
Chapter 3 

AC Calorimetry 

3.1 Experimental methods for the measurement of Specific 

Heat 

In this chapter we compare and cont&t the different methods available for the 

measurement of specific heat. This discussion is basically to choose the best possible 

method for the measurement of specific heat at high pressures. 

The various experimental methods which have been used for the measurement 

of specific heat are: 

1) Adiabatic calorimetry 2) Pulse methods 3) Differential scanning calorimetry 

4) AC calorimetry 

3.1.1 Adiabatic Calorimetry 

This is one of the oldest methods for the measurement of specific heat. The basic 

principle of this method is that a steady heat input is supplied to the sample and 

the resultant temperature rise of the sample is measured. By equating the heat 

supplied to the sample and the temperature rise , the specific heat of the sample 

can be calculated. 

Q = mCpAT (3.1) 

Where Q is the heat supplied to sample 

m = Mass of the sample 

Cp = Specific heat of the sample 

AT = Temperature rise 

The basic assumption here is that the entire heat supplied is taken up in raising 

the temperature of the sample , i.e, there is no heat loss from the sample to the 

surroundings. If there is any heat loss this has to be taken into account. 
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The drawback of this method is that complete thermal isolation of the sample 

from the surroundings is very difficult to  achieve especially in a high pressure envi- 

ronment. In a high pressure arrangement, the sample has to  be in close contact with 

the pressure transmitting medium, which is contradictory to the condition stated 

above. Corrections for the heat loss to the surroundings are difficult to calculate. 

3.1.2 Pulse methods 

In the electric pulse technique, which is generally used for electrical conductors, a 

wire specimen is heated by a current pulse of the order of 50 Amperes for a duration 

of about 100 p Sec [I]. The resulting temperature rise is extracted from the voltage 

drop across the sample by means of a bridge circuit. 

The disadvantage of this method is that the heating and the measuring times 

have to be kept short. This is done in order to avoid excessive heat losses. In 

spite of these precautions corrections have to  be made for the heat loss to  the 

medium surrounding the wire. Since a pulse of very short duration is used there 

will be induced voltages in the circuit. These effects have also to be corrected for. 

This method is not very suitable for studying critical phenomena , since the short 

measurement time used here conflicts with the large equilibration times necessary 

near T,. 

3.1.3 Differential Scanning Calorimetry 

In this method, the reference material is heated at a constant rate. The sample 

and the reference are maintained a t  the same temperature by supplying different 

quantities of heat to  them. A Differential Scanning Calorimeter measures the energy 

change in the sample directly and the final plot is between differential power ( 
difference in rate of energy supply) and temperature or time. 

Determination of the specific heat of the sample is done in two steps. First 

a DSC curve is taken in the absence of the sample, i.e. with empty pans on both 

sample and in the reference base. The addition of a sample produces an endothermic 

displacement relative to the blank baseline which is proportional to the specific heat 

of the sample. 

The displacement, d ,  between the baseline in the absence of a sample and the 

sample trace is given by the equation 

Where K is a calibration constant, Cp is the specific heat of the sample, m is the 
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sample mass and d T / d t  is the rate of heating. The calibration constant is determined 

using a standard material of known specific heat, e.g Sapphire. 

The disadvantage of this method for studying critical phenomena is that , the 

sample not in thermodynamic equilibrium for the heating rates normally used in 

commercial DSC equipments. Near the critical point, the relaxation time of the ex- 

citations in the sample becomes very large and the heating rates which are normally 

used in commercial DSC instruments (- a few O C/min) are no longer suitable for 

making measurements. Also this method requires a suitable reference materia1 for 

the determination of the absolute value of the specific heat. 

Recently a modification of the DSC technique known as modulated DSC [2] has 

been used to  get information whith i 

3.1.4 AC Calorimetry 

This method rectifies some of the defects of the methods discussed above and has 

certain features which make it very attractive for the study of critical phenomena. 

Since this method has been extensively used in the work discussed in subsequent 

chapters, it will be discussed in greater detail than the other methods. 

