
Chapter 6 

SOLITON INSTABILITY 

A covert answer to his seeking came 

In a far-shimmering background of Mind-space.. 

Sri Aurobindo in Savitri, -p 289 

Introduction 

In this chapter we address ourselves to nonlinear optical effects on non-singular topo- 

logical defects called kinks or walls. We have already described briefly in chapter 1 

the director distortions associated with these defects [I: 21. As remarked earlier these 

are unlike true solitons and they do not preserve their shape and velocity after a pair- 

wise collision. Their structures have been well studied in various situations. Yet these 

kink structures have not attracted much attention of the workers in nonlinear optics. 

We have already seen that the electric field associated ni th  a laser beam is 

known to simulate the effect of an external static electric or magnetic field since the 

free-energy density of the nematic depends quadratically on the field. The coupling 

between the director and the electric field of the laser beam arises due to optical 

dielectric anisotropy. In such cases it is neccessary to solve self-consistently both 

the equations of elastic equilibrium and Maxwell equations of electrodynamics. We 

have worked out in this chapter the structural transitions between different permitted 

kinks in the presence of a laser field and a static magnetic field. \Ve consider only 

nematics and a nematic doped with ferromagnetic grains in the following. 



6.2 Kink States in a Nematic 

In a nematic, with positive diamagnetic anisotropy, n can be either parallel or an- 

tiparallel to the external field [3]. When the director in one state which is parallel 

Figure 6.1: The director configuration i n  (a) a bend-rich wall, (b) a twist wall and 
(c)  a splay-rich wall in  an external magnetic field H .  

to  the field H is connected to the director in the other state which is antiparalel 

to  the field, we get a 'wall' or a 'kink' .  There could be three types of walls in ne- 

matics depending on the nature of the associated director distortions. They are the 

bend - rich wall, the twist  wall or splay - rich wall. In a bend-rich wall the director 

is restricted to a plane and the director turns through 180" from one end to  another. 
' 

Its structure is shown in the figure 6.1 (a). In the case of a twist wall the director 

rotates through 180" perpendicular to H. Its structure is shown in figure 6.1 (b). 

The director configuration in a splay-rich wall is depicted in figure 6.1 (c). It is easy 

to see that a bend-rich wall has not only bend distortions but also splay distortions 

in it but is dominated by bend distortions. Hence, we prefer to call the bend wall a 

'bend-rich' wall. Similarly, a 'splay-rich' wall is dominated by splay distortions. 

We can get similar kinks or walls even in the presence of an optical field 

of a laser beam [4]. We start with the free-energy density of a nematic which has 

contributions from both the elastic deformations and exteially applied fields. In the 

one elastic constant approximation and with a static magnetic field the free-energy 



density is given by the sum of free-energy densities 

K 
&lastir = - [(v ' n)2 + (v X n)?] 2 

and 

In the absence of the laser beam, n will be either parallel or perpendicular to  the 

magnetic field depending on whether X ,  is positive or negative. 

Figure 6.2: Geometries showing the orientation of the director n with respect to the 
electric field E of the incident light and a static magnetic field H .  (a) H = 0; (b) H 
is perpendicular to &, and (c) H is parallel to I .  k is the direction of propagation of 
the light, 3-1 is the magnetic vector associated with the light which is perpendicular to 
the plane of the figure. 

In this chapter. we consider only a splay-rich or bend-rich kink state with 

its director confined to the x - z plane and having n varying along z. Also we re- 

strict ourselves to  a lioearly polarised light wave propagating along the z-axis with 

its electric vector & along the x-axis. Then field & variations are also along the z. 

The geometry is depicted in figure 6.2 (a). It is easy to see from the geometry of 

figure 6.2 (a) that the polarisation of the light wave is preserved during its passage 

through the splay-rich kink. The Maxwell wave equation is solved in the approxima- 

tion that the director distortions in the medium are on a length scale large compared 

to the wavelength of light. Then as was shown in chapter 1, the optical field free 



energy density is given by: 

where I(= %(cl1c1)1) is a measure of the intensity of light. A is the amplitude of 

the light wave. It must be remarked that in the geometry shown in figure 6.2 (b) for 

a twist wall or a bend-rich wall the phase varies across the wavefront as it propagates 

through the kink structure. Hence we consider only splay-rich walls. Likewise, in 

geometry shown in figure 6.2 (c) we consider only bend-rich walls because in the 

other two cases the polarisation and or phase varies across the wavefront. 

To make our point clear we discuss briefly the problem associated with a 

twist wall in the geometry shown in figure 6.2 (c), applicable to cases with director 

distortions along the direction of light propagation. The direction of light propaga- 

tion is then along the twist axis. We work in the approximation that the director 

distortions are on a length scale very large compared to the wavelength of light. Then 

this leads to the Mauguin limit or adiabatic limit. In this limit as already said, the 

base states are linearly polarised parallel or perpendicular to the local director. Hence 

if the incident light is polarised parallel to the director, initially, then it remains al- 

ways parallel to the local director. This does not result in any change in the director 

configuration as it does not lead to any optical torque on the director. Only a t  low 

magnetic fields this approximation is valid and the wall structure is unaffected. -4t 

higher magnetic fields this approximation breaks down since the wall thickness may 

become comparable to or 1ess.than the wavelength of light. In such cases we find that 

there could be reflection of light by the soliton and also the polarisation state of laser 

wave is not preserved as it propagates through the soliton. This situation is quite 

complex to analyse and a complete solution will be an involved numerical exercise of 

finding the solution of Maxwell's equations and the equations of elastic equilibrium. 

In view of these difficulties we have confined our studies to the planar dis- 

tortions involving splay-rich and bend-rich kinks only. The splay-rich and bend-rich 

kinks involve both type of distortions and no qualitative changes are found if elastic 



anisotropy(sp1ay elastic constant being not equal to the bend elastic constant) is in- 

cluded. In fact we observe that the elastic anisotropy leads only to an increase or a 

decrease in the thickness of the kink. Hence, to  extract the salient features we work 

in the one constant approximation. 

