
Chapter 4 

NEW NONLINEAR OPTICAL 
EFFECTS IN NEMATICS AND 
CHOLESTERICS DUE TO 
DIRECTOR REORIENTATION 

A pure Thought-Mind surreyed the c~s~;L: .c  act. 

Sri Aurobindo in Savirii. -2 259 

4.1 Introduction 

Nonlinear optics in liquid crystals due to the director reorientation in a laser be= has 

been an important topic of research. It so happens that this process as s a i i  ezrlier 

leads to giant optical nonlinearities which is lo6 - lo8 times that  found h 5 M d s  

like CS2 [I, 2, 31. Incidentall~r, the nonlinear coefficient in liquid crystal. is very 

sensitive to  the initial director orientation and sample preparation [4. 5:. Y a a t i c  

liquid crystals have been explored in great detail. Yet, cholesterics has nor d r m  as 

much attention in the study of nonlinear optical effects permitted in them. -linfingst 

the first few studies in these liquid crystals mention may be made of H. G. T ~ l ' s  

investigations. He reported optical bistability in these systems [6]. 0n . l ~  a Fear 

earlier to this Ye and Shen studied the optical field induced helical s t r u m s  near 

the isotropic-cholesteric transition [7]. After the first obsenation of giam optical 

nonlinearities in nematics, Zeldovich and his collaborators worked out the theory 

of the orientational nonlinearity in the cholesterics [8, 91. Lee et. al., smdjed the 



cholesterics in the Bragg geometry and observed the self-focusing of the reflected 

beam which was explained again on the basis of director reorientation process [lo]. 

Zeldovich and his group have extensively studied the process of director reorientation 

in cholesterics apart from other liquid crystals and a few of the nonlinear optical 

effects is summarised in their review article [4]. Here we study the effect of the optical 

field in a nematic, ferronematic and a cholesteric in the presence of an external static 

magnetic and electric fields. In situations where the director reorientation is absent 

we look at the implications of the usual classical Kerr nonlinearity. 

4.2 Nematic in a Standing Wave + 

We now consider a case where a uniform nematic is in a tilted configuration as shown 

in the figure 4.1 (a). A laser beam linearly polarized in the plane of director tilt is 

incident normal to  the sample surface. Due to the reflection a t  the other boundary 

we get a standing wave inside the medium. The electric field of the standing wave 

results in a reorienting torque on the director. Since in the standing wave the electric 

field is periodic inside the medium we expect a periodic variation in the director tilt 

also. The director torque is maximum in the regions of the highest field strengths 

i.e., a t  the antinodes. As in the previous cases in a standing wave described in 

chapter 2 here also we get a reflection of the incident laser beam. To start with, a t  

low intensities only a weak reflection off the bounding rear surface contributes to  the 

field of the standing wave. At these intensities the standing wave field at  the antinodes 

is not strong enough to reorient the uniformly tilted director. As the laser intensity 

increases the reflected component also increases which in turn increases the amplitude 

a t  the antinodes. The ensuing increase in the torque on the director may lead to  an 

appreciable change in the director configuration Ieading to  a periodic variation in 

the director tilt as shown schematically in the figure 4.1 (b). This periodic structure 

Bragg reflects all the more the incident light. 

In short we again find a total reflection of the incident light or self - 

iridescence. We must remark here that the same effect could be expected in princi- 



Figure 4.1: (a) A tilted nematic. The director is anchored at the boundaries at an 
angle to the glass plates. The polarization of the laser field is parallel to the plates 
in the plane of the tilt. The nodes and antinodes of the standing wave at very low 
intensities have also been shown. (b)  The periodic variation of the director tilt due to 
reorientation induced by  the standing wave set up in the medium. 



ple even in other materials like the usual crystals. But in view of the smallness of 

the Kerr coefficient in such media the effect may not be strong enough to lead to  

self-iridescence. 

4.3 Nematic in Magnetic and Optical Fields 

Now we consider the contribution to the free energy density by electric and magnetic 

fields of a laser beam. Even though these fields oscillate a t  a high frequency of 

1014 - 1015Hz they can exert a torque on n since the torque arising from dielectric 

and diamagnetic anisotropy of the medium depends quadratically on the field. In 

principle there is a contribution to the free energy density from both electric and 

magnetic fields. In fact, the two energy densities are equal in vacuum. But, in 

nematics both the diamagnetic susceptibility and its anisotropy are very small each 

being of the order of Hence for optical fields el&12 = l?Ll2, where c is the 

dielectric constant, E and 31 are electric and magnetic fields of the laser beam. In an 

anisotropic medium the free energy density due to the optical field is given by [4, 111: 

where, ~ j k  is the second rank dielectric tensor of the medium, Ej(r, t )  is a component 

of the electric field of the light wave. We have to solve the Maxwell wave equation 

for the laser wave in the medium. That is, E must be obtained from : 

w is the frequency of the light wave, c is the velocity of light and D is the displacement 

vector whose components are given by Vi = Ck cjkEk. The determination of the 

steady state structure requires a knowledge of E permitted by the Maxwell equations. 