The basic principle of this method is that a periodic heat input is supplied to the 

sample. I t  can be shown that the resultant equilibrium temperature of the sample 

contains a dc part and an ac part. The amplitude of the temperature oscillations is 

inversely proportional to the specific heat of the sample. 

This method was originally developed by Sullivan and Seidel [3] in 1968. They 

developed this method to solve some of the problems in low-temperature calorimetry, 

where the problems of thermal isolation of the sample are more acute than in room 

temperature calorimetry. 

The idea behind using an ac technique has many advantages. It  allows the use 

of signal averaging techniques to  improve signal-to-noise ratio. In the determination 

of small changes in heat capacity, signal-to-noise ratio can become an important 

factor. The signal-to-noise ratio is improved because the signal which is a t  a par- 

ticular known frequency is extracted easily from the broad-band noise. It  will be 

shown in the next section that by a suitable choice of the reference frequency, the 

problem of heat loss to the surroundings can also be circumvented. This is especially 

advantageous for high pressure specific heat measurements, where it is impossible 

to reduce heat loss to the surroundings by thermal isolation, since the sample has 

to be in contact with the pressure transmitting medium. 



Chapter 3 

3.2 Theory of AC Calorimetry 

We give a simplified treatment of the theory of ac calorimetry. This treatment 

basically follows the work of Baloga and Garland [4]. The treatment given here is 

for the case when the heat input is given to the sample by passing a current through 

it. This eliminates some of the complications arising from using a separate heater. 

If the current that is passed through the sample is of the form 

I = I, sin wt (3.3) 

The power supplied to the sample will be 

The power supplied to  the sample will be partly used in increasing the temper- 

ature and part of it will be lost to  the surrounding media. A heat balance equation 

can be written to represent such a situation. 

where T, is the temperature of the sample, Tb, the temperature of the surround- 

ing medium, m is the mass of the sample, Cp its specific heat, R is the electrical 

resistance and k is the thermal conductance of the surrounding medium. 

This differential equation can be solved to obtain the temperature of the sample 

as a function of time. 

I: R 
T, = Tb + ~ e - ~ l ~  + - - AT,, cos(2wt - #) 

2 k 

where A is given by 
1: R 

A = 
2 k J i F D F  (3.7) 

and 4 is given by 

4 = tan-' (2w.r) 

T is the time required for the sample temperature to  relax to  that of the sur- 

roundings. T is given by 
mcP T = -  

Ic 

When t + oo (when steady state has been achieved), the second term in Eq. 3.6 

tends to zero. T, then consists of a constant term and an oscillatory part (ATac). 



Chapter 3 40 

If the frequency w is chosen such that w2r2 >> 1, then the equation for AT,, 

simplifies to: 

If the above mentioned approximation is satisfied, the heat loss to the surround- 

ings can be effectively neglected in the calculation of the specific heat of the sample. 

This is one of the greatest advantages of the ac calorimetric technique. 

The following points are to  noted in using this technique to  calculate the specific 

heat: 

1) The thermometer which is used should be of negligible heat capacity and 

should follow the instantaneous temperature of the sample. 

2) The temperature gradient betwee'n the sample and the surroundings is lin- 

ear. This assumption may brake down a t  high pressures. Baloga and Garland [4] 

have derived the theory for ac calorimetry a t  high pressures starting from the one 

dimensional diffusion equation. Under this condition , they are not able to derive a 

solution for T, in a closed form. However under certain assumptions, they are able 

to show that the solution reduces to  a form similar to Eq. 3.11, with some additional 

parameters, which are determined from experiments. 

3) In case an external heater is used to  heat the sample, there are additional 

relaxation times, which have to be taken into account. This is the time taken for the 

sample to  reach the temperature of the heater. In this case, if rh is the relaxation 

time for the sample to reach the temperature of the surroundings, then W T ~  << 1. 