6.2.1 Kinks in an optical field 

We first study kinks permitted in an optical field. The relevant geometry is that  

shown in figure 6.2 (a). The total free-energy density for planar distortions is [5. 61: 

Here r = E , / E ~  The kink state has only splay-bend distortions in the director (see 

figure 6.1 (a)). Minimisation of the total free energy leads to 
1 

$4 I e i  r sin 4 cos 4 
K- = 

8 9  (I. + T sin2 4); (6-5) 

We find numerically, using Runge-Kutta-Fehlberg method, solutions to the above 

equilibrium equation. These solutions are found to be essentially similar to the kink 

solutions permitted in static magnetic fields. 

6.2.2 Kinks in combined magnetic and optical fields 

We now consider the effect of the electrical field E of the light wave on kinks that  

are already present in the presence of an external magnetic field H. The different 

geometries which could be studied include the electric field of the light wave E being 

either parallel or perpendicular to the static magnetic field H with E ,  and X ,  being 

positive or negative. 

We discuss only one geometry shown in figure 6.2 (b) where E is perpendicular 

to  H and we have a t  E = 0 a splay-rich wall. We assume both E ,  and X, to be positive. 

The corresponding equation of equilibrium is 

It is clear from equation (6.6) that the torque acting on the director due to the static 



H (Gauss) 

Figure 6.3: Phase diagram for the kink state in a nematic. The dashed curve is a 
line of first order transition The dotted lines 1 and 2 are stability lines. Here I is 
the measure of intensity. ell = 2.89, €1 = 2.25, K = dyne. The A, B: C. D 
and E along the vertical line are points at which the kink solutions are obtained(see 
figure 6.4). 

magnetic field H opposes that due to the electric field E of the light wave. 

Now we take up kink states that can exist in the same geometry. We solve 

equation (6.6) to get the permitted kink states. The phase diagram of transitions 

between different kink states is shown in figure 6.3. Interestingly, we find that the 

phase diagram for transition between different permitted kink states is the same as 

that for uniform states discussed in chapter 4. In terms of an effective potential 17(4) 

defined by: 



0). (i i) 
Figure 6.4: ( i )  Negative of the effective potential V as a function of 4. (ii) Kink 
solutions. Here 4 is  i n  radians and < = K/x,H2, the coherence length. 

Then equation (6.6) can be written as 

The uniform states are given by the minima of -V(4). The potential as a 

function of 4 and the permitted kink solutions in regions A, B, C, D and E of the 

phase diagram are shorn in figure 6.4 (i) and 6.4 (ii) respectively. In figure 6.5 we 

show the director profiles of the kink states permitted in these regions. The flat region 

in a kink profile corresponds to a local minima in - V or equivalently a metastable 

state. These are states with minima in the total free-energy functional but not global 



Figure 6.5: Director configuration of the kink states permitted i n  the regions A, B: C; 
D and E of the phase diagram(figure 6.3). 



minima. As we go from region A to  region El the laser intensity I or consequently 

the electric field & increases in magnitude. We get a splay-rich kink in the region 

A while we end up with a bend-rich kink in the region E. There is a first order 

transition between these two kink states. On the dashed line two new kink states 

connecting - ~ / 2  to  0  and 0  to ~ / 2  become permitted solutions. This is unlike in a 

usual nematic in external static fields where the kink connects only 0  and T states. 

Hence, the scenario is like this: a [ ( - ~ / 2 ) ,  ~ / 2 ]  splay-rich kink becomes unstable 

along the dotted line 1 and splits into a bound pair of [ - ~ / 2 , 0 ]  and [ O . T / ~ ]  kinks 

linked by 4 = 0  uniform state. As I increases further the separation increases and it 

diverges to infinity as the dashed line is approached. On the other side of the dashed 

line the permitted kink solution is a bound kink pair of [O: ~ / 2 ]  and [7r/2. T]. Finally 

these two merge after the dotted line 2  is crossed to result in [0, T] bend-rich kink. 

These results are summarised in Table 6.1 along with the results for the uniform 

Table 6.1: The various Stable and Metastable states and the Kink statw in the dif- 
ferent regions of the phase diagram shown in figure 6.3 

state. This depicts only one set of permitted solutions and not their symmetry related 

ones. Here the topological charge is the total change in the director orientation across 

the kink. The same results are obtained for the case of & parallel to  H but with 6, 

positive and X, negative. 

6.3 Kink States in a Ferronernatic 

An increase in the number of independent parameters in ferronematics leads to many 

possibilities. Here again the magnetisation M can be either parallel or antiparallel 
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to H with E, and X, being positive or negative. For the purposes of our discussion 

here we treat only the following two cases. 

Case1 : E perpendicular to H. E, > 0, X, < 0 and M parallel to H 

CaseI I  : E perpendicular to H: 6, > 0, X ,  > 0 and M parallel to  H 

The other cases are similar to one or the other of these two cases. We discuss the 

first case in detail. 

6.3.1 Ferronematic with negative diamagnetic anisot ropy 

In the case of kinks, different parts of the kink are a t  different orientations with 

respect to  H. This causes the grains to  migrate to regions of lower-energy. Hence 

the grain concentration and thus f is not a constant. We then have to minirnise 

the total free energy both with respect to  f and q5 to  find the equilibrium director 

configuration. 

Minimisation nith respect to f leads to: 

f = C exp(p H sin q5 - 1) 

where C is a constant of integration and p = mQ/kB T. 