The eigenstates of the electric field vector E, which go through the medium 

unaltered, are E parallel and perpendicular to the director n. In this chapter, we 

consider cases when the director is confined to x - z plane. Also we restrict ourselves 

to a linearly polarised light wave propagating along z-axis with its electric vector E 



Figure 4.2: Geometries showing the orientation of the director n with to the 
electric field & of the incident light and a static magnetic field H- (a)  H = 0; (b )  H 
is perpendicular to E,  k is the direction of propagation of the lzght, 31 is the magnetic *. 

vector associated with the light which is perpendicular to the plane of the figure. 

along x-axis. Then field & variations are also along z .  The geometry is depicted 

in figure 4.2 (a). It is easy to see from the geometry that the polarisation of the 

light wave is preserved during its passage through the medium. The h....well xave 

equation is solved in the approximation that the director distortions in the medium 

are on a length scale large compared to  the wavelength of light. Then wlutiom to 

the wave equation (4 .2)  become [dl: 

E ,  sin 4 GOS q4 
&,(z) = - A  x e x p [ - i k o ( r l l  ~ l ) ~ / ~ ( e l + r ~ s i n ~ 4 ) - ~ d z ~ ]  ( 4 . 4 )  

( e l  + ea sin2 4)  f 
where, k, = wlc ,  A is the amplitude of the light wave and 4 = 4 ( z )  is the angle 

between the director n and the electric vector & . Then from equations (4.1): (4 .3)  

and (4 .4)  the optical field free energy density becomes: 

where I ( =  g ( e a c , ) ? )  is a measure of the intensity of light. We note that in the 

limit of small dielectric anisotropy F0 goes over to  the familiar expression for the field 

contribution to  free energy density in static electric fields, viz., Fd,, = -€,I? m2 4.  

It  is important to  point out the salient features peculiar t o  the nonlinear 

optical reorientation effects as compared to  reorientational effects in static electric 



fields. In the optical case, the Maxwell equation G - V = 0 leads in the plane wave 

approximation to  k . 2 7  = 0, where k is the direction of light propagation. This implies 

that the component V, vanishes identically. Since D, = xi E,,&, and E, = 0 we get 

I, = E,,/E,, Ex. The equation (4.4) has been obtained from equation (4.3) using this 

relation. On the other hand, in the case of the static field we have the two Maxwell 

equations viz., V x E = 0 and V . D = 0. The first of these equations leads to  the 

relation = 0 and hence Ex is a constant. The second equation with appropriate 

boundary conditions again implies Dz = 0 thus leading to the same relation between 

E, and E,. Hence instead of equations (4.3) and (4.4) we get in the case of static 
, 

fields Ez = constant and E, = 6, sin 4 cos 4 Ex/ (€ -  + e, sin2 4). 

The magnetic free energy density of a nematic in a static magnetic field is 

given by: 

where n is the nematic director, H is the static magnetic field, X, is the diamagnetic 

anisotropy which is equal to  ( x I I  - x L )  with XI, and 1: as respectively the diamagnetic 

susceptibilities parallel and perpendicular to the director. In a free sample n will be 

either parallel or perpendicular to the magnetic field depending on whether is 

positive or negative. 

We now consider 'the effect of the electric field E of the light wave on a 

nematic in the presence of an external magnetic field. Then the net field free energy 

density is 3 = 3, + 3,. The different geometries ~ h i c h  could be studied include the 

electric field of the light wave E being either parallel or perpendicular to the static 

magnetic field H with E, and X, being positive or negative. 

We discuss only one geometry shown in figure 4.2 (b) where E is perpendicular 

to  H and both e, and X, are positive. The corresponding equation of equilibrium 

obtained by minimising the total free energy is: 

1 

I e l  T sin 4 cos 4 
- X a  H~ ~9 C O S ~ = O  

(1 + T s in24) j  

where T = E , / E ~ .  It is clear from equation (4.7) that the torque acting on the director 



due to the static magnetic field H opposes that due to the electric field I of the light 

wave. 

H (Gauss) 
Figure 4.3: Phase diagram for the uniform state in a nematic. The dashed curve is 
a line of first order transition. The dotted lines 1 and 2 are stability lines. Here I is 
the measure of intensity. ril = 2.89, €1 = 2.25, K = dyne. 

We have worked out the different uniform states permitted by equation (4.7). 

In the uniform state the director n can be either parallel(4 = 0) or perpendicular(4 = 

7r/2) to the electric field I. The allowed uniform states are obtained by appealing to 

the total free-energy. There can be a switch over from one uniform state to the other 

as either I or H is changed. The phase diagram so obtained is as shown in figure 4.3. 

We also find metastable states in the system. These are states with minima in the 

total free-energy functional but not the global minima. The dashed line in the phase 

diagram is a line of coexistence of the two states with 4 = 0 and 5. The dotted lines 

1 and 2 are lines of stability across which a particular orientation of the director goes 

from an unstable state to a metastable state and viceversa. The orientation of the 
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director in the different regions A, B, C, D, and E are given in Table 4.1. 

Table 4.1: The orientations of the Uniform states in the different regions of the phase 
diagram shown in figure 4.3 

[r I Uniform State 11 
I 1 Region I Stable I Metastable 1 

II I States I States I) 

4.3.1 Ferronematics in magnetic and optical fields 

Ferronematics are a dilute uniform suspension of needle like magnetic grains in a 

nematic. The grains preferentially get aligned along the local nematic director when 

the system is cooled from its isotropic phase in an external magnetic field. The 

director orientation in these systems may be altered by the application of static 

magnetic fields as low as 10-100 Gauss. On the other hand, to effect the same change 

in a normal nematic, magnetic fields as high as 1 kG would be required because of the 

small value of the diamagnetic anisotropy. Further, if the grain concentration is low 

enough, it will not alter the passage of light through the medium. In a ferronematic 

there are additional contributions to  the free energy density, one due to  ferromagnetic 

interaction with the external field and the other due to  entropy of mixing between 

the guest (magnetic grains) and host (nematic). The net contribution first worked out 

be de Gennes et. al., is given by [12]: 

Here f is the volume fraction of ferromagnetic grains in the nematic matrix, M is 

the magnetisation in the medium, kg is Boltzmann's constant, T is the absolute 

temperature and cl is the volume of the sample. Due to mechanical coupling between 

the grains and the director n: the average magnetisation M is along n and the 
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magnitude of M is f times the average grain magnetisation. In these systems. the 

uniform state has a constant f . 

