculated that the 'dip' 
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Figure 6.11: Theoretical phase diagrams for Chrornium based on the models of Rice 
- - A  @L:L'.4...-: 
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on the low-temperature end could be due to the fact that  due to the annihilation 

of parts of the Fermi surface, the number of final available states for the scattered 

electrons is reduced. Since Equation 6.5 takes into account only the reduction in 

the number of charge carriers, it does not describe the 'dip' in the curve. 

Another possibility for the origin of the 'dip' is that  a t  low temperatures, the 

number of phonons which are available for scattering the electrons is considerably 

reduced. Hence the linear extrapolation from the paramagnetic phase may not hold 

good. Hence the correct expression for the extrapolated resistivity should take into 

account this factor also. 

To decide which of the above two factors is predominantly responsible for the 

'dip', the resistivity data was analyzed taking both the factors into consideration. 

Initially, the data was analyzed according to the procedure given in Section. 6.2.3. 

The results obtained using this procedure are given in the table below: 

Table 6.2: Pressure dependence of the Neel temperature and the energy gap in 
Cr0.99Re0.01 

The above table shows that the very sharp decrease of the Neel temperature 

with pressure for this system as compared to Cro.995Reo.oo5. The transition temper- 

atures given above maybe in error by f 1. The error involved in the determination 

of A(0) could be around f 0.001. The Neel temperature is shown as a function of 

pressure in Fig. 6.13 

The Neel temperature decreases quite rapidly ( N  60°C/kbar), till 250 bars. At 

higher pressures, the rate of decrease is much slower (- 30°C/kbar). dTN/dP seems 

to be much higher in the case of Cro,99Reo.ol than in the case of Cro.995Reo.oo5. In 

this case the triple point seems to  be around 250 bars and 400 " C. The exponential 

dependence of TN on pressure as seen from Eq. 6.18, is not obvious in Fig. 6.13 or 

Fig. 6.10. The exponential dependence will be clear only if the measurements are 

carried out to very high pressures. For example, Mcwhan and Rice [4] have made 

measurements upto 82 kbars. In the present work, the phase boundaries could not 

Pressure (bars) 
1 
250 
700 
2000 

,b 
0.5 
0.61 
0.55 
0.48 

Neel temperature (K) 
415 
398 
386 
342 

Energy gap in eV (0 K) 
0.03 
0.023 
0.015 
0.014 

A (O)/kT 
0.84 
0.67 
0.45 
0.48 
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Pressure (Bars) 

Figure 6.13: Variation of the Nee1 temperature with pressure in Cro.99Reo.ol 
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be tracked to pressures higher than a few kbars, since a t  these high pressures the 

transition temperatures become less than the room temperature. 

Differentiating Eq. 6.18, we obtain 

This has been obtained by neglecting the variation of E with pressure. It  is seen 

from this equation that dTN/dp depends crucially on E as well as po. Since E will 

increase with increase in electron concentration, dTN/dp is higher for Cro.9gReo.ol 

than Cr0.995Re0.005. 

6.2.6 Temperature variation o f  the resistivity anomaly in Cro.99Reo.ol 

A more rigorous analysis than that described in Sec. 6.2.3 was attempted by taking 

into account both the reduction in the density of d- states , as well as the reduction 

in the number of phonons available for scattering the electrons. 

The reduction in the density of final states is taken into account in the following 

manner: If an/a,, is the relative change in the conductivity as given by Equation 6.5, 

then the correct expression for the change in the conductivity will involve the change 

in the relaxation time. 

The complete expression for the resistivity anomaly, taking into account the 

change in the relaxation time is given by: 

Where T, and r, are the relaxation times in the antiferromagnetic phase and 

the paramagnetic phase respectively. 

This formula is obtained by modifying Eq. 6.6. In the original calculation of 

Mcwhan and Rice, the change in conductivity is assumed to be solely due to the 

change in the number of charge carriers. If we the take the relaxation times to be 

different in the two phases Eq. 6.6 gets modified to 

" R  (an, + a,,)~, - (a, + o,,)~, -=  
R  ("TI + a,,)r, 

Simplifying the above equation we obtain Eq. 6.20. 

The relaxation times in the transition metals are generally inversely propor- 

tional to the density of d-states a t  the Fermi level [13]. 
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If Nd is the density of d-states in the paramagnetic phase, the density of states 

in the antiferromagnetic phase will less than this, since an energy gap is introduced 

a t  the fermi surface. If g is the fraction of the Fermi surface which has condensed 

(Eq. 6.8), then 

Here na and n are the number of phonons which have an energy greater than 

the energy gap, and the total number of phonons at a temperature T respectively. 

