Chapter 2

SUPPRESSION OF DIRECTOR
FLUCTUATIONS AS A NEW
NONLINEARITY

A timeless knowledge it shall bring to Mind,
Its aimto life, to Ignorance to close.

Sri Aurobindo in Savitri, -p 258

2.1 Introduction

An integral part o the nonlinear optics of liquid crystals is to describe the under-
lying processes responsible for the nonlinear optical effects. Director reorientation
and thermal indexing [1, 2, 3] have been identified as two of the nonlinear optical
processes possible in these systems. Both these processes result in a nonlinear coeffi-
cient of the order of 10~2 which is six to eight orders of magnitude higher than that
found in even a highly nonlinear material like CS;. It isfor this reason that these
nonlinearities in liquid crystals are referred to as 'giant optical nonlinearities' in the
literature.

Liquid crystals appear turbid due to the macroscopic thermal fluctuations
in the nematic director. P. G. de Gennes first pointed out that an external static
magnetic fiedd can suppress these director fluctuations by exerting a torque on the
director through the diamagnetic anisotropy [4]. We know that the €electric fied

o the laser exerts a torque on the director through the dielectric anisotropy. It is



therefore natural to expect the suppression of director fluctuations even in asuitably
polarised laser fiedld [2]. We point out here that laser induced suppression of the
director fluctuations can lead to considerable optical nonlinearities in liquid crystals
[5]. This nonlinearity is entirely different from that due to director reorientation and
it also affects the orientational order parameter in liquid crystals. Its magnitude is
not so large as that due to director reorientation but is still much larger than the
classical optical Kerr nonlinearity found in crystals and liquids. Further, on its own
it not only results in most of the familiar nonlinear effects like self-focusing but also
leads to some new effects. To highlight this process we consider situations wherein
the usual process o director reorientation is strictly absent.

It is wdl known that a majority o liquid crystals are transparent and they
absorb only in the deep ultraviolet (A < 25004). Hence, the light absorption is
negligiblein the visible part o the spectrum. Therefore we do not consider the laser

absorption and its associated thermal effects in this chapter.

2.2 Lasr Induced Suppresson of Director Fluc-
tuations

At afinite temperature, in a liquid crystal, there are dways thermal fluctuations in
the director. These thermal fluctuations can be reduced by lowering the temperature
but this may often lead to the disappearance o the liquid crystalline phase. We can
consider other means o suppressing the director fluctuations. It was pointed out long
ago by de Gennes[4] that the director fluctuations in a nematic liquid crystal can be
suppressed by a static magnetic field applied aong the director. Expectedly, this
enhances the dielectric anisotropy, the increase being proportional to the strength of
the applied field. One of the consequences o the reduction in director fluctuation is
that the orientational order parameter of the system increases. Due to an increase
in this order parameter we find a decrease in light scattering from nematics. This
prediction was experimentally verified later by Malraisonet. al. [6]. A similar process

also operates in cholesterics. In this case the enhancement in dielectric anisotropy
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Figure 2.1: The geometry for the suppression d the director fluctuations.

impliesan increasein the twist elastic constant. Hence, the cholesteric pitch increases.
This was experimentally established by Belyaev et. a. [7]. These authors observed
a red shift in the Bragg band o a cholesteric, with negative dielectric anisotropy, by
the application of astatic electricfidd along the twist axis. Naturally, suppression of
director fluctuations can be expected even in the electricfield of an intense laser beam.
Wefirst address ourselvesto thiseffectin non-absorbing nematic and cholesteric liquid

crystals.
2.2.1 Nematics

We consider an aligned nematic sample with the undisturbed director parallel to the
z-axisi.e., n, = (0, 0, 1) asshown in the figure 2.1.