Due to an increase in the number of independent parameters in ferronemarics, 

we have many more possibilities. Here M can be either parallel or antiparallel to H 

with E, and X, being positive or negative. For the purposes of our dixussion here 

we treat only the following two cases since these exhibit some new and interesting 

features. 

Case1 : E perpendicular to H, e, > 0, X, < 0 and M parallel to H 

Case11 : E perpendicular to  H: E, > 0: X ,  > 0 and M parallel to H 

The other cases are similar to one or the other of these two cases. 11-e discuss the 

first case in detail. 

Case I 

The geometry for this case is depicted in figure 4.2 (b). The free energc. density of a 

ferronematic in a static magnetic field in the presence of a laser field is obtained by 

adding equations (4.5), (4.6) and (4.8) i.e., 

where m is the average magnetisation of an individual grain. 

In the uniform state of a ferronematic there is no grain segregation and 

therefore f is a constant. Hence the last term in the free e n e r e  is a comtant. The 

uniform states are obtained by minimising equation (4.9) : 

The permitted uniform states are (i) n along the magnetic field(o = ~ / 2 !  and (ii) n 

at an angle to the field(4 = 6,). The phase diagram for the transition bemeen these 

permitted uniform states is depicted in figure 4.4. The transition £rom one uniform 

state to another in this case is of second order. In the region A we have o = 7r/2 and 

in the region B, 4 = 4,. One interesting feature of this case should be stressed here. 



At a constant optical intensity below a threshold value, when the magnetic field is 

H (Gauss) 

Figure 4.4: Phase diagram for the uniform state of a ferronematic with & perpendicu- 
lar to  H ,  E, > 0 ,  X ,  < 0 ,  M parallel to  H .  The  starred curve is a line of second order 
transition. I n  all our calculations i n  a ferronematic we have used the parameters m 
= 2 Gauss, p = f$ = 0.02 Gauss-', 7 = and X ,  = cgs. 

continuously increased the system undergoes a transition from a uniform state with 

4 = 4, to another uniform state with 4 = 7r/2 and returns back to the initial uniform 

state i.e., 4 = 4,. Thus the system exhibits a reentrant phenomenon. Table 4.2 gives . 

the orientations found in different regions. 

Table 4.2: The  various orientations of the Uniform state in the dgeren t  regions of 
the phase diagram shown in figure 4.4 



Case II 

The geometry in this case is again the same i.e., the one shown in figure 4.2 (b). The 

permitted uniform states are (i) n along the magnetic field($ = 7r/2) and (ii) n at 

an angle to the field($ = 4,). The phase diagram for the transition between these 

H (Gauss) 

Figure 4.5: Phase diagram for the uniform state of a ferronematic with & perpendic- 
ular to H ,  E ,  > 0, X ,  > 0 and M parallel to H .  The starred line represents a second 
order transition. Dotted line is a line of stability. 

permitted uniform states is depicted in figure 4.5. The transition from one uniform 

state to  another in this case is of second order. In the region A we have the stable 

state at  4 = 7r/2 and in the region C, $ = 6,. In region B, the stable states are 

same as in region A and in addition we also have $ = 3 ~ / 2  which is metastable. The 

starred line in figure 4.5 is a line of second order phase transition and the dotted line 

is a line of stability. Interestingly, reentrant behaviour is not seen in this case. Table 

4.3 gives the orientation of the director in the different regions of the phase diagram. 
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Table 4.3: The  various orientations of the Uniform state i n  the diflerent regions of 
the phase diagram in figure 4.5 

4.4 Cholesterics 

We next study the new nonlinear optical defects due to director reorientation process 

in cholesterics. 

4.4.1 Global structural switching: 

We have mentioned in the introduction that [13],  in the Mauguin limit, the eigen- 

modes are linearly polarized waves. The electric vector is either parallel or perpendic- 

ular to the local nematic director everywhere. Consider the system in a configuration 

where one beam, say beam 1 has its electric vector parallel to the local director and 

the other, say beam 2 perpendicular to the director. The beams are in general of 

different wavelengths. 

Figure 4.6 illustrates this situation when the beams are counter-propagating. 

The corresponding free-energy density obtained by generalising that for a single beam 

is given by: 

F =  -r,(l) I 1 / 1 6 ~ c  + ~ ~ ( 2 )  12/16rc (4.11) 

Here Il and I2 are the intensities of the two beams and c is the velocity of light. 