The number na enters in to the calculation since only that  fraction of phonons which 

have energy greater than A can scatter the electrons across the energy gap. 

Substituting Eq. 6.23 and Eq. 6.24 into Eq. 6.20, we obtain, the expression for 

the resistivity anomaly which takes into account the change in the relaxation time. 

The total number of phonons a t  a temperature T is given by [14] 

The number of phonons with an energy greater than A is given by: 

Where V is the volume and v is the velocity of the phonons. However these 

factors are not involved in ' the final calculation, since Eq. 6.20 involves only the 

ratio of Eq. 6.25 and Eq. 6.26. Here w is the frequency of a phonon and w~ is the 

Debye frequency. The Debye temperatures for Cro.99Reo.ol and Cro.995Reo.oo5 have 

been taken as 630 K [15], which is the Debye temperature for pure Chromium. The 

Debye frequency is calculated from the Debye temperature, using the equation: 

The integrals in Eq. 6.5, Eq. 6.25 and Eq. 6.26 were evaluated numerically. 
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In using Eq. 6.20 to explain the resistivity anomaly, we have assumed that /3 

is equal to  0.5 in Eq. 6.10. The deviation of the values of ,h' should be due to the 

variation of the relaxation time , which is being accounted for in Eq. 6.20. 

However it was found that taking into account the change in the density of 
L available states does not make much of a difference. This is because the ratio n$$' 

does not change much over the temperature range 300 K to  420 K, which is the 

temperature range of our interest. Over this temperature range, this ratio changes 

from 0.96 to 1.00. Hence this does not explain the sudden 'dip' in the resistivity 

anomaly. 

To check whether the change in the number of phonons is important, this factor 

was also taken into account. 

The expression for the resistivity taking into account the phonon scattering is 

given by [9]: 

At high temperatures (- OD) the integral in the above equation will reduce to 

a (e)', hence the resistivity will vary linearly with temperature. At low tempera- 

tures the resistivity varies as T 5.  

Experimentally it has been proved in most cases that OR is nearly equal to 

OD, the Debye temperature [9]. Ideally the electrons are scattered by only the 

longitudinal lattice vibrations [9, 161. In this case dl, which is the temperature 

characterizing the longitudinal vibrations, is about 50% to 100% more than OD. 

The disagreement between the theoretical result and the experimental curve is 

brought out in Fig. 6.14 

In case we use Ol in our calculations instead of OD better agreement might be 

possible between experiment and theory. 

6.3 Thermopower studies on Cr-Re alloys 

6.3.1 Experimental 

Thermopower of Cro.g95 Reo.oo5 and Cro.99 Reo.ol alloys was measured in the temper- 

ature range 25" C to 100 ' C using the differential method. This method has been 

described in detail in chapter 2. The Teflon cell is used in the case of Chromium 

alloys. 
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Figure 6.14: Variation of the resistivity anomaly as given by the theory and by 
experiment in Cro.ggReo.ol, key :- 'x' - Theory, '0'- Experiment 
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Figure 6.15: Thermoelectric power of Cro~gg5Reo.oo5 as a function of temperature a t  
different pressures. key:- '+' - 1 bar, '0'- 200 bars, 'x' - 500 bars, '*' - 1 kbar, '.' - 2 
kbars, 'X' - 3kbars 

In this method Chromel-Alumel thermocouple wires are spot-welded a t  the two 

ends of the sample. The sample, which is in the form a thin flake is mounted 

vertically in a Teflon cell. Silicone oil was used as the pressure transmitter for the 

high pressure studies. 

6.3.2 Results and Discussion 

The thermopower is shown as a function of temperature for pressures ranging from 

1 bar to 3 kbar in Fig. 6.15. 

From the figure it is seen that the antiferromagnetic to the paramagnetic phase 

manifests as a decrease in the thermoelectric power. Another easily-noticeable fca- 
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Figure 6.16: Thermoelectric power of Cro~995Reo.oo5 as a function of temperature a t  
different pressures. 

ture is that  the thermopower a t  a given temperature decreases with pressure. 

The thermopower for pressures in the range 10 k to 20 kbars is given in Fig. 6.16. 