To satisfy this condition the frequency has to be kept low. Since WT >> 1, two 

diametrically opposite conditions have to  be satisfied in this case. To make an 

accurate estimate of the specific heat, i t  may become necessary to  estimate these 

relaxation times and include them in the calculation of the specific heat. This 

reduces the power of the ac calorimetric technique. 

This procedure of ac calorimetry for metallic samples, was first used by Bonilla 

and Garland in 1974. They supplied the oscillatory heat input to  the sample by 

passing an oscillatory current through the sample itself. In that case the time 

required for the sample to reach thermal equilibrium is quite small as metals have 

high thermal conductivity. This allows one to use quite high frequencies. Since the 

value of AT,, is inversely proportional to frequency [4] we obtain easily measurable 

values of AT,,. Bonilla and Garland used a heating frequency of 3.5 Hz . Bonilla 

and Garland found r to be approximately 2 sec. ,which gives w 2 r 2  21 66. In our 
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experiments W ~ T ~  was around 144, which easily satisfies the condition given above. 

As can be seen from the above equations, a determination of the specific heat of 

the sample requires a knowledge of the resistance of the sample. Since the resistance 

of the sample can vary with variation in temperature or pressure, Bonnilla and 

Garland corrected for this variation by carrying out a separate experiment. 

In our method, to be described in the subsequent chapters, we have carried out 

a simultaneous measurement of the sample resistance. A simultaneous measurement 

of the sample resistance is especially important in the case of metallic glasses , where 

the sample resistance can be history dependent, i.e, the sample resistance does not 

regain its initial value after a cycle of heating and cooling. We have also designed 

a constant power technique. The power dissipated in the sample is kept a constant 

independent of any variation in the sample resistance. 

The constant power technique is important to maintain the value of ATac within 

reasonable limits. ATac is assumed to be a constant when deriving the Eqn. 3.11. 

In other words the value of C, obtained is an average over the range ATac. In the 

study of critical phenomena, it is desirable to keep AT,, as small as possible so as 

to  approach very close to  Tc. 

AC Calorimetry Set-up 

A schematic of the home-made experimental arrangement is shown in Fig.3.1. The 

entire arrangement of the ac calorimetry set-up together with the furnace for atmo- 

spheric pressure measurements and the temperature control is shown in the pho- 

tograph appearing on the next page. As discussed in the previous chapter, the 

basic principle of ac calorimetry is to give an oscillatory heat input to the sample 

and measure the resulting thermal response. The instantaneous temperature of the 

sample has a dc part as well as an oscillatory part. The specific heat of the sample 

is inversely related to the amplitude of the temperature oscillations. 
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Figure 3.2: Plus-minus Square wave described in the text 

Since the samples which are under study are all electrical conductors, the heat 

input is supplied to the sample by passing an oscillatory current through the sample 

itself. A "Plus-minus" square wave (Fig. 3.2) is used for heating the sample. A 
square wave is preferred over a sine wave because the second harmonic component 

in an ideal square wave is identically zero. The small second harmonic component 

which is usually present in sine wave generators can interfere with the measurement 

of the temperature signal which is also a t  the same frequency. 

The absence of the second harmonic component can be proved by looking at  

the fourier series for this waveform. 

The heating waveform can be mathematically described by the following equa- 

tions: 

I = I, for t = 0 to t = T / 4  

I = I, for t = T / 4  to t = T / 2  

I = -I, for t = T / 2  to t = 3 T / 4  

I = 0 for t = 3 T / 4  to t = T 
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Figure 3.3: Power input to the sample vs time 

This function can be split into its fourier components as follows: 

a, and b, are zero for even values of n. 

The input power to the heater , which is shown in Fig. 3.3, is given by: 

In contrast, the input power to  a heater due to a sinusoidal heating current 

I = I, sin(wt) is 

(P0/2) + (P0/2) sin(2wt + 3;rr/2) (3.14) 

As a result, the plus-minus square wave current will produce, a t  2w, an ac heat- 

ing effect (4/7r) times that produced by a sinusoidal heating current of the same 

amplitude. 