The positive dielectric anisotropies r.(l) and r,(2) are defined by ra ( i)  = ril ( i)  - 

€1 ( i )  ; i = 1,2 ,  where (2) and €1 (i) are the dielectric constants parallel and per- 

pendicular to  the director. They could be different for the two beams due to the 



Figure 4.6: Two counter-propagating beams in  a cholesteric liquid crystal in the -Ifau- 
guin limit. The wave vectors of the two beams are parallel to  the twist a i s .  The elec- 
tric vector of beam 1 is parallel to the local director and that of beam 2 is perpendiczlar 
to the local director. 

natural optical dispersion in the medium. To start with let Ilea ( 1 )  >> (2) then 

3 < 0 and the system will adopt a configuration where locally the director is dong 

the electric field of beam 1. When the intensity of beam 2 is increased nirh respect to 

beam 1, the free-energy density becomes positive ( F  > 0) above a threshold intensity 

given by: 

12th = ~ a ( 1 )  I l I f a ( 2 )  

In order to reduce the energy, the cholesteric will globally switch to  a configuration 

such that the electric field of the beam 2 is everywhere parallel t o  the director. In 

this state the free-energy density again becomes negative. 

If the two dielectric anisotropies €,(I)  and ~ ~ ( 2 )  are negative then beam 1 

whose electric vector is parallel to the director is not in a favorable state but beam 

2 is in a favorable state. If now the intensity of beam 1 is increased xith respect t o  

beam 2 then as in the previous case, beyond a threshold intknsity- the cholesteric will 

rotate globally through 7r/2 to  minimize the total free-energy. 
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Chapter 5 

LATTICE INSTABILITIES IN 
NEMATICS AND 
CHOLESTERICS IN A LASER 
FIELD 

Design's miraculous potency was caught 

Laden with beauty and significance.. 

Sri -1urobindo in Sa~itri? -p 267 

5.1 Introduction 

A periodic lattice is formed in a nematic in the presence of an external static field as 

discussed in the introduction. This is due to the flexoelectric effect. In the presence 
* 

of another external field this structure becomes a soliton lattice. In a cholesteric an 

external magnetic or electric field can lead to director reorientation and a uniformly 

twisted cholesteric becomes a soliton lattice. In this chapter we discuss a few nonlinear 

optical effects in such soliton lattices due to the director reorientation process. We 

study the unwinding of the twisted structure in the presence of a laser field and 

contrast with the same transition which is well studied in the static electric and 

magnetic fields. 



5.2 Nematic in Electric and Optical Fields 

In this section we first look at  the existence of a flexoelectric lattice in the presence 

of a combined action of static electric and optical fields. Next, we study the same 

lattice in the Bragg mode. Finally, we study the implications of Kerr nonlinearity. 

5.2.1 Induced flexoelectric lattice 

In a nematic made of either pear shaped or banana shaped molecules, the average 

permanent dipole moment of the phase is zero since they can have two opposite 

orientations with equal probability. Yet, if there are splay and bend distortions the 

molecules will rearrange themselves and then the average dipole moment is non-zero 

leading to a spontaneos polarisation as discussed in chapter 1. This phenomenon is 

akin to  piezoelectricity of crystals. It is well known that a static electric field in 

small dielectric anisotropy materials can lead to an instability leading to a periodic 

structure. The flexoelectric contribution to the free-energy density is proportional 

to  the strength of the distortion and is linear in the electric field as discussed in the 

introduction. 

The total free-energy density of a nematic in the presence of a static electric 

field is given by [I]: 

where n is the director, q5 is the angle made by the director with the z-axis, K is the 

Frank elastic constant, e is the flexoelectric constant, Es is the static electric field 

and e: = c/l - e i ,  the static dielectric anisotropy. If e: and e are of opposite signs, 

then it can be shown [I] that a splay-bend flexoelectric lattice will be induced by 

the static electric field. It has been shown in chapter 1 that for this to happen the 

material constants must satisfy the inequality: 

It is a one dimensional splay-bend lattice along the z-axis as shown in figure 5.1 (a). 



nnn 
I x n n n  

+,me z 

(ii) 

Figure 5.1: (a)  A j-lezoele'ctric lattice for material parameters which obeys the in- 
equality (5.2). (b) Uniform state of a nematic (i)  along the static electric field@) 
for E: > 0 and (ii) perpendicular t o  the static electric field for E: < 0,  for mate- 
rial parameters which does not obey the inequality (5.2).  (c)  A j-lexoelectric soliton 
lattice with the nearly uniform state parallel to  E .  This  structure is  obtained if the 
static dielectric anisotropy is positive and the j-lexoelectric constant is  negative. The  
laser beam is linearly polarized such that i ts  electric vector E i s  perpendicular to  the 
static electric field E. (d) A j-lexoelectric soliton lattice with the nearly uniform state 
perpendicular to  E. This structure i s  obtained if the static dielectric anisotropy is 
negative and the j-lexoelectric constant is positive. T h e  linearly polarized laser beam 
has i ts  electric vector E parallel to the static electric field E. 



We consider a nematic with material parameters such that  the condition 

(5.2) is not satisfied. Such nematics do not exhibit a flexoelectric lattice because 

the dielectric contribution to the free-energy density exceeds that of the ffexoelectric 

contribution. Thus we get a uniform state shown in figure 5.1 (b) with the director 

parallel(perpendicu1ar) to the static electric field provided 6; is positi\-e(negative) 

and e is negative(positive). The dielectric contribution can be reduced by a linearly 

polarized laser beam so propagating that its electric vector is perpendicular(paralle1) 

t o  the static electric field if 6, is positive(negative). This leads to  an additional 

term (-6; I cos2 4/87rc), to the free-energy density. Here, 6; is the optical dielectric 

anisotropy. Then we get a flexoelectric lattice above a threshold laser intensity. h . t h e  

presence of the laser beam the inequality for the absence of the flexoelectric lattice 

is: 

[lr:lE;/87r - 6: I/167rc ] > a2 e2 E;/~K (-5.3) 

Thus at  high enough intensity n-e can change the sign of the inequality. This happens 

above a threshold intensity given by: 

Interestingly, this lattice is not the familiar uniform splay-bend lattice(shown in fig- 

ure 5.1 (a) but a non-uniform splay-bend soliton lattice with director distortion as 

shown in figure 5.1 (c) or (d) for two different directions of propagation of the inci- 

dent laser field, parallel and perpendicular to  the direction of periodicity. It has wide 

regions of uniform alignment. 