Following de Gennes it is easy to work out the director fluctuations, of a
wavevector g, in a linearly polarised laser beam. The fluctuations o the director
at any point is described by small, non-zero components n,(r), n,(r). The elastic

distortion energy density in terms of these components is:

1 on, On 2
felastic = Fo+ ‘2‘K1 (31' +'5y—y) (21)
Ong, Ony 2
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on, ony %
+ K [(a) +(‘5;”
where K}, K», K3 are the splay, twist and bend elastic constants. In addition when

the electric field of the laser beam is acting along the director (i.e., z-axi s) the optical
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dielectric energy density is then:

— 1 2 2 2
Foptical = To—6af (n2+n2) (2.2)

It is convenient to go over to g-space to analyse these director fluctuations

whose Fourier components are

ng(q) = / n.(r)ezp(iq-r), etc (2.3)

In terms of these Fourier components the net free-energy density = Foassic T

Fopticas DECOMES

F = fo+Q;Eq[Kllnx(q)qﬁny(q)qle (2.4)
+ Kolny(@)ay — ny(@)gsl” (2.5)
+ (K32 + &) (|ne (@)l + Iny (@)])] - (28)

For a given q it is convenient to diagonalise the above quadratic form. The two
components n; and n,, that diagonalises 3 has components along the unit vectors
e; and e;. Thevector e, isnormal to g while e; isnormal to e;. Intermsd n, and
ny the free-energy density becomes:

Q—l
F = Fo = —=Z¢ Bpmralns(0)* (Koaf + Kot + eal/87) (2.7)

where ¢ = ¢, is the component parallel to the director, while q. = q-e; is the
normal component.

In the above expression for F the various degreesd freedom in the system are
decoupled. We apply the equipartition theorem for each degree of freedom according
to which at thermal equilibrium, the average free-energy for each degree d freedom
is 2kpT. Thus

(n3(9)) = (QUksT)/(Ksgf + Kjqt +eaE?/87) j=1,2 (2.8)

In the one constant approximation where all the elastic constants are equa (K; =
K, = K3 = K), the two modes are identical. Thus we get
ksT
2 — 2 —_— B
(n2()) = (n2(q)) = R e (2.9)
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where £ is the coherence length defined as € = 8—’:—"[ . In real space equation (2.9)

becomes:

kgT |1
0= = o[- 3 =

1- 2<n§>

Here! isdf molecular dimensions, ¢ is the velocity d light, K isthe curvature elastic

NN
3

NN
Ii

constant, | isthe intensity of alaser beam,
€, IS the optical dielectric anisotropy, T is the absolute temperature, and kg is the
Boltzmann's constant. From equation (2.10) we can easily calculate the modified
optical dielectric constant parallel and perpendicular to the director and they are
given by:

_ %sT  eksT

3
kBT 62 kBT
- e - T
(€)= IR T Wi

where €f and €] are the optical dielectric constants along and perpendicular to the

(2.11)

director in the absence o director fluctuations. Thus in the presence of a laser beam
the correction term is dependent on the squareroot o itsintensity. Further, though
the third term linearly increases with T, yet at any temperature the second term is
greater than the third term. Hence, an increase d temperature aways reduces this
dielectric constant. These and similar considerations apply to smectic liquid crystals
aswell. Asdescribed in chapter 1, smectic A liquid crystals have molecules arranged
in layers with their preferred direction o alignment along the layer normal. In this
system only splay fluctuations in the director are suppressed by the laser. On the
other hand in smectic C liquid crystals, the molecules are again arranged in layers
but the director is at an angle to the layer normal. Here the in-plane fluctuations o
the c-director, which is the projection o the director on to-the layers, are suppressed

by the laser field when its electric vector is along the c-director.
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2.2.2 Cholesterics

Next we consider the same effect in a cholesteric liquid crystal which can be looked
upon as a nematic uniformly twisted along a direction perpendicular to the nematic
director. The corresponding distortion free-energy density is thus similar to the
distortion free-energy density o the nematic as was discussed in chapter 1. We
consider a situation with the laser beam propagating along the helix axis and with a
wavelength A < ApP. Inthislimit, known as the Mauguin limit, the eigenwaves, as
discussed in chapter 1, have their electric vectors either parallel or perpendicular to
the local director. We consider the eigenstate for which the electric vector is parallel
to the local director everywhere. This can be easly realised experimentally. In this
geometry the electric vector follows the director twist inherent in the cholesteric.