Since a kink connects two uniform(degenerate) states of same energy, the 

orientation 4, of the uniform state a t  z = f cc can be obtained from a minimisation 

of the total free energy by neglecting the 'grain segregation'. With the boundary 

condition f = 7 at a = =x and Q = #,, equation (6.7) becomes: 

f = 7 exp(p H (sin q5 - sin 6,)) (6.8) 

Minimisation with respect to  6 yields: 

1 

a29 I T sin 9 cos 9 K -  = 
az2 + I 1 H~ s in4  COS+ 

(1 + T sin2 9) 7 
-m 7 Hexp(p  H (sin 4 - sin 6,)) cos 4 (6-9) 

We solve this equation numerically t o  get the kink solutions. The kink 

structures will be sensitive to I and H. The kink states permitted in this case 



H (Gauss) 
Figure 6.6: Phase diagram for kink states in the geometry considered in figure ,?(a). 
The starred curve represents a second order transition. The dashed curve is a line of 
first order transition. The dotted lines 1 and 2 are stability lines. Q is a tricritical 
point. Kink solutions are presented in regions A, B, C and D(see figures 6.7 and 6.8). 



are [71-/2,57r/2], [(71- - 4,), 4,] and [4,, (37r - 4,)]. The two quantities inside the square 

bracket gives 4 at z = f oo. The resulting phase diagram for the kink state is 

shown in figure 6.6. Up to  a certain magnetic field, the order of transition between 

a [71-12,571-121 kink and a [(T - $,), 4,] or [4,, (371- - $,)I kink is second order. Be- 

yond this field strength this transition becomes first order. Thus there is a tricritical 

point in the phase diagram. The dotted lines 1 and 2 are stability lines. These are 

(iii) 

Figure 6.7: (i) Negative eflective potential as a function of 4, (ii) Kink solutions and 
(iii) Grain profiles in regions A and B of the phase diagram(figure 6.6). $J = f If. 

lines about which a certain director orientation becomes metastable, i.e, the effective 

potential develops a local minima at  this orientation. Along the dotted line 1, the 

director orientations (71- - 4,) and 4, become metastable. Along the dotted line 2, 

the director orientations 71-12 and 571-12 become metastable. 



(i) (i i ) (iii) 
Figure 6.8: ( i )  Negative effective potential as a function of 4, (it) Kink solutions and 
(iii) Grain profiles in regions C and D of the phase diagram(figure 6.6). 

In this case the effective potential is: 
1 

I q 
V(4) = 

I Xa I - - H~ sin2 $ + m f ~  (sin $ - sin 0,)) 
(1 + r sin2 4); 2 

The figures 6.7 and 6.8 show respectively the potential, the kink states and the 

grain profile in the regions A, B, C and D of the phase diagram. In addition the 

phase diagram shows reentrance of a kink state as H is lowered. But this happens 



only below a certain threshold value of the light intensity. We have summarised the 

Table 6.2: The various Stable and Metastable states and the allowed Kink states in 
the diferent regions of the phase diagrams shown in figure 6.6 

salient features of the uniform and the kink states in Table 6.2. We have not depicted 

explicitly the symmetry related solutions. 

Region 

A 
B 

c 

D 

6.3.2 Ferronematic with positive diamagnetic anisotropy 

The phase diagram for the kink state obtained in this case is shown in figure 6.9. The 

starred line is a line of second order phase transition and the dotted line is a line of 

stability. The permitted kink states are [7r/2,57r/2]. [(T - $o), +0] and [4,, (377 - oo)]. 

The phase diagram is richer here than in the previous cases. Here all the interesting 

Uniform State 

features which we obtained in the previous cases are present in this one system. A 

Kink State 

small region in the phase diagram shows reentrant behaviour and there are regions 

where there are new stable states. It may be pointed out that interestingly, reentrant 

Topological 
Charge 
27r 

(i) 277 
(ii) 3;r-24, 
(i) 20, - ir 
(ii) 37i - 24, 
(i) 20, - a 
(ii) 377 - 240 

Stable 
States 

behaviour is not seen for the uniform states in the same case(see chapter 4). On 

the dashed line we find a transformation of a [7r/2. Sn/2] kink into a pair of kinks 

viz., [(r - +,), $,I and [do, (37r - do)]. This transformation is of second order at low 

I and H and first order a t  higher values of I and H implying the existence of a 

tricm'tical point on this line. The dotted lines 1, 2 and 3 arestability lines. Table 6.3 
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2 

- 40 
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gives the essential features of the uniform and permitted kink states in the different 
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regions of the phase diagram.. Here too we can generate symmetry related solutions 

from the ones given in the table. 
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Figure 6.9: Phase diagram for kink states in the  geometry considered in figure 6.2 
(b). Starred and dashed cuves are l ines of second and first order respectively. Dotted 
l ines 1, 2 and 3 are stability lines. Q i s  the tricritical point. 



Table 6.3: The various Stable and Metastable states and the Kink states in the dif- 
ferent regions of the phase diagram in figure 6.9 

6.4 Effect of Boundaries 

G 

Finally, we remark on the influence of the boundaries in a finite sample. Two possible 

geometries are: 

1: with boundaries parallel to the wall. 

7r - 40 

2: with boundaries perpendicular to the wall. 

In case of boundaries parallel to the wall the director which is assumed to be anchored 

at the boundaries will influence the distortion in the bulk. Here the exercise of 

40 

solving Maxwell's equations and equations of elastic equilibrium become boundary 

value problems which add to the computational complexity. In case of boundaries 

perpendicular to  the wall we can show that a half strength defect has t o  exist at  

- 

each boundary. This configuration affects the phase across a plane wavefront of 

light incident on the wall and hence does not conform to the geometrical optics 

approximation. 

- - 
(ii) 37r - 24, 
(i) 24, - 7r 

(ii) 37r - 24, 

- 
- 
- 

- 
- 
- 

- 
- 
- - 
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Chapter 7 

BEAM PROPAGATION 

To read the letters 9f the cosmic script 

And study the bod; of the cosmic self.. 