It  is seen from Fig. 6.16, that for pressures greater than 10 kbar, the ther- 

mopower in the paramagnetic phase has a positive slope , in contrast to the negative 

slope a t  lower temperatures. The T E P  for Cr changes to  a positive slope even a t  

atmospheric pressure. However this happens only a t  temperatures higher than 400 

K. Since the measurements reported here are only for temperatures lower than that,  

the change of slope is not observed in this case. The continued decrease in the T E P  

beyond the actual Neel temperature is due to the persistence of magnetic order. For 

high pressures , the Neel temperature is much lower than the room temperature and 

hence the change to a positive slope in the TEP occurs a t  around room temperature 
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We try to explain the thermopower results using Mott's expression. The ex- 

pression for diffusion thermoelectric power, according to  Mott [13] is given by: 

x2kiT d I n a  
Sdiff = -- 

3e dE IE=EF 

Eq. 6.29 can also be written as: 

r21c;T d I n a  
"iff = [=I 

EF 

Where C is the area of the Fermi surface and 1 is the average mean free path over 

C. In an AFM Cr alloy, C is the area of'the Fermi surface which has not condensed, 

which might in some cases be quite sensitive to the energy E. In the temperature 

region of interest below the Nee1 temperature TN,  where the resistivity anomaly 

is seen, the contribution of the second term may be large when electron-phonon 

scattering largely determines the mean free path. 

The mean free path is related t o  the relaxation time by the equation: 

Trego and Mackintosh [18] discussed a model in which the energy gap 2A in- 

creases from a value much smaller than the characteristic energy Eph of the phonon, 

t o  a value A > Eph, and showed that ( d ~ ~ ~ / d E ) ~ ~  exhibits a maximum when 

A - Eph. This should give a positive maximum in the temperature dependence of 

S. Since measurements have not been made a t  temperatures below the ambient, the 

maximum in the TEP, is not seen in Fig. 6.15. However the energy gap obtained 

(- 0.03eV) for Cro.99Reo.ol a t  atmospheric pressure is consistent with a maximum 

around room temperature (since 300 k - 0.025 eV). 

The model of Trego and Mackintosh [18] therefore relates the anomalies in the 

TEP to  the density of states (DOS). 

In contrast to  this the work of Schroder, Yessik and Baum seems to suggest 

that the term dInNd/dE, does not contribute much to  the thermopower. This can 

be related to the fact the density of states has a minimum near the Fermi energy 

for Cr. Since the density of states has a minimum dNd/dE is very small , but since 
1 Nd is also small, ,, could still be substantial near EF. 
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Schroder et a1 [19] say that the predominant contribution to the T E P  comes 

from the term dInCldE. Schroder et a1 reached this conclusion after performing 

a detailed study on Cr-Fe alloys. The DOS curve increases rapidly with Iron con- 

centration and reaches a sharp maximum at  FelgCrsl.  One would expect that the 

T E P  would change rapidly near Fe19Cra1. However the experiments show that the 

T E P  is nearly constant for the alloys with 15% to 23% Fe. 

This conclusion can also be reached looking a t  the T E P  for all the Cr alloys. 

Since some of the Cr alloys increase the electron concentration and some decrease 

it, the Fermi energy might lie on either side of the minimum in the DOS. Therefore 

the thermopower should change sign when EF crosses the minimum. However this 

change in sign is not observed for.any of the Chromium alloys studied till date. 

This is a proof that  the DOS is not the only factor which determines the TEP. 

It should be noted that dC/dE is negative (which gives a positive sign for TEP) ,  

for the d-states. 

We define a T E P  anomaly ,which is similar to the resistivity anomaly. The 

T E P  is defined as the difference between the T E P  in the AFM phase and the linear 

extrapolation of the T E P  from the paramagnetic phase divided by the T E P  in the 

AFM phase. The T E P  anomaly is shown in Fig. 6.17. 

It  is seen from Fig. 6.17, that the magnitude of the T E P  anomaly , unlike the 

resistance anomaly, does not decrease with pressure. On the contrary, there is a 

slight increase in the magnitude of the anomaly with increasing pressure. Hence it 

is possible to  track the transition to very high pressures. This makes T E P  a better 

probe than resistivity to  track the variation of TN with pressure. The shift in TN 

with increase in pressure is clearly seen in the T E P  anomaly. 

6.3.3 Thermopower of Cro.99Reo.ol 

Fig. 6.18 shows the thermoelectric power for Cro,g9Reo.ol for pressures ranging from 

200 bars to  1.5 kbars. 

The T E P  a t  a particular temperature, decreases with increase in pressure. 

There is no marked change in the T E P  a t  TN, unlike the case of Cro.g95Reo.oo5. 