In cholesteric liquid crystals for the wavevectors q parallel to the twist axis
there are two independent modes of director fluctuations viz.,(¢) the in-plane fluctua-
tions, also called the twist mode, and (ii) the out-of-plane fluctuations also called the
umbrella mode [8]. These modes correspond to the independent degrees o freedom
and the theorem of equipartition can be invoked here. In the twist mode the director

perturbations can be written as.

ny = co0s(¢oz + 0ny) & ng — dnesin(goz) (2.12)
ny = sin(goz +0ny) = ny + dnscos(goz)

n, = 0

with ény = 6ri¢, exp(igz) and ¢, is the wavevector of the helix and is defined as
¢. = 2m/P where P is the pitch of the helix. The mean square of the amplitude is

given by:
kgT
2 —
<5"¢(Q)> T K@ 12 (2.13)
In the second mode, i.e., the umbrellamode, the director perturbations can bewritten

s

ny = cos(g.z) + cos(ény) =~ nJ (2.14)
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ny = sin(g.2z) + cos(dn,) = n,

n, = sin(én,) =~ dn,

with én, = bn, ezp(igz). Then

kgT
(n20) = g v e

(2.15)

Wenotethat thetwst modeissimilar toamodein anematic but in the umbrella mode
the fluctuations are sensitive to the pitch P. In the same geometry in the case of
smectic C liquid crystals only the suppression of in-planefluctuations in the c-director

are relevant. Thisis given by equation (2.9) or (2.13).

2.2.3 Estimation of the nonlinear coefficient

It isimportant to estimate the magnitude o this effect before we embark upon its
implications. From thestatistical theory d the nematic state we know that the change
A Sin theorientational order parameter, Ae, in the optical dielectric anisotropy and
AK in the elastic constants are related to Sye,, &K by &2 = &&= = 2. Assuming,
K = 107'2 Newton, T = 300 K, d = 2.89, ¢, = 2.25 and the laser intensity of
| = 10° kW/m?(10 kW/cm?), we find that the relative change in €, or K is of the
order of 10~%. Thus the correction to the optical dielectric constant is quite high.
Only an applied magnetic field as high as 10° G can effect the same amount of change
in e, or K. Further, at these intensities the optical nonlinearity is greater by three
orders of magnitude compared to the normal Kerr effect in isotropic phase of liquid
crystals [9]. It isthus meaningful to work out the nonlinear optical effects due to this

process.

2.3 Nonlinear Optical Effects in Nematics
2.3.1 Sdf-focusing and self-divergence

Wefirst consider effects of laser suppression of the director fluctuationsin a nematic.
Let the sample be illuminated by a paralel beam of linearly polarised light with

electric field parallel to the nematic director. Further, the beam has, say, an intensity
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Figure 2.2: Figure shows the plane wavefront being self-focused due to the induced
refractive index profile (also shown in the figure).
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Figure 2.3: Figure shows the self-divergence of the plane wavefront due to the induced
refractive index profile (also shown in the figure).
profile with a central peak. As a consequence o the suppression o the director
fluctuations, the refractive index along the director increases in proportion to the
local electric field strength while it decreases in a direction perpendicular to the
director (see equation (2.11)). Thus for this polarisation the medium acquires a
greater refractive index at the center of the beam than at its periphery.

Hence, the incident plane wavefront gets distorted to a concave shape so that
the beam is sdlf-focused on propagation through the medium as shown in figure 2.2.
It iseasy to show that we get self-focusingin many other geometries and even when
€. is negative. We get a very interesting result when a partially polarised light beam
is incident on the medium. It is wel known that a partially polarised light can be
decomposed into two completely polarised orthogonal but incoherent beams. Let the
more intense component have its electric vector parallel to thedirector. The weak in-

coherent orthogonal component isineffectivein suppressing the director fluctuations.