The evolution of the structure as the laser intensity is increased depends 

on the geometry. We use a wavelength small compared to the optical period of the 

structure. The period of the structure increases with the increasing intensity. l a e n  

the wavelength is greater than the pitch then the pitch increases initially and finally a 

stage is reached-at which the wavelength of the laser beam matches the period of the 

flexoelectric lattice leading to diffraction in the case shown in figure 5.1 (c) or Bragg 

reflections in the case shown in figure 5.1 (d). In the first case the entire structure is 



globally distorted and results in a structure similar to a soliton lattice. In the second 

case we get a large uniform lattice with a small soliton lattice attached to  it. 

5.2.2 Self-induced oscillations 

In a normal flexoelectric lattice when the wavelength of the incident light matches 

with the optical period we get a standing wave. The amplitude is quite high at the 

antinodes to  lead to  a non-uniform distortion at  the antinodes. This results in a 

phase mismatch of the forward and backward propagating waves. The mismatching 

causes the amplitude at the antinodes to  decrease and the structure relaxes back to 

the original field free state. This allowes for a good phase-matching again and the 

process continues indefinitely. Hence we expect here the periodic oscillations in the 

transmitted intensity associated with the structural oscillations. 

5.2.3 Effect of Kerr nonlinearity 

Liquid crystals like any other medium also possess the familiar classical Kerr non- 

linearity. This becomes obvious if we go to  geometries where the process of director 

reorientation is absent. This happens whenever the electric field of a linearly polar- 

ized laser beam is parallel(perpendicu1ar) to the director in a 6, > O(E, < 0) material. 

The induced electric polarization in terms of the laser electric field is given by [2]: 

In centro-symmetric materials all odd rank tensors vanishes. Thus x i j k  is zero identi- 

cally for all achiral systems. Thus we consider only the fourth rank tensor x i j k l  which 

describes the classical Kerr nonlinearity. 

To ascertain the effect of the Kerr nonlinearity we consider the non-vanishing 

components of the fourth rank tensor x i j k l  for a nematic which is a cylindrically sym- 

metric uniaxial system. This tensor is given by [3]: 



Xxxxx Xyyxx Xzzxx 0 0 0 
XxXYcyy XYYYY X ~ ~ Y Y  0 0 
Xxxzz Xyyzz Xzzzz 0 0 
0 0 0 Xyzyz 0 0 
0 0 0 0 Xxzxz 0 
0 0 0 0 0 XTYXY : I 

We saw that for the propagation direction perpendicular to the direction of the peri- 

odicity of a flexoelectric lattice and with its electric vector parallel to  the periodicity 

axis we get a soliton lattice. In this geometry the Kerr nonlinearity due to  this intense 

laser beam alone alters the component of the dielectric tensor along the y-axis (the 

periodicity being along z-axis). Its variation is given by: 

Since the director periodically varies with z we find a periodic variation in 

this component of the dielectric tensor i.e., for a electric vector parallel to the y- 

axis. The amplitude of the variation is directly proportional to the intensity of the 

laser beam. It is easy to see that a flexoelectric lattice is optically homogeneous 

for light incident normal t o  the x-axis and polarized parallel to  it (y-axis) as shown 

in figure 5.2 (a) for beam 1. Interestingly, this will not be true if the Kerr effect 

is included. The structure which is normally homogeneous for a weak light beam 

1 becomes optically periodically inhomogeneous in the presence of the strong laser 

beam 2 propagating in the same direction but polarized in an orthogonal direction (z- 

axis). Thus we get a new diffraction mode in a flexoelectric lattice(cf. figure 5.2 (b)). 

The peculiarity of this geometry is that the intense laser beam leads to a soliton 

lattice due to  the accompanying director reorientation. At high enough intensities 

the period of the structure becomes so large that the new diffraction pattern shrinks 

considerably. This can be circumvented if a static magnetic field is applied along the 

x-axis. The free-energy density is: 
2 

X a H 2  2 F = F o + K  (2) -7 cos i$ - - a4 sin2 4 - eE- 
1 6 ~ ~  az 



Figure 5.2: The diffraction mode i n  a jlexoelectric lattice. (a)  The  electric t.;.ctor 
of the weak beam (beam 1)  is along the y-axis. This passes through the meSium 
without undergoing any difraction. A laser beam (beam 2) is propagating ir. the 
same direction but polarized along the z-axis. (b) At higher intensities eren the %am 
1 suffers diffraction due to the Kerr effect induced by beam 2. 

At a magnetic field strength H = F ( w h i c h  increases with laser intensity). vie get 
C Xa 

a uniform lattice. Thus the effect due to  Kerr nonlinearity alone can be enhance? by 

increasing the laser intensity with a corresponding increase in H. 

5.3 Cholesteric in the Bragg Mode 

We consider light propagation along the twist axis in the three limits viz.. 

(a) X << ApP i.e., the short wavelength limit or the Mauguin  l im i t  (figure 5.3 ( a )  

and (b)), 

(b) X - pP i.e., for wavelengths inside the Bragg band and 

(c) ApP < X < pP and X >> pP or the de V r i e s  limits. 