-Sri AurobirCo in Savitri, -p 266 

Introduction 

At small intensities of the laser beam the refractive index of rFe medium is inde- 

pendent of the intensity. For higher intensities the refractive i n c s  becomes a func- 

tion of the field strength. In fact, the classical Kerr nonlineafqr leads to a non- 

linear refractive index which is proportional to  the laser intensfry. If the medium 

is absorbing we also have the process of thermal indexing. In chapter 2 we have 

shown that in liquid crystals we have in addition to  the nonhea r  processes like 

director reorientation, laser suppression of the director f luctiations, and laser 

induced tilt angle i n  smectics. In the earlier chapters we studiei the effect of laser 

propagation resulting in structural changes in liquid crystals. In this chapter we 

study the effect on the laser beam itself due to these inherent noriinearities of liquid 

crystals. We consider the laser beam propagation in the t ~ o  regimes: (i) the beam 

width is very large compared to the wavelength of laser so that narnral self-diffraction 

of the laser beam can be neglected and (ii) the beam width is s d l  enough for self- 

diffraction to become important. In the latter case we look a t  the possible existence 

of optical solitons in the low absorption limit. As discussed in chapter 1 there could 

be either temporal or spatial solitons. Here we consider only spatial solitons for rea- 



sons to be made clear soon. IVe have worked out the structure of the spatial solitons 

due to  non-Kerr nonlinearities. Here we briefly recount the structure of a spatial 

soliton. In spatial solitons, if the nonlinearity is positive, an incident plane wavefront 

becomes a concave wavefront. This leads to focusing of the beam. On propagation, 

the beam width continues to decrease. When the beam width becomes comparable 

to the wavelength of light, optical diffraction sets in. This leads to scattering of the 

beam. At appropriate intensity it can happen that the diffraction of the beam is 

exactly nullified by the focusing effect due to  the nonlinearity. In such cases the laser 

beam travels without change of shape and is called an optical spatial soliton [I]. It 

should be mentioned that usually the soliton formation length is about a few kilome- 

ters length in the usual nonlinear media [2, 31. In liquid crystals since, the nonlinear 

coefficient is a million times larger the soliton formation length is very small. In 

fact, it can be of the order of few pm. Further, in usual Kerr media the formation 

of spatial solitons require higher intensities neccessary to compensate for the large 

self-diffraction effects. 

Now we briefly indicate why temporal solitons are not being considered in 

our studies. Lam et. a1.,[2, 41 were probably the first to  draw attention to  the optical 

solitons in liquid crystals. They suggested that the optical nonlinearity due to laser 

induced director reorientation results in the formation of temporal and spatial soli- 

tons. Rodriguez et. al., [5 ,  61 also studied this problem in the waveguide geometry. 

These authors, however, did not take into account the inevitable director relaxation 

process in liquid crystals. Director relaxation is a very slow process and has time 

scales of the order of a few milliseconds to seconds. However, the optical pulse prop- 

agates very fast, in fact, with the velocity of light in the medium. Since the field is 

non-zero only for a very short duration and the medium does not respond to  the field 

within that time interval there are conceptual difficulties in accepting the suggested 

solutions for the temporal solitons. In contrast, the process'of director reorientation 

does not lead to such conceptual difficulties in the case of spatial solitons. It may 

be mentioned in this context that, Warenghem et. al., [7] have provided experimen- 
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Figure 7.1: The profile of (a) a bright soliton and (b) a dark soliton along with the 
phase of the propagating wave is shown here. I(x) is the intensity profile across the 
wavefront and @(x) is the phase of the propagating wave. I, is the intensity of the 
background in the case of dark soliton. In the case of the dark soliton we have a phase 
jump of sir 

tal evidence for the existence of spatial solitons in liquid crystals. In liquid crystals 

the nonlinear coefficient due to thermal indexing can be both positive or negative 

depending on the geometry and the polarisation of the laser field. If laser absorption 

is weak or sample thickness is small then we can neglect to a good approximation 

the reduction in the laser intensity during its propagation in the sample. We work 

out solitons in this limit for this nonlinearity which is also known in the literature 

as the thin - film approximation[8]. In fact, in the presence of thermal indexing 

alone, Bertolotti, et. al., [9] have found out numerically that the stable soliton like 

propagation is possbile over small distances in glass fibres. Here, the rigorous solution 

requires one to solve for both the temperature profile and the field amplitude simulta- 

neously. The temperature profile is obtained from the thermal diffusion equation and 
, 

thus this process provides a diffusive nonlinearity. It has been stated already that in 



liquid crystals the nonlinearity could be positive or negative. When this nonlinearity 

balances exactly the diffraction effect we get either a 'bright' soliton or a .dark7 soli- 

ton [ lo]  depending upon the sign of the nonlinearity. Their profiles are shown in the 

figure 7.1. Interestingly, in the case of a 'dark' soliton we have a phase jump of T .  

Beam Modulation and Thermal Indexing 

If the beam width is very large compared to the wavelength of the laser then to  a 

very good approximation we can ignore self-diffraction effects. The beam diameter 

inspite of self-focusing may yet be much bigger than the wavelength. In this section 

we consider nematic liquid crystals in such situations. 

7.2.1 Uniform nematics 

Let a linearly polarised beam propagate perpendicular to  the director with its electric 

vector parallel to it. In this geometry we get an optical nonlinear effect due to  the 

suppression of the director fluctuations. If the material is also weakly absorbing we 

also get thermal indexing since the temperature of the system locally increases leading 

to  a decrease in the local refractive index for this vibration. The change 6 T ( I )  in 

temperature is proportional to  the local laser intensity, I. Hence the change 6 p ( I )  in 

the refractive index is also proportional to I !  The increase in the refactive index for 

light polarised along the director due to the laser suppression of director fluctuations 

can be easily worked out from equation (2.11) of chapter 2. We get: 

and the thermal indexing is similar to  the Kerr process. Its effect on the refractive 

index is negative as made clear in chapter 1. Since these two nonlinear processes 

compete with each other the change in the refractive index' in the presence of both 

these nonlinearities can be written as: 

6p(1) = qlJi- *1,q2 = * ( t 2 X / T 2 n )  I 
dT (7.2) 
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Figure 7.2: Variation of the refractive index when both the processe2 of the suppression 
of the director ~uctuations and the thermal indexing are operating in a nematic liquid 
crystal. I, is the intensity at which the nonlinearity changes its sign. 