The plus-minus square wave is generated using digital techniques. The circuit 

of the square wave generator is given in Fig. 3.4. 
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Figure 3.4: Circuit diagram of the square wave generator 

- 

3.4 Circuit operation 

The 555 timer generates pulses as shown in Fig. 3.5. These pulses are passed through 

the first flip-flop. The flip-flop converts the pulses into a square wave of period 2T, 

where T is the time period of the pulse 

i.e, T = to, + t O f f  

The second flip-flop doubles the period once more. The period doubling happens 

in the flip-flop because the output of the flip-flop changes state only when the input 

changes from '1' to '0' and not vice-versa. 

The next stage of the circuit consists of two AND gates, which generate the 
-- 

outputs SWl = Q2.G and SW2 = Q2.Q1. These two outputs SWl and SWz.are the 

control voltages for the analog multiplexer, which operates using a +15,-15 power 

supply. 

When SWl = 1, +V,, is transmitted to the output of the multiplexer and 

SW2 = 1, -V,, is transmitted. When SWl = SW2 = 0, the output is zero. Of 

course it can be proved logically that  SWl and SW2 are never '0' in a t  the same 

time. 

ANALOG 

- 
- 
- 

By this process we get the unique type of square wave which passes successively 

through the states +V,,, 0, -V,,. 

F l ~ p  Flop 

MULTI- 
PLEXER 

- 

3 - - - 

1- 1 - 
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Figure 3.5: Waveforms a t  different stages of the square wave generator 
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- 
Q1 (the negative output of the first flip-flop) is used to generate the +,- square 

wave as a reference for the lock-in amplifier. 

All the waveforms are given in Fig. 3.5. 

The output from the square wave generator is fed to  the Howland circuit. The 

Howland circuit raises the current level in the circuit from a few mA, (which is the 

typical output current from the analog multiplexer) to a few amperes. A current of a 

few amperes is required so that  the temperature oscillations in the sample are easily 

measurable. A high power monolithic operational amplifier (OPA 541) is used in 

the Howland circuit, since it has a transistor a t  the output stage which can provide 

current of the order of amperes. 

3.5 Sample 

The current from the Howland circuit is passed through the sample. The sample 

is either in the form of a thin wire of diameter 0.14 mm(in the case of Nickel) , or 

in the form of a thin foil of 20-40pm thickness in the case of a metallic glass. The 

sample should have a low thermal mass, since the amplitude of the temperature 

oscillations are inversely related to the mass of the sample. 

The sample is held in place by a sample holder placed along the axis of a 

cylindrical furnace. The position of the sample is adjusted so that it is in the constant 

temperature zone of the furnace. A Chromel-Alumel thermocouple spot-welded a t  

the center of the specimen is used to  measure both the ac and the dc components 

of the temperature signal. Very thin wires are used for the thermocouple,(typically 

0.01 mm diameter) as the entire heat loss from the sample is assumed to be through 

the surrounding medium. 

The amplitude of the ac part of the temperature, the main contribution to 

which is a t  2w, is measured using a lock-in amplifier. Two lock-in amplifiers- 5208 

PAR and SRS 830, were used in the experiments. The SRS 830 is a DSP (digital 

signal processing) lock-in amplifier, hence it is more immune t o  electrical noise and 

pick-up. There will also be temperature oscillations a t  frequencies which are odd 

multiples of 2w. These will be of a much lesser magnitude than Tu,(2w). The T,, 

values a t  each temperature are recorded after allowing sufficient time for the sample 

to attain thermodynamic equilibrium. It is known that  the equilibration time for 

the sample diverges near a critical point. Hence a very slow rate of heating was used 

near T,( O.l°C/min). The sample temperature is maintained to within f O.l°C of 

a fixed value using a PID algorithm implemented in the software. 
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3.6 Measurement of Resistance 

The calculation of the specific heat of the sample from the measured values of T,, 

involves knowledge of the sample resistance. As mentioned earlier, Bonilla and 

Garland carried out a separate experiment to  determine the sample resistance as 

a function of temperature and pressure. However in the case of metallic glasses, a 

simultaneous measurement of the resistance along with the specific heat is imperative 

since the sample resistance is history dependent, i.e, the sample resistance does not 

return to its initial value after a cycle of heating and cooling. 

