
Chapter 1 

INTRODUCTION 

She wished to make all one immense embrace 

That she might house in it all living things 

Raised into a splendid point of seeing light ... 

-Sri Aurobindo in Savitri, -p362 

1.1 Introduction 

Liquid Crystals were first discovered by Reinitzer in 1888 [I, 21. They occur thermo- 

dynamically in between the crystalline and liquid states of matter. Hence, they are 

also called Mesophases. Liquid Crystals are so named since they combine in them 

the properties of liquids and crystals alike. These mesophases may exist in a single 

component system with highly shape anisotropic molecules. Mesophases induced by 

heating are called Thermotropic Liquid Crystals. These mesophases can also exist in 

multicomponent systems where they can be obtained by varying the relative concen- 

tration of different components. These are known as Lyotropic Liquid Crystals. 

Liquid crystals are further classified based on the underlying continuous and 

discrete symmetries. In fact, the isotropic liquid is highly symmetric. It is invariant 

under translations and rotations. On the other hand, a crystal possesses discrete 

translational and rotational symmetries. In crystals there is both long range posi- 

tional order and orientational order in the arrangement of molecules on a lattice. In 

case of plastic crystals there is only the positional order. Liquid crystalline phases 

possess long range orientational order and in some cases a restricted low dimensional 



positional order [3, 41. 

In addition to the shape anisotropy, the molecule can also possess a chiral 

center, breaking the inversion symmetry of the resulting phase. In the absence .of 

such a chiral center, the phase is called an Achiral liquid crystal. In the presence of 

a chiral center, the phase develops an overall global twist and the phase is called a 

Chiral liquid crystal. The same thing happens if the achiral liquid crystal is doped 

with chiral molecules. 

Structure of Liquid Crystals 

We discuss in this section the structure of a few important achiral and chiral liquid 

crystals. 

1.2.1 Achiral liquid crystals 

Calamatic nematic : In this phase rod like molecules tend to  align along a certain 

direction leading to an orientational order but with no positional order. A schematic 

representation of this phase is shown in figure 1.1 (a). The unique direction of pre- 

ferred alignment is described by a unit vector n called the director. From symmetry 

we can see that n and -n are both physically equivalent states. Further, in this case 

the physical properties are anisotropic and the medium has cylindrical symmetry 

about n. 

Discotic nematic : This phase is observed when the system is made of disc-like 

molecules. The unique direction is nearly perpendicular to the plane of the molecule 

as shown in figure 1.1 (b). Here also the medium is cylindrically symmetric about n 

and the physical properties are again anisotropic. 

Smectic A : In this phase, apart from nematic like orientational order the medium 

also possesses a positional ordering in the form of one dimensional density modula- 

tion in the direction of the director. This leads to a layered structure as depicted in 

figure 1.2 (a). Here the average orientation of the molecule is perpendicular to  the . 

layers. 



Figure 1.1: The two nematic phases. (a) Nematic phase uith rod like molecules. (b) 
Nematic phase with disc like molecules. n is the director. 

Smectic C : This phase is often obtained when smectic -4 is cooled. Here the aver- 

age molecular orientation is in a plane at  an angle to the layer normal. The projection 

of the director onto thz layers is called the c-director. A schematic representation of 

the phase is shown in figure 1.2 (b) 

Figure 1.2: Schematic representation of the two smectic phases. (a) Smectic A phase 
with the director(n) parallel to the layer normal (N) (b) Smectic C phase with the 
director(n) at an angle 8 to the layer normal(N). Also shown is c-director, the 
projection of the director n onto the plane. 

1.2.2 C hiral liquid crystals 

Cholesteric : The cholesteric phase is formed when the constituent molecules are 

chiral or a nematic has a chiral dopant. Here the director n rotates in space along 



a direction perpendicular to itself. The schematic representation of the phase is 

depicted in figure 1.3 (a). As the figure shows each layer, locall_v, is nematic like. 

Hence one could look upon this phase as a twisted nematic phase. 

Chiral  Smectic C : This phase is a twisted phase of smectic C. Here the director 

is tilted within the layers with respect to the layer normal and in addition the director 

rotates about the layer normal. This phase is schematically shown in figure 1.3 (b). 