The net refractive index change is as sho1.n in figure 7.2. The change 6p 

reaches a maximum and becomes zero again at an intensity I,,, = $/$. Below this 

intensity the process of laser suppression of director fluctuations dominates and 6p is 

positive while above the intensity I, the process of thermal indexing dominates and 

6p is negative. The positive nonlinearity leads to self-convergence and the negative 

nonlinearity to self-divergence of a parallel incident laser beam. 

(i) Thick samples : 

(a) Polarised beam Let us chose the intensity I of the incident beam less than 

I,,,. Hence, initially the beam converges. This increases the intensity in the beam 

due to  reduction of the cross-section of the beam. As the intensity increases and 

becomes greater than I,,, then the beam starts diverging. This leads to  an increase 

in the cross-section of the beam and hence to a reduction in its intensity. Further, 

at  some large width, intensity falls below I, and again the beam starts converging. 

The process repeats indefinitely leading to a periodic modulation of the beam width 



Figure 7.3: (a) The modulation of the beam width when the intensity I < Im. The 
beam initially converges and repeatedly undergoes divergence and convergence. (b) 
The beam width initially increases on  entrance when the intensity is I > Im. On  
propagation, the beam width periodically increases and decreases. 

along the direction of propagation. This is schematically depicted in figure 7.3 (a). 

The same is to be expected even in case of an incident beam with its intensity greater 

than I,. Here the beam width evolution with distance is as shown in figure 7.3 (b). 

(b) Unpolarised beam : Laser beams with electric fields alorg and perpendicular 

to  the director are the eigenwaves in a nematic [ll]. As already said the nonlinear 

coefficient due to thermal indexing, for the wave propagating in a medium with its 

electric vector parallel to the director, is negative and for the orthogonal component 

it is positive. Hence, the component parallel to  the director is diverging while the 

component perpendicular to the director is focusing. Any incident vibration gets 

resolved into these eigenstates. In the case of unpolarised light the two eigenstates 

will be equally intense. When such a beam traverses through a nematic then due . 

to the optical nonlinearity we find that both the components are affected. The 



component parallel to the director undergoes the same tranformations as already 

described. For the component perpendicular to the director 71 is negative and rl;! is 

positive. Hence, if the parallel component focuses initially on entry into the medium, 

the orthogonal component diverges initially. 

(ii) T h i n  samples : 

(a) Polarised beam : This case leads to either focusing or divergence of the beam 

at the exit. This crucially depends on the initial intensity of the incident beam. If 

the intensity is lesser than Im then the beam is focused on exit. If the intensity is 

greater than I, then the beam is divergent on exit. 

(b) Unpolarised beam : In this case when such a beam traverses through a thin 

nematic then due to the optical nonlinearity we get a central bright spot polarised 

parallel to the director, surrounded by a divergent beam polarised perpendicular to  

the director. 

7.2.2 Hybrid nematic 

Non-uniform director configuration also affects the beam characteristics. To illustrate 

this situation we consider propagation in a hybrid aligned nematic whose director 

configuration is shown in figure 7.4. At one of the 5ounding glass plates the director 

is homogeneously aligned i.e., parallel to  the surface and at the other bounding glass 

plate the director is homeotropically anchored i.e., perpendicular to  the surface. In 

the intervening space the director smoothly goes over from one alignment to the other. 

In figure 7.4 (a) the laser beam is polarised parallel to the director and is incident 

on the plate with the homogeneous alignment. VCTe assume optical anisotropy. E ,  to  

be small that we can ignore laser effects on the director. We consider only thermal 

indexing. Then the beam to start with, will diverge. As it propagates, due to thermal 

indexing, the negative nonlinear coefficient decreases in magnitude and changes sign 

at  a particular point and becomes positive beyond it. After this stage the beam 

converges. It is thus possible, by a suitable choice of the thickness, birefringence and 

absorption coefficients to  design a cell where the beam width on emergence is equal to  



Figure 7.4: Beam transformations in a hybrid aligned nematic. The electric vector is - 

in the plane of director distortion. The beam width is the same at both the exit and 
entrance points. (a) Laser incident on the homogeneously aligned surface. (b) Laser 
incident on the homeotropically aligned surface. 

the width it had at the entrance point. On the other hand, in figure 7.4 (b 1 the beam 

is incident on the plate with homeotropic alignment ivith the electric field in the plane 

of the director distortion, the beam initially converges which eventually diverges on 

further propagation. Again it is possible to choose the material parameters such that  

the beam width is the same at  the entrance and the exit ends of the sample. 

7.2.3 Flexoelectric mematic lattice 

It is known that a uniform nematic subjected to a static electric field. under cer- 

tain conditions, exhibits an instability leading to an one dimensional periodic planar 

splay-bend lattice [12]. The wavevector of periodicity is always along the direction 

perpendicular to the static electric field. A schematic representation of this is shown 

in figure 7.5 (a). It has alternate regions of splay-rich and bend-rich deformations. 