The resistance of the sample was determined by measuring the voltage across 

the sample using a Keithley 2001 multimeter. Two more leads are attached a t  

the ends of the sample for the voltage measurement. Since the voltage across the 

sample is oscillatory ,the peak value of the voltage is used for the determination of 

the sample resistance. 
Vpeak R = -  
Ipeak 

The peak value is determined after the voltage data  has been continuously 

acquired for a few cycles. The voltage values whose magnitude is less than a certain 

threshold are rejected and the remaining values are averaged. This procedure rejects 

the values during the two quarters of a time-period when the waveform is zero. A 

finite threshold is used as the "zero" of the waveform will not be zero in practice 

and will have a finite spread around zero. 

The values of AT,, and R a t  each temperature are automatically recorded on a 

personal computer using a data-acquisition card or the IEEE 488.2 interface. The 

data-acquisition card has a 16 bit A/D and 16 bit D/A. 

3.7 Constant Power arrangement 

The resistance measurement outlined in the previous section can be used to  obtain 

a constant power dissipation in the sample. Even though the resistance variation 

of the sample can be accounted for by substituting for R in the formula for specific 

heat, keeping 1 2R  a constant has certain advantages. The expression for T,,, derived 

earlier, was obtained under the assumption that the specific heat of the sample is a 

constant over the temperature range AT,,. In other words the specific heat obtained 

using Eq. 3.18, is an average over the temperature range AT,,. To study critical 

phenomena, the sample temperature has to approach T, as closely as possible. Hence 

it  is advisable to keep ATac as low as possible from this point of view. An optimum 
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value of ATac, which is consistent with the above considerations and which facilitates 

easy detection is used. 

An automatic mechanism to control the power dissipation in the sample has 

been used earlier by Bednarz et a1 [ 5 ] .  However, Bednarz et a1 used a dedicated 

microprocessor based control system to achieve this, whereas our system is entirely 

software based and simpler to implement. The arrangement of Bednarz et a1 also 

requires knowledge of the sample resistance a t  the start of the experiment. 

The resistance value obtained using the method detailed in the previous section 

is used to calculate the instantaneous power 12R, being dissipated in the sample. 

The value of the current required ( I l )  to keep the power at  the constant value Po, 

is then computed. 

An voltage equal in magnitude to Il is then given to the input of the wave-form 

generator. 

The entire procedure for the temperature control, measurement of ATac and 

sample resistance is shown in the form of flowcharts in Fig. 3.6 and Fig. 3.7 respec- 

t ively. 



Chapter 3 

ERROR V < 0.0 
Store in File 3, , R, 

SET ERROR VOLTAGE =0.0 

R = V  / I  
P P 

SAMPLE TEMP 

Figure 3.6: Flowchart for the operation of the ac calorimeter 
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SUBROUTINE TO MEASURE V 

MEASUREV h 

Figure 3.7: Flowchart for measurement of the sample resistance 

3.8 Calculation of Specific Heat 

According t o  the theory of ac calorimetry, Tac is given by  

Where 

is the thermal relaxation time required for the sample temperature to relax to that 

of the surroundings. If the heating frequency w is chosen such that w2r2 >> 1, then 

the expression for AT,, simplifies to  
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Figure 3.8: Sample temperature vs time 

The value of T can be calculated by heating the sample to  a temperature above 

the surrounding temperature. The heat input is then cut off and the temperature 

of the sample is recorded as a function of time. The temperature of the sample 

should decay exponentially to the surrounding temperature (Fig. 3.8) according to 

the equation: 