Figure 1.3: A schematic representation of the chiral liquid crystals. (a)  the cholesteric 
phase. The twist axis is  along z-axis and go is the wavevector of the periodicity of 
the cholesteric. (b) the chiral smectic C phase. The director which is at an angle to  
the layer normal precesses about this axis and 1 is the layer spacing. Po is the pitch 
of the twisted structure. 

Optics of Liquid Crystals 

Liquid crystals can be classified, based on the optical properties, as uniaxial or biaxial. 

Nematic has one optic axis which is along the director n and it is a uniaxial phase. 

In case of smectic C there are two optic axes and it is biaxial optically. The two optic 

axes will be in a plane perpendicular to the c-director. In weakly anisotropic media 

the laser field does not influence the physical properties of the medium. 



1.3.1 Homogeneous anisotropic media 

Uniaxial media : 

The electrodynamics of such anisotropic media in the general case is very well known. 

It is described by the dielectric tensor, c i j  which reduces to a diagonal form in the 

coordinate system attached to the system. In the uniaxial phase the €11 is the dielectric 

tensor component parallel to the optic axis and EL is the component perpendicular to 

the optic axis. The difference of these two, E, = (ell - el) is the dielectric anisotropy. 

In a uniaxial medium the index ellipsoid is an ellipsoid of revolution. In order 

to describe the propagation of polarised light in a uniaxial medium, we find the central 

cross-section of the index ellipsoid perpendicular to the direction of propagation. The 

axes of the ellipse represent the eigendirections in the medium. One of the axes is 

always equal to the 6 and the other axes depends on the direction of propagation 

with respect to the optical axis. Any wave polarised along one of these directions is 

transmitted unaltered. Such a beam acquires only a phase on propagation. In case 

the direction of the electric vector is not along one of these axes, i t  is resolved into 

components along these two axes. Since these two waves acquire a phase difference 

on propagation a linearly polarised light becomes an elliptically polarised light [ 5 ] .  

The three different cases of light propagation through a uniaxial medium is shown 

in figure 1.4. Also shown in the figure are the various cross-sections for different 

directions of propagation. 

Biaxial media : 

In a biaxial medium the index ellipsoid is a general triaxial ellipsoid. Here all the 

axes are unequal. In this case, to describe the propagation of light in such a medium, 

we again find the central cross-section of the index ellipsoid perpendicular to the 

direction of propagation. Here both the axes change as the direction of propagation 

changes. As said above the incident wave polarised along one of these directions 

preserves its polarisation. In other cases the beam becomes elliptically polarised. 

Theory : 

The Maxwell's wave equation in isotropic media for light propagating along z-axis 



Figure 1.4: (a )  T h e  index  ellipsoid of a uniaxial  med ium.  (b),(c), and (d )  show the  
central cross-sections of t h e  i ndex  ellipsoid perpendicular t o  t h e  direction of propaga- 
t i o n  k for  directions of propagation parallel t o  t h e  optic.  axis(z-axis),  perpendicular t o  
t h e  optic axis  and  a t  a n y  other angle respectively. 



can be written as 

where E(z) is the electric field, w is the angular frequency, c is the velocity of light, 

and p is the refractive index. In a uniform medium the wave equation has solutions as 

the well-known plane wave. These are written as: E ( z )  = exp(ikz), where k = Fp, 
is the wavevector and X is the wavelength of light. In an anisotropic medium the 

displacement vector is not parallel to  the electric vector inside the medium. This leads 

to electric vector components inside the medium if the incident linear polarisation 

is not along one of the eigendirections. Yet, the dolarisation could be preserved 

on propagation through the medium. In such cases the solution in a homogeneous 

medium for the electric field components are given by [6]: 

e, sin 4 cos 4 1 
E, = - A  expi-i ko ( e l  €1); ( e l +  6, sin2 +)-it] 

(el + e, sin2 4 ) ~  

where, t is the sample thickness, e, = € 1 1  -61, ko = wlc, A is the amplitude of the light 

wave and 4 is the angle between the director n and the E vector. When anisot,ropy 

e, is very small we can considerably simplify equation (1.2). We use equation (1.2) 

to work out the effect of a laser field on the orientation of the director n. 