Then for a parallel beam with a central peak intensity profile the refractive index for
the intense component is again a profile with a central peak. Hence, this component
is self-focused on propagation through the medium. On the other hand, the refrac-
tive index profile for the orthogonal incoherent electric field will have a central dip.
Therefore, this lateral component exhibits self-divergence as it propagates through
the,medium. The second effect is depicted in figure 2.3.

2.3.2 Sdf-iridescence

We now work out the effects o the boundary in the case d a finite sample. We

assume the laser beam to propagate normal to the boundary with its electric vector

paralel to the director. The geometry isshown in figure 2.4.

Figure 2.4: Figure shows the confined nematic with its director parallel to the bound-
aries. Also shown is the standing wave intensity pattern.

The rear boundary reflects part of the incident light. The reflected light
interferes with the forward propagating light. Thissets up a standing wave inside the
medium. Theintensity of thestanding wave at the antinodes isfour timesthe incident
intensity of the reflected component and zero at the nodes. Astheintensity of incident
light increases the intensities at the antinodes also increase. When the intensity is

sufficiently high the director fluctuationsare considerably suppressed at the antinodes
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leading to achangein refractiveindex. Thuswe get a periodic changein the refractive
index due to a periodic variation in the intensity d the standing wave. The induced
periodicity isA/2u. Thusit satisfies the Bragg condition for reflection of the incident
wave. This process further increases the reflected component. When the intensity
o the laser beam is increased further the suppression o fluctuation becomes all the
more effective and the Bragg reflection from the induced periodic structure increases
leading to an almost complete reflection of the incident laser beam, if the sample size
iscomparableto the penetration depth o the Bragg reflected wave. This phenomenon
can be termed as self — iridescence. It must be stated here that the standing wave
induced periodicity through usual Kerr nonlinearity has been studied theoretically in
the isotropic phase of cholesterics near the isotropic-cholesterictransition by Yeet.al.
[10]. Though they propose a helical structure induced by counter propagating circular
polarised light beams, yet they have not redised the importance o this inevitable
sdlf-iridescencediscussed here. In fact this process will completely wipe out the effect

predicted by these authors.

2.3.3 Light scattering

We now consider the effect of laser induced suppression of the director fluctuations
on light scattering. The scattering o light due to the director fluctuations is a well
studied subject [4]. The propagation o light is sensitive to changes in the dielectric
tensor ¢;; due to changes in the orientation o the director. Hence the propagation
o light is sensitive to the director fluctuations also. To calculate the scattering
cross-sectionfirst we find the dipole moments induced by the ingoing radiation field
E;n(r) = Eiezp(ik.r), where E isthe amplitude, i isthe unit vector specifying the

polarisation and k is the wavevector of the incident beam:
P(r) =1/(4n)(e(r) — 1) Ep(r) (2.16)

where 1 represents a unit tensor. The outgoing field is obtained by summing all
the contributions above over the volume o the sample. After going through some

simple calculations and projecting the total outgoing fiedd amplitude onto the final
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polarisation direction f we obtain:
f Eout(r)=(E/R) ezxp(ik.r)a (2.17)
where R= (r —r'") and a, is given by

w?/4mc? '/(ﬂ) {f-(e(r) — 1).i}exp(i q - r)dr
q=k, -k

o IS known as the scattering amplitude. In terms of the Fourier components the

scattering amplitude can be also written as
o= (w?/Anc?) i €(q) - f

The differential cross-section per unit solid angle d the outgoing beam around the

outgoing direction is

o= (of)

where the < > denote as usual the thermal average.
We now calculate the contribution to ¢(q) due to the orientational fluctua-
tions. Letting the fluctuations én = n — n, = (n,, n,, 0), and expanding € to first

order in én we get:
foe-i="f-(e)-i+¢€(f-dn)(n, i)+ ¢(f-on,)(én - i) (2.18)

Again, in the one elastic constant approximation, we find for the scattering cross-

section as:

0 =2 (ea?/4n¢%) (on(@I?) (is S +iay)" (2.19)
where j represents the directions of either of the two permitted norma modes of the
director fluctuations.