From this the value of T is calculated. The curve of sample temperature against 

time is shown in Fig. 3.8 

If the sample temperature had decayed exponentially, the plot of log(T-Tb) vs 

time should have been a straight line. However as seen Fig. 3.9, log(T-Tb) vs time 

falls into two straight lines of different slopes. This corresponds to  exponential decay 

with two different time constants (Eq. 3.20). 
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Figure 3.9: Logarithm of sample temperature vs time 
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Figure 3.10: Sample temperature vs time. Solid line is a fit to  Eq. 3.20 

Where Tb is the temperature of the surroundings and TI and 7 2  are two char- 

acteristic decay times. These two independent decay times correspond to  two paths 

for the heat flow, i.e, one through the leads attached to  the sample and one through 

the surrounding medium. Since the thermal conductivity of the leads is much higher 

than that  of the surrounding medium, the time constant for heat flow through the 

leads, 7-1 is much lower than 7 2 .  

Fig. 3.10 shows the sample temperature as a function of time. The solid line is 

a fit to Eq. 3.20. The parameters obtained from the fit are 7-1 N 2 sec and 7-2 10 

sec. 

Even if we use the value of 7-1 for the relaxation time, we get 4w2r2 ->> 1 

The condition w2r2  >> 1 can also be satisfied by increasing the value of w 

and m. However increasing the value of w and m will decrease the value of AT,,. 
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Hence a compromise has to  be struck to  satisfy the condition and also to obtain 

a reasonable value of ATac. w was chosen to  be around 3Hz to  satisfy the above 

conditions. 

The above mentioned simplification in the expression for ATac can also be 

obtained in a different way. The dc part of the temperature rise is given by 

Substituting this in the expression for AT,,, we obtain an expression for the 

specific heat of the sample 

In our experiments on Nickel it was found that for I, = 1 amp Tdc is of the order 

of 25" and ATac around O.l°C a t  room temperature. At higher temperatures the 

value of T and hence the value of Tdc decreases as the thermal conductivity of the 

surrounding media increases with temperature. However even a t  320°C, the value of 

Tdc is 50 times that of Tac and hence the approximation involved in the calculation 

of Cp is still valid. 

The condition w2r2  >> 1 is also verified by measuring the values of ATac as a 

function of frequency. If ATac - l / w ,  then the condition that  4w2r2 >> 1 is valid. 

The values of AT,, was measured as a function of frequency and is shown in 

Fig. 3.11. It  is seen from the above figure that the linear relation between l / w  

and AT,, is satisfied for frequencies above 3 Hz. The frequency for making the ac 

calorimetric measurements was chosen with this criterion in mind. If this criterion 

is satisfied, the heat losses to  the surroundings are negligible and do not require a 

correction. 

3.9 Specific Heat of Nickel 

The technique described in the previous section, has been used to study the specific 

heat of a thin wire of Nickel ( 0.14 mm diameter and 20mm in length) in the 

temperature range 30°C to 380°C a t  atmospheric pressure. The dc part of the 

temperature rise is determined a t  the beginning of the experiment and found to  be 

around 25°C. Tdc is around 10°C,at  320°C. So the approximation involved in the 

determination of the specific heat is quite justified. The approximation may not 

work a t  still higher temperatures as the thermal conductivity of the surrounding 
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Figure 3.11: AT,, as a function of l/w 
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Figure 3.12: Specific Heat of Nickel near its Curie temperature. '+' - Experimental 
da ta  points. Solid line is the fit of the da ta  to  Eq. 3.23 

gas increases with temperature and hence the condition that  4w2r2 >> 1 may no 

longer be satisfied. 

In our experiment on Nickel, it was found that for I. = 1 amp and w = 3.15 

Hz, Tdc lo°C and ATac is of the order of O.l°C. Therefore we can neglect ATac 
with respect to 2Tdc . 

Since we are interested only in the relative variation of specific heat, we have 

normalized the C,  values of Nickel with respect to the published literature values 

[6] to  facilitate an easy comparison. 

