
Chapter 2 

SUPPRESSION OF DIRECTOR 
FLUCTUATIONS AS A NEW 
NONLINEARITY 

A timeless knowledge it shall bring to Mind, 

Its aim to life, to  Ignorance to close. 

Sri Aurobindo in Savitri, -p 258 

2.1 Introduction 

An integral part of the nonlinear optics of liquid crystals is to describe the under- 

lying processes responsible for the nonlinear optical effects. Director reorientation 

and thermal indexing [I, 2, 31 have been identified as two of the nonlinear optical 

processes possible in these systems. Both these processes result in a nonlinear coeffi- 

cient of the order of which is six to eight orders of magnitude higher than that 

found in even a highly nonlinear material like CS2. It is for this reason that these 

nonlinearities in liquid crystals are referred to as 'giant optical nonlinearities' in the 

literature. 

Liquid crystals appear turbid due to the macroscopic thermal fluctuations 

in the nematic director. P. G. de Gennes first pointed out that an external static 

magnetic field can suppress these director fluctuations by exerting a torque on the 

director through the diamagnetic anisotropy [4]. We know that the electric field 

of the laser exerts a torque on the director through the dielectric anisotropy. It is 



therefore natural to expect the suppression of director fluctuations even in a suitably 

polarised laser field [2]. We point out here that laser induced suppression of the 

director fluctuations can lead to considerable optical nonlinearities in liquid crystals 

[5]. This nonlinearity is entirely different from that due to director reorientation and 

it also affects the orientational order parameter in liquid crystals. Its magnitude is 

not so large as that due to director reorientation but is still much larger than the 

classical optical Kerr nonlinearity found in crystals and liquids. Further, on its own 

it not only results in most of the familiar nonlinear effects like self-focusing but also 

leads to some new effects. To highlight this process we consider situations wherein 

the usual process of director reorientation is strictly absent. 

It is well known that a majority of liquid crystals are transparent and they 

absorb only in the deep ultraviolet (A < 2 5 0 0 ~ ) .  Hence, the light absorption is 

negligible in the visible part of the spectrum. Therefore we do not consider the laser 

absorption and its associated thermal effects in this chapter. 

2.2 Laser Induced Suppression of Director Fluc- 
t uat ions 

At a finite temperature, in a liquid crystal, there are always thermal fluctuations in 

the director. These thermal fluctuations can be reduced by lowering the temperature 

but this may often lead to the disappearance of the liquid crystalline phase. We can 

consider other means of suppressing the director fluctuations. It was pointed out long 

ago by de Gennes[4] that the director fluctuations in a nematic liquid crystal can be 

suppressed by a static magnetic field applied along the director. Expectedly, this 

enhances the dielectric anisotropy, the increase being proportional to the strength of 

the applied field. One of the consequences of the reduction in director fluctuation is 

that the orientational order parameter of the system increases. Due to an increase 

in this order parameter we find a decrease in light scattering from nematics. This 

prediction was experimentally verified later by Malraison et. al. [6]. A similar process 

also operates in cholesterics. In this case the enhancement in dielectric anisotropy 



Figure 2.1: The geometry for the suppression of the director fEuctuations. 

implies an increase in the twist elastic constant. Hence, the cholesteric pitch increases. 

This was experimentally established by Belyaev et. al. [7]. These authors observed 

a red shift in the Bragg band of a cholesteric, with negative dielectric anisotropy, by 

the application of a static electric field along the twist axis. Naturally, suppression of 

director fluctuations can be expected even in the electric field of an intense laser beam. 

We first address ourselves to this effect in non-absorbing nematic and cholesteric liquid 

crystals. 

2.2.1 Nematics 

We consider an aligned nematic sample with the undisturbed director parallel to the 

z-axis i.e., no = (0, 0,  1) as shown in the figure 2.1. 