1.3.2 Inhomogeneous media 

We consider next systems wherein the refractive index varies in one particular di- 

rection. This happens when n varies in space. We take this direction of lariation 

to  be the direction of light propagation. We can generalise the above solution in an 

anisotropic media. We assume that the director distortions are confined to x - z 

plane, i.e., n varies along z only. The Maxwell's wave equation can be solved in the 

approximation that the scale of distortions in the medium are on a length scale large 

compared to  the wavelength of light. Then solutions to tbe wave equation become 

171 81: 



E ,  sin 4 cos 4 
&,(z) = - A  ezp[-i k, (ell 61): /'(el + sin2 ~ ) - + d z ' ]  + e ,  sin2 4) 

where, 4 = 4(z) is now a function of z .  We use this solution of the X.Iaxxell's wave 

equation in the analysis of structural solitons in the director field of nematics and 

ferronematics (see chapter 6). 

1.3.3 Chiral media 

Cholesterics and chiral smectic C are examples of spontaneously t i s t e d  media. This 

leads to periodic modulation of the refractive index of the medium. In such pe- 

riodic liquid crystals we consider two geometries viz., the Bragg mode and the 

dif fraction mode. When light is propagating along the direction of the helix i t  

is known as the Bragg mode and when light propagates perpendicular to the helix 

axis it is referred to as the diffraction mode. VC7e summarise below the -sell k n m  

results for various regimes in the Bragg geometry [L i ] .  

(i) X << A p P  (Ap = local birefringence, P = Pitch of the structure) 

In this limit the eigenstates have their electric vectors either parallel or perpendicu- 

lar to the local director everywhere in the medium. This limit is also known as the  

Mauguin limit or the adiabatic limit . 

(ii) A p P  < X < p P  ( p  = average refractive index) 

In this limit the eigenstates are right and left circular polarised waves propagating 

with different velocities. Here the system exhibits a very large optical rotation. This 

limit is known in the standard literature as the de Vries  limit . 

(iii) [ p P  - (ApP/2)] < X < [ p P  + (ApP/2)] 

In this band of wavelengths we get the Bragg band. Eigenstates are again right and 

left circularly polarised waves. The circularly polarised wave that has the same sense 

as the helix suffers total reflection. The orthogonal component state goes through 

unaltered but for a phase change. In the case of Bragg reflected circular waxy a 

standing wave is set up inside the medium by interference of the f o m d  and the  

backward propagating waves. The net wave is linearly polarised whose polarisation 

rotates along the twist axis following the local director. The electric vector of this 



standing wave is, in general, at  an angle to the local director everywhere inside the 

medium. In a medium with positive optical dielectric anisotropy? a t  the short wave- 

length edge of the Bragg band this electric field is parallel to the director while it is 

perpendicular to the director at the long wavelength edge. 

(iv) X >> pP 

Here also the right and left circularly polarised waves are the eigenstates. Again the 

system exhibits optical rotation but of opposite sign and it is very small compared 

to that found under (ii). 

The Mauguin limit can be easily realised experimentally by adding chiral molecules 

to  an achiral medium. In this limit the electric vector follows the director twist in- 

herent in the cholesteric. It may be mentioned in passing that it is in this limit that - 

the twisted nematic displays work. 

Elasticity of Liquid Crystals 

In a well aligned nematic, the molecules are on the average along one common di- 

rection f n. However, due to the presence of confining boundaries or external fields 

deformations in the alignment sets in. These deformations or spatial variations in n 

can be resolved into three main types of deformations. They are splay, bend and the 

twist type distortions. The typical boundary conditions which lead to  these distor- 

tions are shown in the figure 1.5. These distortions can be described by a vector field 

Figure 1.5: The three types of director distortions: (a) Splay (b )  bend and (c)  twist 

which can be obtained as gradients in the director, n .  The splay type of distortion is . 

associated with non-vanishing values for (V . n). The bend type of distortions result 



in a non-zero (n  x V x n )  and finally for twist type of distortions (n  - V x n) is 

non-zero. 