Here P is the pitch, Ap is the local birefringence and p is the average refractive irdex. . 



Figure 5.3: (a) The laser beam is propagating parallel to  the twist axis of a cholesteric 
and the electric vector is parallel to the director everywhere. (b) The laser beam is 
propagating parallel to the twist axis of a cholesteric and the electric vector is perpen- 
dicular to the director everywhere. (c)  The laser beam is propagating perpendicular to 
the twist axis and the electric vector is parallel to the twist axis. (d )  The propagation 
direction is perpendicular to the twist axis with the electric vector also perpendicular 
to the twist axis. Full line indicates the director in  the plane of the paper and x 
indicates that it is perpendicular to the plane of the paper. E is the electric field and 
k the direction of propagation of the laser beam. 

5.3.1 Self-induced oscillations 

It is useful to recall here that for a circular polarisation which has the same sense as the 

helix of the cholesterics, they reflect totally all wavelengths within the Bragg band of 

wavelengths of width AX = ApP centered around A, = pP [4]. This reflected circular 

wave interferes with the forward propagating circular wave and sets up a standing 

wave inside the medium which is linearly polarized. At the long wavelength edge of the 

Bragg band its electric vector is parallel to the local director while it is perpendicular 

to the local director at the short wavelength edge of the reflection band. Inside the 

Bragg band the linearly polarized standing wave has its electric field at an angle to  

the local director [5] and its intensity exponentially decreases with distance from the 

boundary on which the circularly polarized beam is incident. Inside the Bragg band 

of wavelengths at higher laser intensities the dielectric torque on the director due to  

the electric field of a standing wave reorients the director. As the electric field inside 



the medium is non-uniform the resulting torque and hence the induced local twist is 

also non-uniform. Just as in the case discussed earlier for flexoelectric lattice: a strict 

phase-matching between the waves reflected from different regions of the periodic 

structure is not possible. In such a situation we again find self - induced oscillations 

in the reflected and transmitted intensities accompanied with local oscillations in the 

twist. The time scale involved in this process is the time required for the director 

to relax which is of the order of 77/Kz2q2, 77 being the twist viscosity constant, K22, 

the twist elastic constant and q, the wavevector of twist distortion. This relaxation 

time is in the range of milliseconds to  seconds. Correspondingly, the frequency of the 

oscillations is typically between a few kHz to one Hz. This effect will be a maximum 

at the short wavelength edge of the reflection band at  which the net electric vector 

is perpendicular to  the local director. At the long wavelength edge the same effect 

will be absent since here the net electric vector is along the local director. Similar 

effects are found even in the case of negative dielectric anisotropic materials. In this 

case the effect is maximum at the long wavelength edge of the Bragg band while it 

is absent at  the short n-avelength edge. 

5.3.2 Unwinding of the helix- long wavelength lim.it 

We consider next cholesterics at  wavelengths(X) greater than pP. In this case: as is 

well known [4], the system exhibits a weak optical rotation. This rotation falls as 

1/X2 [6]. Since the wavelength is very large compared to the pitch we can ignore this 

weak optical rotation. Then it is equivalent to a cholesteric in a static electric or 

magnetic field acting perpendicular to  the twist axis. This problem has been studied 

by de Gennes [7] and 1Ieyer [8] and was discussed in detail in Chapter 1. The field 

induces a soliton lattice whose period increases with the field strength and finally 

becomes infinity at  a critical field strength (see figure 1.10). We expect a very similar 

result in an intense laser beam. However, in the presence of a laser beam as the pitch 

increases it eventually leads to a pitch that satisfies the Bragg condition and hence . 

to  a total reflection of the incident light. In the region where the light beam does 
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Figure 5.4: The figure depicts a non-uniform cholesteric appended to almost uniform 
cholesteric which results when the laser beam is propagating in the Bragg mode. 

not enter we get a uniform cholesteric. Hence, we end up with a uniform cholesteric 

appended by a small region that is reflecting the incident light as shown in figure 5.4. 

When ApP < X < pP we get a high optical rotation. Hence, the problem of director 

reorientation along with the changes in optics is hard to analyze. Only a numerical 

approach is possible. Thus we see that a cholesteric to nematic transition in the 

presence of a laser field is entirely different from that taking place in a static field. 

The same effects are to be expected in the case of materials with negative dielectric 

anisotropy. As chiral smectic C is also a twisted structure, an analogous behavior is 

to be found in these systems. In chiral smectic C the c-director in the plane of the 

layers is similar to the nematic director and the unwinding transition here implies 

that the c- director in all layers are aligned parallel to each other. This configuration 

is similar to the smectic C phase where the molecules are all tilted in the same plane. 

Cholesteric in the Diffraction Mode 

In this case we consider seperately the two situations namely, X << pP and X >> pP. 

5.4.1 Short wavelength limit: X << pP 

We assume that the laser beam propagates with its electric vector perpendicular to 

the helix axis. Excepting at  some regularly spaced points elsewhere, the electric 

vector will be at an angle to the director. This angle periodically varies as we go 



along the twist axis(see figure 5.3 (d)). Again free-energy is same as earlier and 

we get as in the previous case a soliton lattice due to the laser reorienring torque 

acting on the director. In this case the refractive index of the medium periodically 

varies for this polarization. Thus an incident plane wavefront emerges as a corrugat,ed 

wavefront. This leads to a phase grating effect resulting in optical diffraction. In thin 

samples internal optical diffraction would be negligible and we get a transition to  the 

completely unwound state at a critical intensity, given by: 

incident internal 
wavefront wavefront 

emergent 
wavefiont 

internal 

no internal diffraction with internal diffraction 

Figure 5.5: Diflraction mode. (a) In thin samples the laser beam does not und5rgo 
much diffraction (b) In the case of thick samples diffraction cannot be neglected. 