Following de Gennes it is easy to work out the director fluctuations, of a 

wavevector q, in a linearly polarised laser beam. The fluctuations of the director 

at  any point is described by small, non-zero components n,(r), n,(r). The elastic 

distortion energy density in terms of these components is: 

where Kl, K2, K3 are the splay, twist and bend elastic constants. In addition when 

the electric field of the laser beam is acting along the director (i.e., z-axis) the optical 



dielectric energy density is then: 

It is convenient to go over to q-space to analyse these director fluctuations 

whose Fourier components are 

In terms of these Fourier components the net free-energy density = Felastic + 
Fqtid becomes 

For a given q it is convenient to diagonalise the above quadratic form. The two 

components nl and n2: that diagonalises 3 has components along the unit vectors 

el and e2. The vector e2 is normal to q while el is normal to  es .  In terms of nl and 

n2 the free-energy density becomes: 

where 411 = qz is the component parallel to the director, while ql = q .  el is the 

normal component. 

In the above exzression for F the various degrees of freedom in the system are 

decoupled. We apply the equipartition theorem for each degree of freedom according 

to which at  thermal equilibrium, the average free-energy for each degree of freedom 

is ikBT. Thus 

In the one constant approximation where all the elastic constants are equal (K1 = 

K2 = K3 = K ) ,  the Ixo modes are identical. Thus we get 



where t is the coherence length defined as t = YI.  In real space equation (2.9) 

becomes: 

Here 1 is of molecular dimensions, c is the velocity of light, K is the curvature elastic 

constant, I is the intensity of a laser beam, 

E ,  is the optical dielectric anisotropy, T is the absolute temperature, and kB is the 

Boltzmann's constant. From equation (2.10) we can easily calculate the modified 

optical dielectric constant parallel and perpendicular to the director and they are 

given by: 

where e i  and E', are the optical dielectric constants along and perpendicular to the 

director in the absence of director fluctuations. Thus in the presence of a laser beam 

the correction term is dependent on the square root of its intensity. Further, though 

the third term linearly increases with T, yet at  any temperature the second term is 

greater than the third term. Hence, an increase of temperature always reduces this 

dielectric constant. These and similar considerations apply to smectic liquid crystals 

as well. As described in chapter 1, smectic A liquid crystals have molecules arranged 

in layers with their preferred direction of alignment along the layer normal. In this 

system only splay fluctuations in the director are suppressed by the laser. On the 

other hand in smectic C liquid crystals, the molecules are again arranged in layers 

but the director is at  an angle to the layer normal. Here the in-plane fluctuations of 

the c-director, which is the projection of the director on toathe layers, are suppressed 

by the laser field when its electric vector is along the c-director. 



2.2.2 Cholesterics 

Next we consider the same effect in a cholesteric liquid crystal which can be looked 

upon as a nematic uniformly twisted along a direction perpendicular to the nematic 

director. The corresponding distortion free-energy density is thus similar to the 

distortion free-energy density of the nematic as was discussed in chapter 1. We 

consider a situation with the laser beam propagating along the helix axis and with a 

wavelength X << ApP. In this limit, known as the Mauguin limit, the eigenwaves, as 

discussed in chapter 1, have their electric vectors either parallel or perpendicular t o  

the local director. We consider the eigenstate for which the electric vector is parallel 

to  the local director everywhere. This can be easily realised experimentally. In this 

geometry the electric vector follows the director twist inherent in the cholesteric. 