1.4.1 Nematic 

The elasticity of nematic liquid crystal can be described by writing down the free- 

energy density due to these deformations. The theory of describing elasticity in terms 

of the director distortions was initiated by Oseen [9] and Zocher [lo]. It was further 

developed by Frank [ll] and Ericksen [12]. The free-energy density is a quadratic form 

in the said gradients of n.  Hence, the free-energy density of a nematic will involve the 

three terms associated with the three types of distortions described above. Each of 

these term is associated with an elastic constant. This free-energy is at times referred 

to as Frank free-energy in the literature. The Frank free-energy density is then [3]. 

where K1, K2, K3 are splay, twist and bend elastic constants respectively. Generally, 

these elastic constants satisfy the inequality K2 < KL < K3. The magnitude of these 

elastic constants is of the order of 1 0 - ~ d ~ n e  which is very small. Thus director defor- 

mations can be induced very easily in these systems. In many situatioils, to describe 

the phenomena qualitatively, we use the so called 'one - constant approximation'. 

In this case we have Kl = K2 = K3 r K ;  and the Frank free-energy density (1.4) 

becomes: 

1.4.2 Smectic 

As already described they are layered structures. Thus one of the deformations in 

these systems are described by the layer displacement variable 'u(r)' [3]. The variable 

'u(r)' can be related to the nematic director in smectic A in the following way: 

The first type of distortions is a layer compression or dilation (see figure 1.6 (a)). 



Figure 1.6: The two basic distortions in smectics: (a)  layer compression or dilation 
(b) layer curvature 

This is described by the gradients in the variable 'u(r)' and is of the form, 

B du 2 

2 (h) 
where B is the corresponding elastic constant and is of the order of lo8 dyne/cm2 

The second type of distortion involves the layer curvature. This results in the cur- 

vature of layers as shown in the figure 1.6 (b). It leads to splay deformations in the 

local director which is similar to nematic director. This is described by a term in the 

free-energy density of the form: 

The magnitude of K1 is same as in the nematic phase. These are the two main 

contributions to the elastic free-energy density in smectics. 

1.4.3 Cholesteric 

Usual elasticity : 

As described earlier cholesterics can be considered as a twisted nematic phase. Thus 

the Frank free-energy density for the nematic can be used.to describe distortions in 

the cholesteric aiso. Due to spontaneous chirality in the system there is a spontaneous 

twist. This can be described by adding to the free-energy'density a linear term in 

n . V x n. Then the free-energy density for cholesterics can be written as [3], 



Here go = 2?i-/Po with pitch Po. 

Coarse - grained approximation : 

In the unperturbed state the cholesteric can be considered as made of layers. The 

layers are equidistant (equal to pitch Po) and parallel. In the weak distortion limit, 

each layer is displaced by an amount 'u(r)' along z; 'u(r)' is a slowly varying function 

of r .  In the coarse-grained approximation free-energy density must be as in smectic A: 

We can get values of B and K in terms of Kl, K2 and K3. It can be shown [3] that  

B = K2 and K = Q K ~ .  

1.5 Field Induced Deformat ions in Liquid Crystals 

As described earlier, the curvature elastic constants being very small director dis- 

tortions can be easily induced in liquid crystals. These are anisotropic dielectric 

and diamagnetic materials and thus respond to  external static electric and magnetic 

fields. The anisotropy in these liquid crystals lead to dielectric and diamagnetic 

torques which affect the director orient ation. The dielectric free-enera density is 

given by [3], 

where E [  and €1 are the static dielectric constants parallel and perpendicular to n and 

E: = c[ - €1 is the static dielectric anisotropy. The diamagnetic free-energy density 

can be similarly written as: 

Here, XII and XI are the diamagnetic susceptibility components parallel and perpen- 

dicular to the director and xu = xll - XI is the diamagnetic anisotropy. It is easy 

to see from equation (1.10) and (1.11) that in an unbounded nematic with positive 

dielectric or diamagnetic anisotropy director aligns itself parallel to the external field 

and perpendicular to  the field if the material has negative dielectric or diamagnetic 



anisotropy. The form of free-energy density in an external field is similar even in 

cholesteric. This is due to the fact that cholesteric can be looked upon a. a nematic 

locally. In smectic too the same free-energy density holds good. Here the local ori- 

entation of molecule is described by a director similar to the nematic director. We 

consider below the field induced distortions in various configurations in nematics, 

cholesterics and smectics. 