If we consider the presence df an electric field of the laser beam polarised par-
alel to thedirector and selecting an outgoing field orthoganal toinitial polarisation,

the scattering cross-section can be obtained using equation (2.10). We get

6371'2) kgT i

olg) =9 ( M ) K@ +el]/c (2.20)



with positive ¢,. It is obvious from this equation that the scattering cross-section is
reduced on increase o the laser intensity. For a q & 107 em™! and an intensity o
about 10 kW/cm? the scattering cross-section is reduced by as much as 25%. This
in turn should lead to an increase in transmitted intensity for polarisation parallel to

the director.

2.4 Nonlinear Optical Effectsin Cholesterics

2.4.1 Unwindingofthe structure

Now we discuss the nonlinear optical effectsto be expected in cholesteric liquid crys-
tals. Let alinearly polarised light in the Mauguin limit be incident on the structure

along the helix axis as shown in figure 2.5. We consider the mode for which the
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Figure 2.5: Laser beam propagating along the helix axis. P, is the pitch o the
cholesteric.

electric field is parallel to the local director and hence the director fluctuations are
suppressed globally. This increases the order parameter locally everywhere which
in turn increases the twist elastic constant. But cholesteric pitch is linearly pro-
portional to K,. Hence even the pitch increases as the intensity increases. We get
a linear increase in pitch with the square root o intensity, the slope o which is

4P°kBT\/ea/(87rcK)/(5°7rK), where P, is the uniform pitch and S, is the zero field
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Figure 2.6: Figure showing the variation of pitch as a function d the laser intensity.

order parameter.

A typical caculation is shown in figure 2.6. As a result o this effect the
azimuth o the electric field vector of the emergent beam will be different from that
when the laser isabsent or theintensity isvery low. Asthelaser intensity isincreased,
say to | = 10° kW/m?(10kW/cn¥) the azimuth changes by 1° to 2'. This changeis
easy to detect by optical techniques. It is not difficult to see that we can get in this
limit all the effects like self-focusing, self-divergence, self-iridescence predicted in the
case of nematic liquid crystals. The only differenceis that as we go along the twist

axis the local electric vector twists with the director.

2.4.2 Effect of a standing wave

In the standing wave geometry, but still in the Mauguin limit the electric field sup-
pressesthe director fluctuations at the antinodes. Againit is periodic with the period
equal to haf the wavelength of light inside the medium. As the fidd is more at the

antinodes the pitch of the cholestericincreases much morein these regions. Thus we
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Figure 2.7: The modulation d pitch as a function of the laser intensity is shown
schematically. There are alternating regions with high and low twist. The pitch is
large at the antinodes.

find a modulation of the twist in the presence o standing wave. This modulation is

non-uniform and is on a scale d the wavelength d light. The figure 2.7 depicts the
effect schematically.*

2.4.3 Sdf-induced oscillations in the Bragg mode

If the wavelength o incident light is comparable to the optical period (= uP)
d the cholesteric then we get Bragg reflection at normal incidence for a circularly
polarised wave o the same sense as the helix. This phenomenon is due to coherent
constructive interference between the waves reflected from the different regions of
the cholesterics. This reflection takes place in a band of width of PAy centered at
Xo. Inside the Bragg band we get a linearly polarised standing wave. At the long
wavelength edge of the Bragg band, the standing wave will have its electric vector
parallel to the director while at the short wavelength edge it is perpendicular to the
director[11]. Inside the band the electric field decays over a finite length called the

penetration depth. We consider here the long wavelength edge only. Due to local but



nonuniform suppression o the director fluctuations there is a non-uniform change in
pitch. This leads to a phase mismatch between the waves reflected from different
regions o the cholesteric. Hence, the strength at the antinodes of the standing wave
reduces with a consegquent increase in the transmitted intensity. When the field
inside the medium is thus reduced the structure relaxes towards the original uniform
structure resulting again in an enhancement of the Bragg reflected wave. This process
repeats indefinitely leading to temporal oscillationsin thetwist of the structure and

the transmitted intensity.