In cholesteric liquid crystals for the wavevectors q parallel to  the twist axis 

there are two independent modes of director fluctuations viz.,(i) the in-plane fluctua- 

tions, also called the twist mode, and (ii) the out-of-plane fluctuations also called the 

umbrella mode [8]. These modes correspond to the independent degrees of freedom 

and the theorem of equipartition can be invoked here. In the twist mode the director 

perturbations can be written as: 

with 6nt = an; ezp(iqz) and qo is the wavevector of the helix and is defined as 

qo = 2rlP where P is the pitch of the helix. The mean square of the amplit.ude is 

given by: 

In the second mode, i.e., the umbrella mode, the director pehurbations can be written 

as: 



n, = sin(bn,) = bn, 

with bn, = bn, exp( iqz ) .  Then 

We note that the twist mode is similar to a mode in a nematic but in the umbrella mode 

the fluctuations are sensitive to the pitch P. In the same geometry in the case of 

smectic C liquid crystals only the suppression of in-plane fluctuations in the c-director 

are relevant. This is given by equation (2.9) or (2.13). 

2.2.3 Estimation of the nonlinear coefficient 

It is important to  estimate the magnitude of this effect before we embark upon its 

implications. From the statistical theory of the nematic state we know that the change 

AS in the orientational order parameter, 4ea in the optical dielectric anisotropy and 

AK in the elastic constants are related to S, fa ,  &K by = E, = B. 2 h- Assuming, 

K = 10-l2 Newton, T = 300 K, ell = 2.89, €1 = 2.25 and the laser intensity of 

I = lo5 kW/m2 (10 kw/cm2),  we find that the relative change in f a  or K is of the 

order of loF4. Thus the correction to the optical dielectric constant is quite high. 

Only an applied magnetic field as high as lo5 G can effect the same amount of change 

in E, or K .  Further, at  these intensities the optical nonlinearity is greater by three 

orders of magnitude compared to the normal Kerr effect in isotropic phase of liquid 

crystals [9]. It is thus meaningful to work out the nonlinear optical effects due t o  this 

process. 

2.3 Nonlinear Optical Effects in Nematics 

2.3.1 Self-focusing and self-divergence 

We first consider effects of laser suppression of the director fluctuations in a nematic. 

Let the sample be illuminated by a parallel beam of linearly polarised light with 

electric field parallel t o  the nematic director. Further, the beam has, sax an intensity 



A x self-focusing 

front 

Figure 2.2: Figure shows the plane wavefront being self-focused due to the induced 
refractive index profile (also shown in the figure). 

intensity 

front 

Figure 2.3: Figure shows the self-divergence of the plane wavefront due to the induced 
refractive index profile (also shown in the figure). 

profile with a central peak. As a consequence of the suppression of the director 

fluctuations, the refractive index along the director increases in proportion to the 

local electric field strength while it decreases in a direction perpendicular to the 

director (see equation (2.11)). Thus for this polarisation the medium acquires a 

greater refractive index at  the center of the beam than at  its periphery. 

Hence, the incident plane wavefront gets distorted to  a concave shape so that 

the beam is self-focused on propagation through the medium as shown in figure 2.2. 

It is easy to show that we get self-focusing in many other geometries and even when 

E ,  is negative. We get a very interesting result when a partially polarised light beam 

is incident on the medium. It is well known that a partially polarised light can be 

decomposed into two completely polarised orthogonal but incoherent beams. Let the 

more intense component have its electric vector parallel to  the director. The weak in- 

coherent orthogonal component is ineffective in suppressing the director fluctuations. 



Then for a parallel beam with a central peak intensity profile the refractive index for 

the intense component is again a profile with a central peak. Hence, this component 

is self-focused on propagation through the medium. On the other hand, the refrac- 

tive index profile for the orthogonal incoherent electric field will have a central dip. 

Therefore, this lateral component exhibits self-divergence as it propagates through 

the ,medium. The second effect is depicted in figure 2.3. 

2.3.2 Self-iridescence 

We now work out the effects of the boundary in the case of a finite sample. We 

assume the laser beam to propagate normal to the boundary with its electric vector 

parallel to the director. The geometry is shown in figure 2.4. 

Figure 2.4: Figure shows the confined nematic with its director parallel t o  the bound- 
aries. Also shown i s  the standing wave intensity pattern. 