However, in thick samples internal diffraction cannot be ignored and the laser 

intensity gets distributed amongst the various orders of diffraction inside the medium 

as shown in the figure 5 .5 .  This stabilizes the structure in a periodically distorted 

state preventing the laser field from completely unwinding the chiral stare. 

5.4.2 Long wavelength limit: pP << X 

The incident laser beam again has its electric vector perpendicular to  the helix ads .  

In this limit the laser field simulates more or less the effect-of a static field case. The 

helix gradually starts unwinding. As the pitch increases and becomes comparable 

to  the wavelength, diffraction takes over. Again it is not difficult to  see that the 

chiral-achiral transition is possible only in thin samples. 



5.5 Reorientation of the Twist Axis 

Consider an unbounded i.e., a free cholesteric liquid crystal. Xow we ask ourselves 

the question of what would happen if a linearly polarized laser beam falls on the 

structure. We study three special cases. 

(i) X << A p P :  This happens typically for wavelengths less than ( 1 1 1 0 ) ~  of 

the pitch of the cholesteric. If the structure adopts a configuration with the twist 

Figure 5.6: The figure (a) depacts a cholesteric at low incident laser intensity and (b)  
shows the reorientation of the twist axis when the intensity of the laser is increased. 

axis along the direction of the laser beam, then the system is optically in the short 

wavelength or Mauguin limit. If the electric field of the laser beam is parallel to 

the local director then there is no torque acting on the director when the dielectric 

anisotropy is positive. The structure is then identical to the field free tffisted state 

(see figure 5.6). Therefore, this state is preferred by the system. In case of materials 

with negative dielectric anisotropy in both the geometries viz., (i) twist axis parallel 

to the direction of propagation it is in the Mauguin limit with the electric vector 

perpendicular to the local director everywhere (see figure 5.3  (b ) )  and (ii) twist axis 

perpendicular to the direction of propagation with the electric ~Pc to r  parallel t o  the 

twist axis, the structure is undistorted (see figure 5.3 (c)) .  Hence, a degeneracy in 

the helix axis orientation exists for A p  < 0 cholesterics. 

(ii) X p P .  In this case there is Bragg reflection, for twist axis parallel t o  the 



direction of propagation and diffraction for twist axis perpendicular to  the direction 

of propagation. In the first case the structure is mostly undistorted excepting near the 

boundary on which the laser is falling. Hence, within a penetration depth it s d e r s  

non-uniform distortion. In the second case there is a global distortion leading to  a 

soliton lattice which has a higher elastic distortion energy. Therefore n-e expect the 

helix axis to be aligned along the direction of propagation i.e., the situation shown 

in figure 5.4. 

(iii) X >> pP. In this case, as already said the laser field simulates the case of a static 

field leading to a soliton lattice. With increase in intensity, the pitch increases. When 

the condition pP zz X is satisfied we get either Bragg reflection or the diffraction of 

light resulting in a nonuniformly twisted structure. However, distortion is confined 

to  a small region in the Bragg mode. Hence this will be the preferred state at high 

intensities. The configuration is again as shown in figure 5.4. 

5.6 Effect of Classical Optical Kerr Nonlinearity 

To ascertain the effect of the Kerr nonlinearity in cholesterics we note that the 

cholesterics can be looked upon locally as nematics. Thus locally the symmetry 

of the cholesteric is same as the nematic and thus the Kerr nonlinearity is again 

described by the same fourth rank tensor as discussed under nematics. 

We saw that for the propagation direction perpendicular to  the twist axis 

with its electric vector also perpendicular to the twist axis we get a soliton lattice. 

In this geometry Kerr nonlinearity due to this intense laser beam alone alters the 

component of the dielectric tensor along the twist axis (y-axis). Its variation as in 

the case of a flexoelectric lattice is given by: 

Since 4 periodically varies with y we find a periodic variation in this com- 
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Figure 5.7: The diflraction mode in a cholesteric. (a) The electric vector of the laser 
beam 1 is perpendicular to the twist axis. This always undergoes diflraction. -4 weak 
beam 2 is propagating in the same direction but polarized parallel to the twist axis. 
A t  low intensities of beam 1, we find that beam 2 is not difiacted. ( b j  -4: higher 
intensities of the beam 1, the same beam (beam 2) suffers digraction. 

ponent of the dielectric tensor i.e., for a electric vector parallel t o  the nvkr axis. 

The amplitude of the variation is directly proportional to  the intensity of the laser 

beam. As already said a cholesteric is normally optically homogeneous for light inci- 

dent normal to the twist axis and polarized parallel to it as shown in figure -5.7 (a). 

The structure which is normally homogeneous for a weak light beam now becomes 

optically periodically inhomogeneous in the presence of the strong laser beam prop- 

agating in the same direction but polarized in an orthogonal direction. Thus we get 

a new diffraction mode in a cholesteric(cf. figure 5.7 (b)). The peculiarity of this 

geometry is that the intense laser beam leads to a soliton.lattice due to the ascom- 

panying director reorientation. At high enough intensities the period of the structure 

becomes so large that the new diffraction pattern shrinks considerably. discussed 



earlier in the case of flexoelectric lattices, the effect of director reorientation can be 

circumvented if a static magnetic field is applied perpendicular to the twist axis and 

the electric field of the laser. At a magnetic field strength H = \/fa I le  X, (which 

increases with laser intensity), we get a uniformly twisted state. This enables us to 

consider the effect due to Kerr nonlinearity alone. 