Let a linearly polarised beam with its electric vector in the plane of the 

director distortion propagate along z-axis, the direction of. lattice wavevector. We 

shall again assume that 6, for light is so small that the laser field will nor alter the 

director configuration. We consider only thermal indexing. Since thermal inde-xing 



Figure 7.5: (a)  T h e  flexoelectric lattice in the presence of a static electric field E.  
T h e  periodicity i s  along the z direction perpendicular to  the electric field. (b )  Periodic 
variation of the beam width due to  periodic opposing nonlinearities induced b y  thermal 
indexing in a flexoelectric lattice. 



is dependent on the angle between the electric vector of the laser and the director, it 

leads to a nonlinear coefficient which is periodic with the period of the lattice. This 

leads to a periodic convergence and divergence of the incident beam leading to novel 

transformation of an otherwise parallel beam into a beam of modulated width. These 

modulations are schematically shown in figure 7.5 (b). 

7.3 Structure of Spatial Solitons 

7.3.1 Due to laser suppression of director fluctuations 

The nonlinear optical coefficient due to laser suppression of director fluctuations is 

positive. We note that the same process affects even the in-plane fluctuations in the 

c-director of a smectic C liquid crystal when the electric vector of the laser is parallel 

to  the c-vector. 

We consider the soliton solution due to  this nonlinearity alone. The nonlinear 

Maxwell equation in the slowly envelope approximation simplifies to  the nonlinear 

Schrodinger equation (see section 1.7) : 

where & is the envelope of the electric field, Z is the distance along the direction 

of propagation, X is the transverse coordinate, po is the linear refractive index and 

k,  is the wavevector of the laser beam. In the present case the local nonlinearity is 

introduced by the function pnl(I) = The soliton solution for this situation is 

given by 

&(X, Z )  = $(X)exp(ivZ) 

where A = 2pokov and B = 2ksTpok: \l-A5. A beam of this amplitude profile 

travels unaltered through the medium. This is called a spatial soliton. This solution 

has to  be compared with 



Figure 7.6: A typical bright soliton profile when laser suppression of the director 
fluctuations alone acts. X = k,x i s  the  scaled transverse coordinate. L + ( X )  is the  
scaled amplitude of the optical field. 

obtained in the case of usual Kerr nonlinearity. 

This nonlinearity given by 711 is positive and hence we get a bright soliton. 

A typical bright soliton obtained in such a case is depicted in figure 7.6. The above 

nonlinearity is of non-Kerr type and as said in chapter 1 it leads to only a solitary 

wave [lo]. We have assumed here a local response of the medium to the laser field 

i.e., changes in the order parameter a t  different points are uncorrelated. 

7.3.2 Due to laser induced tilt angle in smectics 

It has been pointed out in chapter 3 that a laser induced change in the tilt order 

parameter in smectic liquid crystals again leads to large optical nonlinearities. The 

nonlinearity here is comparable to the giant optical nonlinearity due to the director 

reorientation [13, 14, 151. In smectic A the laser induced tilt angle is possible beyond 

a threshold intensity(chapter 3) and the correction to the refractive index is positive. 

The magnitude of the nonlinear coefficient depends on the direction of propagation 

and the polarisation of the laser beam. We recall here some aspects of this process 



which are important for the discussions in this section. Their essential features are 

shown in figure 7.7. In the geometry shown in the figure 7.7 (b) and 7.7 (c) both the 

Figure 7.7: (a) Geometry showing smectic A liquid crystal with the laser propagat- 
ing parallel to  the layer normal and the electric vector parallel t o  the layers. T h e  
molecular tilt is  induced only beyond a particular intensity leading t o  a h\reshold type 
nonlinearity. (b) Geometry showing smectic C liquid crystal u i t h  the laser propa- 
gating parallel to the layers and the electric vector perpendicular t o  the layers. T h e  
molecular tilt becomes zero beyond a particular intensity thus leading to  a satumble 
type nonlinearity and laser suppression of c-director ftuctuations exist. ( c )  Geometry 
showing smectic C liquid crystal with the laser propagating parallel t o  the layer nor- 
mal and the electric vector parallel t o  the layers along the c-director. The molecular 
tilt i n  creases with increasing intensity and also the in-plane c-director fluctuafions 
are suppressed. 

process of laser suppression of the c-director fluctuations and laser induced change 

in the tilt angle exists while in the geometry shown in the figure 7.7 (a) and 7.7 (b) 

only the process of laser induced tilt change operates. We consider two geometries. 

In the first, light propagates in a smectic A perpendicular t o  the layers with the 

electric vector of the laser beam parallel to the layers(see figure 7.7 (a)). In the 

second geometry, light propagates in a smectic C parallel to the layers and polarised 

perpendicular to  the layers and in the plane of the tilt(see figure 7.7 (b)). These two 

cases are associated with different types of nonlinearities leading t o  a rich class of 

solitons. For a self-consistent solution of the Maxwell wave equation, the tilt angle 

should be obtained by minimising the total free-energy density. The corresponding 

free-energy density in terms of the tilt angle 6' is given by [8]: 



F = F0 + a! o2 - a ! " ~  O2 + ,B o4 + higher order terms (7.5) 

+coupling terms 

Here a! = ao(T - T.4c), with TAC, the smectic A-smectic C transition point and 

@(> 0) are phenomenological constants in the free-energy density, a'' = ca/16nc, c 

being the velocity of light and E ,  is the dielectric anisotropy. The nonlinear coefficient 

here depends on the geometry i.e., the direction of propagation and the polarisation 

of the beam. If we make the parameter a, in the free-energy density expression 

(7.5) zero by going to T = TAC, then the nonlinear function pnl(I)  is the same 

as Kerr type nonlinearity. In principle, we can effectively get the same result by 

applying a static magnetic field along the layers. This Kerr nonlinearity possesses a 

true soliton solution n-hich must be distinguished from a solitary wave. We consider 

three geometries as depicted in figure 7.7 and which yield three different types of 

nonlinearities leading to three different types of soliton solutions. 

(i) : In smectic A, near the smectic A to smectic C transition only the laser 

induced tilt nonlinear process is relevant. The geometry is shown in figure 7.7 (a). 