The specific heat of Nickel, measured using the ac calorimetric technique de- 

scribed above, is given in Fig. 3.12. The variation of AT,, with temperature is given 

in Fig. 3.13. Tc is seen as a sudden increase in the value of AT,,. 
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Figure 3.13: Variation of AT,, with temperature for Nickel. 
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Figure 3.14: Resistance of Nickel near its Curie temperature. The Curie temperature 

58 

is identified as the inflection point. 
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Figure 3.15: Log-Log plot of Specific heat vs temperature showing the best fit to 
the data for T < Tc and T > Tc 

The data on the resistance near the Curie temperature, obtained using the 

procedure described in the previous section, is given in Fig. 3.14. The correctness of 

our procedure is established by calculating the critical exponents that characterize 

the specific heat variation near Tc. 

We have used an expression of the form 

The exponents obtained from this fit are quite susceptible to the value of the 

Tc chosen. Hence in performing the fit, A, a, K and Tc were used as adjustable 

parameters to get the best possible fit, shown in Fig. 3.15. The values obtained from 

the fit are a = -0.13 zk 0.03 for T > Tc and T < Tc. These are in agreement both 
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with the values obtained by Connelly et a1 [6] as well as theoretical calculations [7]. 

The amplitude ratio obtained from the fit is AIA' N 1.5 which is also in agreement 

with the theoretical value obtained for the Heisenberg model. The fitting was done 

using the MATLAB software package. 

The agreement of our values with that of Connelly et a1 [6] also show that 

the specific heat of the addenda i.e, the thermocouple wires, do not contribute 

significantly to the measured specific heat. The relative change in the specific heat 

across the transition (ACp/Cp) is approximately 12% , which is almost the same as 

that  obtained by Connelly et a1 [6]. If there is a constant contribution due to  the 

thermocouple leads this will increase the value of C,, thereby reducing the value 

of ACp/Cp. Since the relative change obtained by us is of the same order as that 

obtained by Connelly et a1 [6] we infer that the contribution of the background 

specific heat is negligible. The quality of our data is slightly inferior to that  of 

Connelly et al, since we they have used a slightly different method. While we 

have used an electrical method , they have used a pulsed light source to provide 

the oscillatory heat input t o  the sample. The optical method is less susceptible 

t o  electrical interferences and pick-ups and isolation of the measurement is easily 

possible. Since in our method the thermocouple is in contact with the sample 

through which the current is being passed it can easily pick-up stray pick-ups. Even 

if the lock-in amplifier can reject this noise it lengthens the measurement time. The 

optical method however suffers from the disadvantage that  it is not convenient to  get 

absolute values of the specific heat from the measured quantities since the fraction 

of the input energy which is absorbed by the sample is known. It  leads to additional 

complications if this fraction is temperature dependent. Even though in the present 

work, the absolute values of the specific heat have not been calculated, the present 

method is more suitable for such a purpose since there are lesser number of unknown 

parameters. 

The experimentally determined specific heat is the specific heat a t  constant 

pressure, whereas the specific heat which is calculated theoretically on the basis of 

the various models is the specific heat a t  constant volume. It  has been shown by 

Connelly et a1 [6] that this does not affect the value of the exponents determined 

from the experimental data. 

Also in the analysis of the specific heat, the lattice and electronic contributions 

to the specific heat were not separated from the magnetic part of the specific heat. 

It  has been shown by Connelly et a1 that such a procedure does not affect the value 

of the critical exponents determined. The reason for this is that , while the lattice 
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and the electronic part of the specific heat are very weak functions of temperature, 

the magnetic part of the specific heat shows a singular behaviour near Tc. 

The above analysis for determination of the specific heat exponents was modi- 

fied to take into account the corrections to scaling (Eq. 1.12). However the inclusion 

of the correction term does not seem to modify the critical exponents. This indi- 

cates that the correction terms are very small in this case. The correction term is 

usually included to account for the presence of an irrelevant variable. In the case of 

magnetic systems, the irrelevant variable could be magnetic anisotropy. 

The above analysis also fails to reveal a shift in the value of the exponent 

towards the mean field value as reported recently by Seeger et a1 [8]. 