5.7 Instability in Confined Geometries 

As said in the introductory chapter, in the coarse-grained approximation [4, 61: a 

cholesteric behaves like a smectic A. It can be treated as though it is made of layers 

with each layer having a thickness equal to  half the pitch. In a confined geometry 

with twist axis perpendicular to the plates, with a magnetic field acting along the 

twist axis we get an undulation instability. The undulation instability occurs due 

to  the competition between the diamagnetic energy and the anchoring energy at  the 

boundaries. The layers undergo a periodic distortion perpendicular to the field. The 

relevant free-energy density is given by: 

Here B = K2q,2 with qo being the wavevector of inherent cholesteric twist periodicity, 

is the effective elastic constant for lattice stretching or compression. K' = 3K/8 is 

an effective curvature elastic constant. The critical field at  which this instability is 

induced is given by: 

and the wavevector of the periodicity is then given by: 

where a = dm. In experiments this instability is obgerved as a square lattice 

which is a superposition of the two periodic distortions oriented a t  right angles. We 

discuss this instability here in the presence of a laser beam with optical dielectric 

anisotropy being either positive or negative. 
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It has been said already that a cholesteric liquid crystal behaves optically 

as a homogeneous medium for a laser beam propagating perpendicular to its twist 

axis and with its electric vector parallel to the twist axis (figure 5.3 (c)). The sample 

thickness ( d )  should be much larger than the wavelength of the laser beam. Otherwise 

there will be 'slit' diffraction due to  finite sample thickness on entering into the 

sample. In an anchored finite sample with positive dielectric anisotropy this can lead 

to  an undulation instability just as in static fields [4]. The threshold intensity for 

the instability to set in can be easily obtained from a simple generalisat,ion of the 

equation (5.9). It is given by: 
Ith 16;rr2K 
-=  

C fa Q d 

The ensuing distortion is schematically shown in figure 5.8 (b). 

Assuming, fa = 0.1, K = 10-l1 newton,  P = 20 pm, d = 100 pm we get the 

Figure 5.8: The distortion of a cholesteric i n  an undulation instability. d is  the 
sample thickness. (b) Here 6, > 0 and the sample thickness is  very large compared t o  
the wavelength. Incident laser beam i s  linearly polarized perpendicular to  the plates 
and propagating parallel to  the plates. The  wavevector q of this distortion is along the 
direction of propagation of the laser beam. (c)  Here E, < 0. Incident light is  circularly 
polarized i n  a sense opposite to  that of a cholesteric and is propagating perpendicular 
to  the plates. I n  this case the wavevector of distortion is across the wavefront of the 
incident laser beam. 

threshold intensity to be 3 - lo4 k W / m 2 ( 3  k W / c m 2 ) ,  which is easily realizable. If the 

local dielectric anisotropy is negative then we send the l&er beam along the twist 

axis. If the structure is not in the Mauguin limit then the eigen modes in this case 

are right and left circular polarized waves. In order to avoid Bragg reflection we 



illuminate the sample with a circularly polarized light whose sense is opposite t o  the 

sense of the cholesteric. Again layer undulation instability sets in beyond a threshold 

intensity which is the same as that given by equation (5.12). I t  is eaq- to see that 

in this case the periodic distortion as shown in the figure 5.8 (c) is across the plane 

wavefront of the incident beam. When the wavelength of the light is small compared 

to  the wavelength of the distortion, the laser beam gets diffracted. If the sample 

thickness is so small that the internal diffraction can be ignored. then the evolution 

of structural distortion with increase of intensity will be rather close to  that found in 

the static fields. In the case of thick samples, internal diffraction becomes important. 

Then just above the threshold, light gets redistributed between the different orders 

of diffraction leading to  a different periodic structure. In cases where the wavelength 

of light, A is much greater than q-l then there will be no diffraction and we just get 

the same result as that found in static fields. 

Figure 5.9: The distortion of a smectic due to  laser induced undulation instability. 
d is  the sample thickness. (b) Here E ,  > 0 and the sample thickness ti very large 
compared to  the wavelength. Incident laser beam is linearly polarized parallel to the 
plates and propagating perpendicular to  the plates. The  wavevedor q of this distor- 
t ion is perpendicular t o  the dzrection of propagation of the laser beam which leads 
to  diflraction. If E ,  < 0 we send light parallel to the plates with E along the layer 
normal. Again we get a n  identical instability. 

The same instability can also be observed in smectic -4 with positive di- 

electric anisotropy in a homeotropically aligned sample. Here a linearly polarized 

laser beam propagating along the layer normal as shown in figure 5.9 induces the 



instability. The laser beam is diffracted if the wavelength of light is less than the 

induced periodicity. In materials with negative dieIectric anisotropy, the laser beam 

propagating along the layers with its electric vector parallel to the layer normal leads 

to  the same instability. The threshold intensity for the onset of instability is again 

given by equation (5.12). For typical values of the smectic material parameters and 

d = 300 pm, the threshold intensity is x 25. lo4 kW/m2(25 kW/cm2) which again is 

also presently attainable. Incidentally, for the same sample thickness, to induce the 

same instability we require a magnetic field as high as 120 kG [6]. 
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