The rear boundary reflects part of the incident light. The reflected light 

interferes with the forward propagating light. This sets up a standing wave inside the 

medium. The intensity of the standing wave at  the antinode? is four times the incident 

intensity of the reflected component and zero at  the nodes. As the intensity of incident 

light increases the intensities at the antinodes also increase. When the intensity is 

sufficiently high the director fluctuations are considerably suppressed a t  the antinodes 
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leading to a change in refractive index. Thus we get a periodic change in the refractive 

index due to a periodic variation in the intensity of the standing wave. The induced 

periodicity is X/2p. Thus it satisfies the Bragg condition for reflection of the incident 

wave. This process further increases the reflected component. When the intensity , 

of the laser beam is increased further the suppression of fluctuation becomes all the 

more effective and the Bragg reflection from the induced periodic structure increases 

leading to an almost complete reflection of the incident laser beam, if the sample size 

is comparable to the penetration depth of the Bragg reflected wave. This phenomenon 

can be termed as self - iridescence. It must be stated here that the standing wave 

induced periodicity through usual Kerr nonlinearity has been studied theoretically in 

the isotropic phase of cholesterics near the isotropic-cholesteric transition by Ye et.al. 

[lo]. Though they propose a helical structure induced by counter propagating circular 

polarised light beams, yet they have not realised the importance of this inevitable 

self-iridescence discussed here. In fact this process will completely wipe out the effect 

predicted by these authors. 

2.3.3 Light scattering 

We now consider the effect of laser induced suppression of the director fluctuations 

on light scattering. The scattering of light due to the director fluctuations is a well 

studied subject [4]. The propagation of light is sensitive to changes in the dielectric 

tensor E i j  due to changes in the orientation of the director. Hence the propagation 

of light is sensitive to the director fluctuations also. To calculate the scattering 

cross-section first we find the dipole moments induced by the ingoing radiation field 

Ei,(r) = E i exp ( i k  . r), where E is the amplitude, i is the unit vector speci&ing the 

polarisation and k is the wavevector of the incident beam: 

where 1 represents a unit tensor. The outgoing field is obtained by summing all 

the contributions above over the volume of the sample. After going through some 

simple calculations and projecting the total outgoing field amplitude onto the final 



polarisation direction f we obtain: 

f E,,,(r1) = ( E / R )  exp(i k . r') a 

where R = (r - r') and a, is given by 

q = k o - k  

a, is known as the scattering amplitude. In terms of the Fourier components the 

scattering amplitude can be also written as 

The differential cross-section per unit solid angle of the outgoing beam around the 

outgoing direction is 

0 = (la12) 

where the < > denote as usual the thermal average. 

We now calculate the contribution to ~ ( q )  due to the orientational fluctua- 

tions. Letting the fluctuations bn = n - no = (n,: n,, 0) , and expanding E to  first 

order in bn we get: 

Again, in the one elastic constant approximation, we find for the scattering cross- 

section as: 

where j represents the directions of either of the two permitted normal modes of the 

director fluctuations. 

If we consider the presence of an electric field of the laser beam polarised par- 

allel to the director and selecting an outgoing field orthoganal to initial polarisation, 

the scattering cross-section can be obtained using equation (2.10). We get 



with positive E,.  It is obvious from this equation that the scattering cross-section is 

reduced on increase of the laser intensity. For a q FZ lo7 cm-' and an intensity of 

about 10 kW/cm2 the scattering cross-section is reduced by as much as 25%. This 

in turn should lead to an increase in transmitted intensity for polarisation parallel to 

the director. 