As in the case of Cro.995Reo.oo5, the T E P  shows a positive slope in the paramagnetic 

phase a t  higher pressures (Fig. 6.19. However, it is surprising that the thermopower 

anomaly in this case is less distinct than in the case of Cro.gg5Reo.oo5 
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Temperature ( O C) 

Figure 6.17: Anomaly in the Thermoelectric power of Cro.gg5Reooo5 as a function 
of temperature at  different pressures. key:- '+' - 1 bar, '0'- 200 bars, 'x' - 500 bars, 
'*' - 1 kbar, 'X' - 2 kbars 
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Figure 6.18: Thermoelectric power of Cro,995Reo.ol as a function of temperature at  
different pressures. key:- '0'- 200 bars, 'x' - 1 kbar, '+' - 1.5 kbars 
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Figure 6.19: Thermoelectric power of Cro.gg5Reo.ol as a function of temperature a t  
different pressures. key:- '+'- 2 kbars, 'X' - 3 kbars, '0' - 4.5 kbars 
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6.4 Thermal properties of Cr alloys 

Thermal properties of Cr alloys can give us information about the energy levels in 

the alloy and also about the nature of the transition. Fig. 6.20 shows the specific heat 

of Cro.g95Reo.oo5 in the temperature range 25' C to 70 O C. The Nee1 temperature for 

this alloy is 45 " C as obtained from the resistivity studies. The specific heat curve 

shows a peak around 40 O C. Below the transition point, an exponential dependence 

of the form 

would have been expected, due t o  the presence of the energy gap of magnitude 

2A. This exponential dependence has been observed below T, in the case of super- 

conductors which are a very similar system. Fig. 6.20 does not show this exponential 

dependence below TN. This might be due to the fact that  in Chromium alloys unlike 

in the case of superconductors, the energy gap is only along a particular direction 

in k-space. 

In the case of a superconductor, the transition is found to  be mean field in 

nature. The specific heat accordingly shows a finite discontinuity a t  T,. In the case 

of Chromium alloys, the behaviour is not very clear from Fig. 6.20. Theoretically 

we can calculate the region over which mean field behaviour is valid. According to 

the Ginzburg criterion given in chapter 1, 

Where tG is the value of the reduced temperature below which mean field theory 

is not valid. Since in the case of Chromium and its alloys, the antiferromagnetism is 

due to itinerant electrons, we can assume the interaction distance to to be the mean 

free path of the electrons. This is approximately 30 A in the case of Chromium 

a t  300 K. The change in the specific heat a t  the transition is - 16,000 J/m3/K 

(Fig. 6.20). Substituting these values in Eq. 1.22, we obtain tG - 3 x Since 

TN - 300 K, this gives T - TN - as the temperature within which mean field 

theory should be valid. 

This result highlights an important fact about how the nature of the interac- 

tion affects the nature of the transition. If the interaction is only between nearest 

neighbors, Jo will be of the order of order of interatomic distances. Hence mean field 

hehaviour is violated to a greater extent in this case. 
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Figure 6.20: Specific Heat of Cro,995Reo.oo5 at atmospheric pressure 
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To illustrate this idea we take the case of the Curie point transition in Xickel, 

discussed in chapter 3. The ferromagnetism in Nickel is supposed to obey the Heisen- 

berg model. The specific heat change a t  the transition is 6.1034 x lo5 J/m3/K. If we 

assume only nearest neighbour interaction between the spins, the Ginzburg temper- 

ature, tc - 0.002. Since Tc in this case is 631 K, the range over which mean field 

behaviour is violated is - T, & 1.4K. Experimentally it is found that the range over 

which the data fits the non-mean field exponent of -0.1 is T, f 10 K. This seems to 

indicate that even though there is evidence to  show that  the magnetism in Nickel 

is also itinerant in character, the critical behaviour of Nickel is consistent with a 

localized spin model. 

Conclusions 

The transition from the antiferromagnetic phase to the paramagnetic phase in Cr- 

Re alloys is quite clearly seen in both the transport properties, as well as in the 

thermal properties. The exponents determined for the order parameter, as well as 

the specific heat are consistent with the mean field nature of the transition. The 

exponent ,b for the order parameter variation, was extracted from the resistivity data 

using the two-band model of Fedders and Martin. This model does not describe the 

variation of the resistance over the entire range. It fails to  predict the anomalous 

decrease in the resistance a t  low temperatures. The conventional explanations for 

this effect, namely, the reduction in the DOS, and the reduction in the number of 

phonons, also are not able to  account for this anomalous decrease. This has been 

proved using a detailed quantitative analysis of the resistance data. The transition 

a t  TN is seen as a marked decrease in the thermopower. A thermopower anomaly 

can be defined on the same lines as the resistivity anomaly. 
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