2.4.4 Long wavelength limit in diffraction mode

When a laser beam of wavelength A > pP is propagating perpendicular to twist
axis as shown in figure 2.8 with its electric vector parallel to the twist axis, we get

a different result. Here we assume the boundary to anchor the twist axis. In-plane

X
€
I k y B2
X

Figure 2.8: Figure showing the geometry when the laser beamis propagating perpen-
dicular to the twist azis. The electric vector is paralld to the twist axis.

director fluctuations are unaffected because all orientations of the director in this

mode are perpendicular to the field. Thus the amplitude of the fluctuations is given

by:

(sn3(q)) = % (2.21)

and the out-of-planedirector fluctuations are enhanced. Thisis due to the fact that

the dielectric free-energy would be reduced if orientation o the director isparallel to



the director and the fluctuation amplitude becomes:

ksT

= Pt (2.22)

(6n%(0))

Hence, the twist elastic constant decreases leading to a decrease in the pitch o the

structure.
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Chapter 3

NEW NONLINEARITY DUETO
CHANGE IN TILT ORDER
PARAMETER IN SMECTICS

A passage she cut through from Night to Light,
And searched for an ungrasped Omniscience.
Sri Aurobindo in Savitri, -p 245

3.1 Introduction

The nonlinear optical processeslike director reorientation and thermal indexing oper-
ate even in smectic liquid crystals [1, 2, 3]. Thedirector reorientation is understood
here as the reorienting torque acting on the c-director of the smectic C' phase. Ong
and Young have studied this process in detail [4]. Yet, in smectic liquid crystals
there can be an entirely different nonlinear process. The laser beam can change the
molecular tilt with respect to the layer normal [5]. The refractive index change due
to this effect grows linearly with intensity. This process will be very dominant near
a smectic A to chiral or achiral smectic C' phase transition. In these liquid crystals
this process will have to be considered along with the process of laser suppression
o in-plane c-director fluctuations discussed in chapter 2. This former process may
enhance or bring down the effects due to the latter. We.consider in this chapter
the consequences of this nonlinearity. We also consider chiral smectics near a chiral

smectic C' to smectic A transition where the pitch variation with intensity need not
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be monotonic [6].

3.2 Las Induced Tilt asa New Nonlinear Optical
Pr ocess

We assume the laser beam to be propagating in a smectic C liquid crystal, perpen-
dicular to the layers with its electric vector along the c-director. Then the laser
field not only suppresses the in-plane fluctuations o the c-director but it also affects
the tilt angle 8, of the molecules relative to the layer normal. The dielectric free-
energy density is given by ¢,(n. £)?/16x, where n describes the local orientation of
the molecule. Near the transition the tilt angle, 6 is the order parameter and is of
small amplitude. To second order in 8 we can approximate the dielectric energy as
€.16%/16mc. The free-energy density in terms of the tilt order parameter, 8 near the

smectic A to smectic C transition is given by [7):

Fac =F,+a; 6 - o' 182+ o, 6* T higher order terms (3.1)

+coupling terms

Here a; = a.(T — Tac), and az(> 0) are phenomenological constants in the free-
energy density, o’ = €,/16mc, and ¢, is the dielectric anisotropy. Thus the laser
intensity affectsthe tilt order parameter 6. It may be pointed out here that in smec-
tic C liquid crystals in the same geometry, when the electric field is at an angle to
the c-director we get c-director reorientation. Ong and others have worked out the
nonlinear optics due to this process [4]. But they have ignored the laser induced
change in 8 which is important near a transition point and must be considered along
with the c-director reorientation. The tilt angle # may increase or decrease depend-
ing upon the sign of ¢, and the polarisation of the laser beam. For example, for
propagation perpendicular to layers with positive ¢, and the electric field parallel to
c-director, 8 increases while for propagation aong the c-director with electric field
perpendicular to the layers, 6 decreases. Figure 3.1 illustrates the essentials o these

processes clearly. When 6 changes we expect corresponding changes in the curvature
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Figure 3.1: Figure shows the two geometries for the laser induced tilt order parameter
as a new nonlinear process. In figure (a) the laser is propagating parallef to the layer
normal in smectic A phase. In figure (b) laser propagates through a smectic C phase
parallel to the layers. In the first geometry induced tilt increases while in the second
case the induced tilt decreases

elastic coefficients for the c vector field and the optical dielectric components of the
medium. A laser beam propagating in such a medium in turn gets affected and we

study in this chapter some nonlinear optical effects due to this process.