2.4 Nonlinear Optical Effects in Cholesterics 

2.4.1 Unwindingofthe structure 

Now we discuss the nonlinear optical effects to  be expected in cholesteric liquid crys- 

tals. Let a linearly polarised light in the Mauguin limit be incident on the structure 

along the helix axis as shown in figure 2.5. We consider the mode for which the 

Figuie 2.5: Laser beam propagating along the helix axis. Po is the pitch of the 
cholesteric. 

electric field is parallel to the local director and hence the director fluctuations are 

suppressed globally. This increases the order parameter locally eveqwhere which 

in turn increases the twist elastic constant. But cholesteric pitch is linearly pro- 

portional to K2. Hence even the pitch increases as the intensity increases. We get 

a linear increase in pitch with the square root of intensity, the slope of which is 

~P.~~TJE./(~~CK)/(S,~~K), where Po is the uniform pitch and So is the zero field 
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Figure 2.6: Figure showing the variation of pitch as a function of the laser intensity. 

order parameter. 

A typical calculation is shown in figure 2.6. As a result of this effect the 

azimuth of the electric field vector of the emergent beam will be different from that 

when the laser is absent or the intensity is very low. As the laser intensity is increased, 

say to I = lo5 kW/m2(10 kW/cm2) the azimuth changes by 1" to 2". This change is 

easy to detect by optical techniques. It is not difficult to see that we can get in this 

limit all the effects like self-focusing, self-divergence, self-iridescence predicted in the 

case of nematic liquid crystals. The only difference is that as we go along the twist 

axis the local electric vector twists with the director. 

2.4.2 Effect of a standing wave 

In the standing wave geometry, but still in the Mauguin limit the electric field s u p  

presses the director fluctuations at  the antinodes. Again it is periodic with the period 

equal to half the wavelength of light inside the medium. As the field is more at  the 

antinodes the pitch of the cholesteric increases much more in these regions. Thus we 



Figure 2.7: The modulation of pitch as a function of the laser intensity is shown 
schematically. There are alternating regions with high and low twist. The pitch is 
large at the antinodes. 

find a modulation of the twist in the presence of standing wave. This modulation is 

non-uniform and is on a scale of the wavelength of light. The figure 2.7 depicts the 

effect schematically. ' 

2.4.3 Self-induced oscillations in the Bragg mode 

If the wavelength of incident light is comparable to the optical period A,(= pP) 

of the cholesteric then we get Bragg reflection at normal incidence for a circularly 

polarised wave of the same sense as the helix. This phenomenon is due to coherent 

constructive interference between the waves reflected from the different regions of 

the cholesterics. This reflection takes place in a band of width of PAp centered a t  

A,. Inside the Bragg band we get a linearly polarised standing wave. At the long 

wavelength edge of the Bragg band, the standing wave will have its electric vector 

parallel to  the director while at  the short wavelength edge it is perpendicular to  the 

director[ll]. Inside the band the electric field decays over a finite length called the - 

penetration depth. We consider here the long wavelength edge only. Due to local but 



nonuniform suppression of the director fluctuations there is a non-uniform change in 

pitch. This leads to  a phase mismatch between the waves reflected from different 

regions of the cholesteric. Hence, the strength at the antinodes of the sanding wave 

reduces with a consequent increase in the transmitted intensity. Khen the field 

inside the medium is thus reduced the structure relaxes towards the original uniform 

structure resulting again in an enhancement of the Bragg reflected wave. This process 

repeats indefinitely leading to  temporal oscillations in the twist of the structure and 

the transmitted intensity. 

2.4.4 Long wavelength limit in diffraction mode 

When a laser beam of wavelength X >> pP is propagating perpendicdar to  twist . 

axis as shown in figure 2.8 with its electric vector parallel to the bvist axis, vi-e get 

a different result. Here we assume the boundary to anchor the twist asis. In-plane 

Figure 2.8: Figure showing the geometry when the laser beam is propagating peqxn- 
dicular to the twist axis. The electric vector is parallel to the twist axis. 

director fluctuations are unaffected because all orientations of the director in this 

mode are perpendicular to  the field. Thus the amplitude of the fluctuations is @en 

by: 

and the out-of-plane director fluctuations are enhanced. This is due to  the fact that  - 

the dielectric free-energy would be reduced if orientation of the director is parallel t o  



the director and the fluctuation amplitude becomes: 

Hence, the twist elastic constant decreases leading to a decrease in the pitch of the 

structure. 
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Chapter 3 

NEW NONLINEARITY DUE TO 
CHANGE IN TILT ORDER 
PARAMETER IN SMECTICS 

A passage she cut through from Night to Light, 

And searched for an ungrasped Omniscience. 