As the tilt angle is induced only beyond a particular intensity, this is of the threshold 

type nonlinearity [lo1. The nonlinear function pnl(I )  is given by: 

The soliton solution with this nonlinearity is given by: 

k 2 p L ~ 2  where A1 = 2 k , p l v  + + and B1 = trclrl;~;. Here "11 and 1.11 are the refractive 
2'718 

indices parallel and perpendicular to  the nematic like director in the uniaxial approx- 

imation. Note that the width of the soliton is a function of the parameter v and the 

parameters are unlike the similar soliton discussed earlier in section 7.3.1 

(ii) : In smenic C liquid crystals, in the g e o m e t j  shown in figure 7.7 (b) 

again only the laser induced tilt nonlinear process is relevant. We observe that as the . 

intensity is increased the tilt reduces and beyond the intensity, Ith = 87rc1aI/€,, the 



tilt becomes zero. Thus this geometry leads to saturable type of nonlinearity [lo]. 

The nonlinear function p n l ( I )  in this case is given by: 

where p(0,) is the refractive index without the laser field. The corresponding soliton 

solution is given by: - 

oP 101 where A2 = 2koplu - [ p I I  - p(B0) - f+ ] and B~ = %EL. ~ P * S  8 ~ 9 ~ 1  

( i i i )  : In the geometry depicted in figure 7.7 (c), both the laser suppression 

of c-director fluctuations and the laser induced tilt contribute to intensity dependent 

changes in the refractive index. This leads to a nonlinear function p n I ( I )  given by: 

Here the first term is due to the process of suppression of c-director fluctuations and 

the others are contributions from the second process. The soliton solution is like that 

worked out in section 7.2. I t  is given by: 

where A 3  = 2 k o p l ~  + [ p ~  - p(Bo) + w] and B3 = 2 k ~ p l k s 7 ' ~ & ,  
kip2 and C3 = .&. We find that not all values of the parameter u  are allowed. In 

fact, only those values of u are allowed which satisfy the inequality: 

B T ) ~ B  where a3 = ,@$&- and b3 = k, [ p L  - ~ ( 0 . )  + w]. 
P L K  

7.3.3 Due to thermal indexing 

In addition to the above two processes there can even be the nonlinear process due 
, 

to  laser absorption by the medium which heats up the material with a consequent 
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Figure 7.8: Profile of a typical dark  soliton, due to  'thermal indexing' alone. X = k,x 
i s  the scaled transverse coordinate and $ ( X )  i s  the scaled amplitude of the optical field. 

change in the refractive index. The refractive index change is related to change in 

temperature as [16]: 

dP aP(r) = , (tZx/?n) I = gl (7.12) 

Here t is the sample thickness, x is the optical absorption coefficient: and K is the 

thermal conductivity of the medium. It should be stressed that when thermal index- 

ing is included, we neglect the reduction in the intensity due to  absorption. This is 

justified, as said earlier, when either the sample thickness is very small or absorption 

is very weak. Bertolotti, et. al., [9] have studied the optical spatial solitons in glass 

fibres due to thermal indexing by solving the nonlinear Maxwell equation and the 

thermal diffusion equation. These propagate only for a short distance before instabil- 

ity sets in. But in liquid crystals, due to small sample thickness, low absorptionjfor 

optical frequencies) and high nonlinearity, justifying the thin - film approximation, 

we can discuss the propagation of stable solitons. Thermal indexing leads to a rehac- 

tive index change which is either positive or negative. In both the cases the refractive 

index change is proportional to the laser intensity as in a Kerr media. If the nonlinear 



coefficient is positive then we get a bright soliton described by: 

1 

E(x7 = (?) cosh (& X) 
exp (ivZ) 

where a = 2p1k0v and b = 2p1k2pn~(I). Here pnr(I) = $CT(I). If the thermal 

indexing leads to  a negative nonlinear coefficient we get a dark soliton [lo] given by: 

Here a1 is a parameter depending on the nonlinear coefficient, +: is the intensity of 

the intense background and the resulting intensity profile is shown in figure 7.8. 

7.3.4 Due to thermal indexing and the laser suppression of 
direct or fluctuations in nemat ics 

In this case the electric vector of the laser beam is parallel t o  the director. The 

thermal nonlinearity here is proportional to 2 and is negative. The corresponding 

nonlinear Maxwell's equation can be written in terms of $ = El&, as: 

which is again a nonlinear Schriidinger equation. Here y is the ratio 711/p2 of the two 

nonlinear coefficients 71 and Q due to  the two processes. 

The soliton solution for equation (7.15) with the boundary conditions 

I+(& oo)I + 0 is given by: 

1 
E(X, Z )  = exp(ivZ) (7.16) 

[& + e x p ( - f i  X) - ($ - &) ~XPW x)] 
The solution here has vanishing asymptotes. Interestingly this equation also permits 

a kink solution as described in [17]: 

where, 



Figure 7.9: A kink soliton when both the nonlinear processes of suppression of director 
fluctuations and the thermal indexing are operating. The relevant parameters are 
$ J ~  = 60.945 V o l t l c m ,  v = 20.3crn-l, p = 4.5cm-I and y = 0.01. 

The profile of the kink soliton is shown in the figure 7.9. This is so unlike 

the earlier soliton profiles. It should be mentioned here that generally kink optical 

solitons have a phase difference at the two limits i.e., Z = f m which exist only in 

the case of dark solitons. The present kink soliton by contrast does not possess such 

a phase difference. 

7.3.5 Due to thermal indexing and change of tilt angle in 
smectics 

Here also we consider two cases of light propagation in smectic liquid crystals. 

(i) Case I: 

We first consider the case where light propagates parallel to the layer normal with 

the electric vector parallel to  the layers of a smectic A. The system is assumed to  be 

near a smectic A to smectic C transition. 