3.3 Estimation of the Nonlinear Coefficient

The relative changes in the curvature elastic constants, and the optical dielectric

constant are related to the relative change in the tilt angle as 85 — 2¢ _ 22¢ =

— e T e
.1 /8mcaqf?. The change Ad is very large near the phase transition point at which
8 issmall. In the absence o a laser field at a temperature T > T4¢, the state with
8= 0 isof minimum energy and the medium isin the smectic 4 phase. At thissame
temperature let a linearly polarised laser beam propagate along the layer normal (see
figure 3.1). It is easy to see that at a certain threshold intensity given by Iy =
16mcas(T — Tac)/¢a, the coefficient of 42 term vanishes. At this intensity we get a
transition from smectic A to smectic C state. Beyond thisintensity we get a non-zero
value of . For a; =0.1,a3 = 0.2, Iy isdf the order of 5. 10° kW/m?(0.5 kW /cm?).

This corresponds to a nonlinear coefficient of the order of 10~® which is comparable



to that obtained in the process of director reorientation. In comparison, this is six
orders higher than what we find in the so called highly nonlinear materials like for
example CS,. Thus we obtain here a giant optical nonlinearity. At twice the
threshold intensity the induced tilt 8 is as high as 30°! If the medium is made of
chiral molecules or has chiral dopants, we get at any non-zero 8 a chiral smectic C.
In some chiral smectic C, the tilt angle and the pitch are decoupled while in others
they are coupled. In the second case a given 8 corresponds to a unique pitch. We
note that we can get all the effects already referred to in nematic and cholesterics,
but here they will be due to suppression of c-director fluctuations. We point out now
the existence of some new nonlinear optical effects due to this new process of tilt

changein a laser fied.

3.4 Nonlinear Optical Effects

3.4.1 New periodic structures

We take up next asmectic A (i.e., at T > T¢4) with light propagating perpendicular

to the layers. Figure 3.2 depicts this situation. Then in the standing wave geometry,
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Figure 3.2: (a) Smectic A liquid crystal in the standing wave geometry. The laser
beam propagates parallel to the layer normal and the electric vector is parallel to
the layers. (b) When the intensity of the laser beam at the antinode is below the
threshold intensity for the smectic A to achiral or chiral smectic C transition we get
only smectic A.

the electric fidld is periodic inside the medium. Therefore we expect a periodic vari-
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ation in the director tilt. It has already been said that the director istilted only in
the regions of field strength above a threshold. Thus we get smectic A and smectic C
type blocks to alternate along the direction of propagation. This can happen even
when the incident intensity is only slightly greater than one-fourth of the threshold
intensity since at the antinodes it will be equal to the threshold intensity. Just above
this intensity; the thickness of the smectic A blocks will be much more than that of
smectic C. With increasing intensity the smectic C' block thickness increases and at
very high intensities it becomes much more than that of smectic A blocks. A possi-
ble evolution o the structure is depicted schematically in figure 3.2 and figure 3.3.