Sri Aurobindo in Savitri, -p 245 

3.1 Introduction 

The nonlinear optical processes like director reorientation and thermal indexing oper- 

ate even in smectic liquid crystals [I, 2, 31. The director reorientation is understood 

here as the reorienting torque acting on the c-director of the smectic C phase. Ong 

and Young have studied this process in detail [4]. Yet, in smectic liquid crystals 

there can be an entirely different nonlinear process. The laser beam can change the 

molecular tilt with respect to the layer normal [ 5 ] .  The refractive index change due 

to  this effect grows linearly with intensity. This process will be very dominant near 

a smectic A to  chiral or achiral smectic C phase transition. In these liquid crystals 

this process will have to be considered along with the process of laser suppression 

of in-plane c-director fluctuations discussed in chapter 2. This former process may 

enhance or bring down the effects due to the latter. We .consider in this chapter 

the consequences of this nonlinearity. We also consider chiral smectics near a chiral 

smectic C to  smectic A transition where the pitch variation with intensity need not 



be monotonic [6]. 

3.2 Laser Induced Tilt as a New Nonlinear Optical 
Process 

We assume the laser beam to be propagating in a smectic C liquid cq-stal, perpen- 

dicular to  the layers with its electric vector along the c-director. Then the laser 

field not only suppresses the in-plane fluctuations of the c-director but it also affects 

the tilt angle 8 ,  of the molecules relative to the layer normal. The dielectric hee- 

energy density is given by ~, (n  . E ) 2 / 1 6 ~ ,  where n describes the local orientation of 

the molecule. Near the transition the tilt angle, 8 is the order parameter and is of 

small amplitude. To second order in 8 we can approximate the dielectric enera- as 

sa182 /16~c .  The free-energy density in terms of the tilt order parameter, 8 near the 

smectic A to smectic C transition is given by [7]: 

~ A C  = 3b + a1 e2 - a"18~  + a2 e4 + higher order t e r m s  (3-1) 

+coupling terms  

Here a1 = a,(T - TAC), and a2(> 0)  are phenomenological constants in the free- 

energy density, a" = ~ , / 1 6 ~ c ,  and E, is the dielectric anisotropy. Thus the laser 

intensity affects the tilt order parameter 6. It may be pointed out here that in smec- 

tic C liquid crystals in the same geometry, when the electric field is at an angle t o  

the c-director we get c-director reorientation. Ong and others have worked out the 

nonlinear optics due to this process [4]. But they have ignored the laser induced 

change in 8 which is important near a transition point and must be considered along 

with the c-director reorientation. The tilt angle 8 may increase or decrease depend- 

ing upon the sign of E ,  and the polarisation of the laser beam. For example, for 

propagation perpendicular to layers with positive 6 ,  and the electric field parallel t o  

c-director, 6 increases while for propagation along the c-director with electric field 

perpendicular t o  the layers, 6 decreases. Figure 3.1 illustrates the essentials of these 

processes clearly. When 6 changes we expect corresponding changes in the curvature 
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Figure 3.1: Figure shows the two geometries for the laser induced tilt order parameter 
as a new nonlinear process. In  figure (a) the laser is propagating parallt2 to the layer 
normal in smectic A phase. In  figure (b)  laser propagates through a sme t i c  C phase 
parallel to  the layers. In  the first geometry induced tilt increases while in the second 
case the induced tilt decreases 

elastic coefficients for the c vector field and the optical dielectric components of the 

medium. A laser beam propagating in such a medium in turn gets affected and we 

study in this chapter some nonlinear optical effects due to this process. 