3.10 Specific Heat of Nickel a t  High Pressures 

To check the suitability of the ac calorimetric technique described in the previous 

section for high pressure work, the specific heat of a thin Nickel wire was measured as 

a function of temperature a t  different pressures using the piston-cylinder apparatus. 

The sample was placed in a high temperature cell similar to the one described in 

chapter 2. 

Due to the difficulty in taking out 6 leads out of the high pressure cell the 

high pressure specific heat measurements were carried out without the simultaneous 

measurement of resistance. The specific heat was calculated using resistance data 
/ 

which was obtained through a separate experiment . The specific heat of Nickel was 

measured in the temperature range 30° C to 400' C. The specific heat was measured 

keeping the pressure constant at  1.5, 10,15 and 20 kbars. The increase in the Curie 

temperature with increase in pressure can be clearly seen from the data (Fig. 3.16). 

From these experiments, the value of dTc/dP was found to be z ++Go C/kbar. 

This is slightly higher than the value (z 0.4"Clkbar) obtained by Leger et a1 [9]. 

According to the itinerant electron model of Lang and Ehrenreich [ l l ] ,  dTc/dP 

is the sum of largely cancelling contributions due to the increase of the interaction 

and the decrease of the density of states with pressure. 

The variation of Tc with pressure is discussed in detail in chapter 5 .  Here we 

give only the final expression for dTc/dP. 
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Figure 3.16: Specific Heat of Nickel as a function of temperature a t  different pres- 
sures 

where 6 is the compressibility and a is given by 

5500 
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TF is the Fermi temperature. I, is the interaction between electrons and I is 

the interaction corrected for correlation effects. 

In the present case since dT,/dP is positive, the first term in Eq. 3.24 should 

dominate over the second term. 

From Fig. 3.16, the values of T, and the magnitude of the change in specific 

heat a t  the transition is determined and tabulated in table. 3.1. 

2600 

It is seen from the above table that the magnitude of the specific heat change 

progressively decreases with pressure and also that the initial rate of decrease is 
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higher. 

According to Landau theory, the discontinuity in the specific heat a t  the tran- 

Table 3.1: Tc and AC,/C, as a function of pressure 

sition is given by 
a",c 

A c u  = , (3 .26)  

Pressure (bar) 
1 

In the above equation, b , is usually taken to be independent of temperature. 

However b is in fact weakly dependent on temperature [lo]. 

where J is the strength of interaction between the spins. Substituting Eq. 3.27 

Tc " C 
358 

in Eq. 3.26 we have 
3 k3T; 

A C  - -- " - 20 J 2  
(3 .28)  

AC/C(%) 
14.7 

According to mean field theory J and Tc are connected by the relation 

where S is the spin on each site and z  is the number of nearest neighbours. If 

Eq. 3.29 is substituted in Eq. 3.28, we see that AC, should be a constant. Its only 

dependence is on z .  AC, is directly proportional to z 2.  This is physically meaningful 

, since more the number of nearest neighbours with which each spin interacts greater 

will be the change in the specific heat when this interaction is absent (above T,). 
However the mean field result derived above is inconsistent with the decrease in the 

magnitude of AC,, which is seen from the results of the high pressure experiments 

on Nickel. In fact one might expect AC, to increase with pressure, since the effective 

number of nearest neighbours could increase at  high pressures. 
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3.11 Conclusions 

An ac calorimeter capable of measuring the specific heat of metallic samples has 

been designed and developed. The working of the calorimeter has been tested by 

measuring its frequency response and by measuring the relaxation time. The working 

of the calorimeter has been successfully demonstrated by measuring the specific heat 

of Nickel near the Curie point transition. The suitability of the ac calorimeter for 

High pressure studies has been demonstrated by measurements of the specific heat 

of Nickel a t  high pressures. Using these specific heat measurements, it has been 

possible to track the transition up to  a pressure of 20 kbar. A systematic decrease 

in the magnitude of the specific heat change at  the transition is seen with increase 

in pressure. It has been shown that this cannot be understood on the basis of mean 

field theory. 
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