The nonlinear coefficient for thermal indexing in this geometry is positive. 

A molecular tilt is induced beyond a certain intensity, the threshold for which can be 

calculated from the free-energy density as discussed earlier. The nonlinear refractive 



index pnl (I) is given by: 

dPJJ Initially, when the tilt angle is small, the thermal indexing is proportional to 

which is positive. As the angle increases $$ becomes zero and changes sign. Thus 

beyond a threshold intensity the effective nonlinearity decreases with the intensity. 

The soliton solution in both regimes are Kerr type. The first solution is given by: 

where a1 = 2pikov and b = 2p1k;pn~(1) with pnl(I) as given above. The second 

solution is given by: 

where a2 = 2plk,v and = 2plk~pnl(I)  with pnl(I) as given above. 

(ii) Case 11: 

Now we deal with light propagation through a smectic C liquid crystal, along its 

layers with the electric vector parallel to the layer normal(see figure 7.7 (c)). The 

nonlinear coefficient due to thermal indexing in this case could be positive or negative 

depending on the tilt angle 8. Initially it is positive when the angle is large. As the 

intensity is increased the tilt angle changes and the nonlinear coefficient becomes 

negative. But the nonlinearity due to  change in the tilt angle is always positive. At a 

certain intensity the tilt angle is zero. Beyond that intensity the second process does 

not contribute to the nonlinear coefficient. This intensity is given by: 

At and beyond this intensity the nonlinear coefficient is only due to the thermal 

indexing and the nonlinearity is proportional to  2 which is negative. The nonlinear 

refractive index is thus given by: 



where, p(8,) is the refractive index without the laser field. Thus, we get different 

types of soliton solutions for intensities below and above the threshold even though 

the nonlinearity is of Kerr-type. 

Critical Power for Spatial Soliton Formation 

For the formation of a spatial soliton, optical diffraction must compensate self- 

convergence. At low intensities in a nonlinear medium with self-focusing nonlin- 

earity, the width of an incident beam decreases continuously and at  a certain point 

the beam width becomes comparable to the laser wavelength. At this stage the opti- 

cal diffraction becomes important. If the power of the incident beam is high enough 

the process of self-focusing operates even on the diffracted beam. Hence, the beam 

continues to converge beyond the diffraction limit destroying the material eventually. 

Since beam diffraction must compete with self-convergence there exists a threshold 

intensity. Hence, a t  a critical power of the laser beam, it is found that the convergence 

due to nonlinearity can be compensated by the diffraction. At this critical power we 

get a soliton which also is said to be a self-trapped or self-channeled beam. 

In order to calculate the critical power we consider the stability of a plane 

wave travelling along the z-axis in the nonlinear medium. In this case the Maxwell 

wave equation becomes: 

which is a generalised Schrodinger equation. To find the stability of an infinite plane 

wave we consider the spatial evolution of perturbations along the direction of propa- 

gation [18]. The dispersion relation with the nonlinearity gives for the wavevector: 

&w c2 + 2p*1 ( I )  

where ko = w\/e(w)/c, and pnr(I) is the nonlinear refractive index. Hence, the 
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amplitude of the unperturbed beam is of the form Eo(z) = E, exp[i pni(I) z/ko] 

where Eo is the amplitude of the incident laser beam. We write the perturbation in 

E in the form: 

bE ( r )  = [A exp(i (q . r + k,z)) + B* exp(-i(q . r + k,x))] e ~ p ( i , ~ , ~  (I)z/ko) (7.22) 

Here q is a vector in the x - y plane. Substituting this in the equation (7.21) and 

collecting the groups of terms in exp(f  i (q  . r + k,z)) , we get: 

(f - ~ n l ( I ) + k o k z ) ~ - ~ n i ( ~ ) ~  = 0 

-pnr (I) A + ( f - pnl(I) - kokz) B = O 

The condition that a nontrivial solution for these equations exist is that the determi- . 

nant of the coefficients must vanish. This condition gives: 

k, = zt$Jq2 - 4pn1(I). When p,, is positive, i.e., in a focusing media, if 

then k, becomes imaginary. This gives an exponentially increasing term in the per- 

turbation and the wave becomes unstable. 

In a beam of radius R, the wavevector of perturbation &ansverse to propa- 

gation direction is restricted by q 2 1/R. This sets the upper h i t  on the q values 

which is responsible for the focusing instability. Thus the equation (7.23) gives the 

critical value of the intensity(and thus the electric field). If the nonlinearity is of Kerr 

type then pni = q I  = 77E: giving Ez x l/qR2. As the power in a laser beam is equal 

to E:R2, the critical power is then given by P, = 1/77. It is thus independent of the 

beam width. 

We now study the same problem in the presence of o d y  the suppression 

of director fluctuations i.e., ,unl = rllfi = qlEo The inequality (7.23) becomes 

q2 < 4771a. The expression for the critical power hence is:. 

Hence the critical power decreases as the beam size increases. 



We next consider the simultaneous presence of suppression of the director 

fluctuations and the thermal indexing. In this case the condition (7.23) yields for the 

critical field Eo 

(71 E0 - R2 = 1 (7 .25)  

This leads to two critical powers given by: 

We notice that the critical power exists only if the nonlinear coefficients satisfy the 

inequality: 

Thus we see that irrespective of the strengths of the nonlinear coefficients, a width 

R for the beam can always be so chosen that the inequality (7.26) is satisfied. The 

first(1ower) critical power P;, occurs when the effect of beam diffraction exactly 

balances the effects of suppression of director fluctuations. At this power the thermal 

indexing does not contribute significantly. The second(higher) critical power Pg, 

occurs when the effect of beam diffraction balances the defocusing effects due to  

thermal indexing and by the focusing effect of suppression of director fluctuations. 

Thus existence of two nonlinear processes leads to new results in the critical power 

required for soliton formation. 
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