3.3 Estimation of the Nonlinear Coefficient 

The relative changes in the curvature elastic constants, and the optical dielectric 

A K - l e  2 A d =  constant are related to the relative change in the tilt angle as - 7 = 7 

eaI/8'irca202. The change A0 is very large near the phase transition point at  n-hich 

8 is small. In the absence of a laser field a t  a temperature T > TAC, the state with 

8 = 0 is of minimum energy and the medium is in the smectic -4 phase. At this same 

temperature let a linearly polarised laser beam propagate along the layer normal (see 

figure 3.1). It is easy to see that a t  a certain threshold intensity given by Ith = 

16'irca,(T - TAc)/ea, the coefficient of O2 term vanishes. -it this intensity we get a 

transition from smectic A to smectic C state. Beyond this intensity we get a non-zero 

value of 8. For a1 = 0.1, a2 = 0.2, Ith is of the order of 5 . lo3 kW/m2(0.5 k w / n 2 ) .  

This corresponds to  a nonlinear coefficient of the order of which is comparable 



to that obtained in the process of director reorientation. In comparison, this is six 

orders higher than what we find in the so called highly nonlinear materials like for 

example CS2. Thus we obtain here a giant optical nonlinearity.  At twice the 

threshold intensity the induced tilt 8 is as high as 30°! If the medium is made of 

chiral molecules or has chiral dopants, we get at any non-zero 8 a chiral smectic C. 

In some chiral smectic C ,  the tilt angle and the pitch are decoupled while in others 

they are coupled. In the second case a given 8 corresponds to a unique pitch. We 

note that we can get all the effects already referred to in nematic and cholesterics, 

but here they will be due to suppression of c-director fluctuations. We point out now 

the existence of some new nonlinear optical effects due to this new process of tilt 

change in a laser field. 

3.4 Nonlinear Optical Effects 

3.4.1 New periodic structures 

We take up next a smectic A (i.e., at  T > TCA) with light propagating perpendicular 

to the layers. Figure 3.2 depicts this situation. Then in the standing wave geometry, 

smectic A 

Figure 3.2: (a)  Smectic A liquid crystal in the standing wave geometry. The laser 
beam propagates pamllel to the layer normal and the electric vector is parallel to  
the layers. (b) When the intensity of the laser beam at the antinode is below the 
threshold intensity for the smectic A to achiral or chiral smectic C transition we get 
only smectic A. 

the electric field is periodic inside the medium. Therefore we expect a periodic vari- 



ation in the director tilt. It has already been said that the director is tilted only in 

the regions of field strength above a threshold. Thus we get smectic A and smectic C 

type blocks to alternate along the direction of propagation. This can happen even 

when the incident intensity is only slightly greater than one-fourth of the threshold 

intensity since at the antinodes it will be equal to  the threshold intensity. Just above 

this intensity; the thickness of the smectic A blocks will be much more than that of 

smectic C. With increasing intensity the smectic C block thickness increases and a t  

very high intensities it becomes much more than that of smectic A blocks. A possi- 

ble evolution of the structure is depicted schematically in figure 3.2 and figure 3.3. 

Very much the same can be expected in smectic A which has a low temperature 

Figure 3.3: (a) Smectic A and smectic C blocks when the intensity of the laser beam 
is just above the threshold for smectic A to smectic C transition. The smectic A 
block is much thicker than the smectic C block. The  tilt Sin the smectic C block is 
non-uniform. (b)  Smectic A and smectic C blocks when the intensity is very high. 
The smectic C block is now thicker than the the smectic A block. I n  both ccrses the 
tilt is non-uniform i n  smectic C block. Insets show the smectic layers in A and C 
regions. 



chiral smectic C phase. If the pitch is very large and so coupled to  tilt angle that  it 

varies inversely with the tilt angle then above a threshold intensity we d l  be in the 