Very much the same can be expected in smectic A which has a low temperature
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Figure 3.3: (a) Smectic A and smectic C' blocks when the intensity of the laser beam
is just above the threshold for smectic A to smectic C transition. The smectic A
block is much thicker than the smectic C' block. The tilt 4n the smectic C' block is
non-uniform. (b) Smectic A and smectic C' blocks when the intensity is very high.
The smectic C block is now thicker than the the smectic A block. In both cases the
tilt is non-uniform in smectic C block. Insets show the smectic layers in A and C
regions.



chiral smectic C phase. If the pitch is very large and so coupled to tilt angle that it
varies inversely with the tilt angle then above a threshold intensity we will be in the
Mauguin limit. Thus we obtain thick smectic A blocks alternating with thin chiral
smectic C blocks as shown in figure 3.3 but with smectic C blocks replaced by chiral

smectic C blocks. This structure is rather reminiscent o the twist grain boundary

DOUNNNNNNNNN

k s .
> smectic A
twist axis
> chiral smectic C

S S S S S

Figure 3.4: The figure shows the laser beam propagating through a chiral smectic C
perpendicular to the twist axis and paralld to the smectic layers. The eectric vector
is perpendicular to the layers. We get smectic A regions at the antinodes when beam
is very intense.

phases. With increase of intensity thickness of the chiral smectic C' blocks increases.
Now let us consider again a chiral smectic C (near the chiral smectic C - smectic A
transition) with the incident light, whose wavelength is very large compared to the
pitch, propagating parallel to the layers with polarisation parallel to the twist axis.
In thissituation the incident polarisation isan eigenmode. Then in the standing wave
geometry we obtain periodic variation of the tilt angle, along the layersleading to a
novel two dimensional periodic structure. At high intensities this periodic structure
consists of alternating smectic A and chiral smectic C blocks in a direction perpen-
dicular to the inherent twist axis. This structure has been schematically shown in

figure 3.4

3.4.2 Chiral smectic C

We study next a chiral smectic C' in which thetilt angle and the pitch are decoupled.
Let a linearly polarised light propagate along the twist axis in the Mauguin limit,

such that the electric field is locally in the plane of the molecular tilt as shown in
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figure 3.1. An increase in the laser intensity leads to an increase in the tilt angle.
In smectic C or chira smectic C the elastic constants for the elastic deformations
of the c-director (which is like n of a neamtic) increases like #2. Hence, increase of
laser intensity increases the effective twist elastic constant k,. Therefore: the pitch
which is proportional to k, also increases. In this sense this process is no different
from the effect due to suppression of the director fluctuations considered in the case

of cholesterics. For | = 10* kW/m?(1 kW/cm?) the relative change in the elastic

chiral smecticC smectic A
P
0
T
Tac

Figure 3.5: Figure shows schematically the pitch P and the tilt angle 8 variation near
a smectic A to chiral smectic C transition.

constant &, due to change in 9 is of the order of 0.6 which is quite high compared
to 10~* due to suppression d the c-director fluctuations. The resulting change in
the refractive index is of the order of 10~3. Hence pitch changes are very large. In
some chiral smectic C’s, 8 and the pitch are coupled, as the transition to smectic A
is approached the pitch increasesto start with, reachesa maximum and then sharply
fals to zero at the transition point as shown in figure 3.5 [6]. But the tilt angle 8
monotonically decreases to zero as the transition point is approached (seefigure 3.5).
If we assume that the tilt angle and the pitch are coupled in this fashion then we
obtain an interesting behaviour in the Mauguin limit. Increase o laser intensity
increases the tilt angle. This may either increase or decrease the pitch depending

upon the inherent tilt angle and pitch at a given temperature.
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3.4.3 Effect of third harmonic generation

In smectic liquid crystals the symmetry alows the generation o a third harmonic
polarisation [2] in the geometry shown in figure 3.1 (a). The electric vector d third
harmonic can be parallel to that of the fundamental. Invariably, there will not be
a perfect phase matching between the fundamental and the harmonic due to optical
dispersion. Hence, the torque on the molecule is different at these two wavelengths.
Generdly, at the harmonic ¢, will be higher leading to higher torques. If the smectic
isnear asmectic A to chiral or achiral smectic C transition then a sufficiently intense
electric field of the third harmonic induces a tilt as discussed earlier. The tilt will
be periodic and the period is given by 7 /(ks, — k.), where the k and ks, are the

wavevectorsfor the fundamental and the third harmonic respectively.
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