Mauguin limit. Thus we obtain thick smectic A blocks alternating with thin chiral 

smectic C blocks as shown in figure 3.3 but with smectic C blocks replaced by chiral 

smectic C blocks. This structure is rather reminiscent of the t i s t  grain boundary 

I > smectic A 

- twist axis > chiral smeaic C 

Figure 3.4: The figure shows the laser beam propagating through a chirul smectic C 
perpendicular to the twist axis and parallel to the smectic layers. The electric vector 
is perpendicular to the layers. We get smectic A regions at the antinodes when beam 
is very intense. 

phases. With increase of intensity thickness of the chiral smectic C blocks increases. 

Now let us consider again a chiral smectic C (near the chiral smectic C - smectic A 

transition) with the incident light, whose wavelength is very l a ~ e  compared to  the 

pitch, propagating parallel to the layers with polarisation parallel to the twist axis. 

In this situation the incident polarisation is an eigenmode. Then in the standing m v e  

geometry we obtain periodic variation of the tilt angle, along the  layers leading t o  a 

novel two dimensional periodic structure. At high intensities this periodic structure 

consists of alternating smectic A and chiral smectic C blocks in a direction perpen- 

dicular to the inherent twist axis. This structure has been schematically shown in 

figure 3.4 

3.4.2 Chiral smectic C 

We study next a chiral smectic C in which the tilt angle anh the pitch are decoupled. 

Let a linearly polarised light propagate along the twist axis in the llauguin limit, . 

such that the electric field is locally in the plane of the molecular tilt as shorn  in 



figure 3.1. An increase in the laser intensity leads to an increase in the tilt angle. 

In smectic C or chiral smectic C the elastic constants for the elastic deformations 

of the c-director (which is like n of a neamtic) increases like 02. Hence, increase of 

laser intensity increases the effective twist elastic constant kz. Therefore: the pitch 

which is proportional to k2 also increases. In this sense this process is no different 

from the effect due to suppression of the director fluctuations considered in the case 

of cholesterics. For I = lo4 kW/m2(1 kW/cm2) the relative change in the elastic 

chiral smectic C I smectic A 

Figure 3.5: Figure shows schematically the pitch P and the tilt angle 19 variation near 
a smectic A to chiral smectic C transition. 

constant k2 due to  change in 9 is of the order of 0.6 which is quite high compared 

to due to suppression of the c-director fluctuations. The resulting change in 

the refractive index is of the order of Hence: pitch changes are very large. In 

some chiral smectic C's, 8 and the pitch are coupled, as the transition to smectic A 

is approached the pitch increases to start with, reaches a maximum and then sharply 

falls to zero at the transition point as shown in figure 3.5 [6]. But the tilt angle 8 

monotonically decreases to zero as the transition point is approached (see figure 3.5). 

If we assume that the tilt angle and the pitch are coupled in this fashion then we 

obtain an interesting behaviour in the Mauguin limit. Increase of laser intensity 

increases the tilt angle. This may either increase or decrease the pitch depending ' 

upon the inherent tilt angle and pitch at a given temperature. 



3.4.3 Effect of third harmonic generation 

In smectic liquid crystals the symmetry allows the generation of a third harmonic 

polarisation [2] in the geometry shown in figure 3.1 (a). The electric vector of third 

harmonic can be parallel to  that of the fundamental. Invariably, there will not be 

a perfect phase matching between the fundamental and the harmonic due to optical 

dispersion. Hence, the torque on the molecule is different at  these two wavelengths. 

Generally, a t  the harmonic E, will be higher leading to  higher torques. If the smectic 

is near a smectic A to chiral or achiral smectic C transition then a sufficiently intense 

electric field of the third harmonic induces a tilt as discussed earlier. The tilt will 

be periodic and the period is given by 7r/(k3, - k,), where the k, and k3, are the 

wavevectors for the fundamental and the third harmonic respectively. 
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