1.5.1 Kinks or walls 

Topological defects form an important component of studies in condensed matter 

physics. Walls or kink states are permitted defect states in electric or magretic.-fields. 

These exist due to  the degeneracy in the orientation of the director with respect to the 

external field. This results in wall type of defects. Such defects n-ere first &wussed by 

Helfrich [13]. In a nematic due to n being equivalent to -n, the resulting topological 

winding could be any integral multiple of T .  The defect configuration comecting n 

and -n states is naturally distorted and is thus associated with an elastic distortion 

energy. These are static walls in a nematic in the presence of ar external magnetic 

field. There could be pure twist n-alls or splay-rich or bend-rich n-&. In each case the 

director turns through 180" along a direction normal to the wall as shown in figure 1.7. 

In case of nematics doped with aligned ferromagnetic grains with magnetisarion along 

n(say), the n and -n equivalence is lost and then the topological winding is 277. In 

(a) (c ) 

Figure 1.7: (a) Bend-rich and (b)  splay-rich and (c) twist walls o r  k inks  i n  a n  ezternal 
magnetic field H respectively. In each case the director turns through 180" across the  
wall. 

such walls the director distortions are in 1D and are often called planar wlitons in 

literature [14]. Yet, unlike true solitons these do not preserve their shape and x-elocity 



after a pair-wise collision. They are rather structurally like kinks. Kinks also appear 

naturally in the form of a lattice [15, 161 near a electric or magnetic field induced 

transition of a cholesteric to a nematic state. However, optical effects that can occur 

when a laser is used for probing topological defects appear to have not attracted as 

much attention. In chapter 6 we address ourselves to nonlinear optical effects on 

topological walls. 

Here we briefly sketch the kink solution in a nematic in the presence of 

external magnetic field. The relevant free-energy density is: 

where 4(z )  is the angle between the magnetic field and the director. The minimisation 

Figure 1.8: A typical kink soliton solution of the sine-Gordon equation. q is the scaled 
distance defined as q = z /<  

of the total free-energy density gives the elastic equilibrium equation: 

a* q5 K- = X ,  H~ sin 4 cos q5 az2 

a2q5 
- = sin q5cosq5 
av2 



where 7 = z/E and < = is the coherence length over which most of the 
x o H Z  ' 

distortions in the medium take place. The above equation is a ' s ine  - Gordon' 

equation which permits soliton solutions. We impose the boundary conditions: 

+(-m) = 0, ~ ( m )  = 71; 3 ( * o o )  = 0 az 
With these boundary conditions we obtain a kink solution: 

+(z) = 2 arctan [exp  (z/<)] 

A typical kink solution is shown in figure 1.8. 

1.5.2 Soliton lattices 

Cholesteric in a magnetic field : 

A cholesteric-nematic transition is possible in an external electric or magnetic field. 

This was first suggested by de Gennes [15] and R.B. Meyer 1171 independently. In 

an external field there are internal distortions in the helical structure. The initial 

situation for low field is represented in figure 1.9 (a) and that for intermediate fields 

in figure 1.9 (b). In regions A, A ' ,  ... the molecules are favourably aligned along the 

Figure 1.9: The various stages i n  the cholesteric to nematic transition i n  a magnetic 
field are shown. (a )  Uniform cholesteric (b)  Soliton lattice. at a field below the crit- 
ical field Hc for helix unwinding and (c)  Uniform nematic or completely unwound 
cholesteric at a field greater than the critical field. 

field. In regions such as B, B', ... the molecules are unfavourably oriented with respect 



to  the field. Thus if the field becomes strong enough region A will expand. Region 

B, on the other hand, cannot contract very much, since this would have to counter 

the twist. The overall result is an increase of the pitch P with field. At higher fields, 

this leads to a succession of 180" kinks separating large widely uniform regions. E,ach 

1 kink has a finite thickness, of the order of 2 E, where E is defined as C = J K ~ / ~ .  B. 

This structure is referred to as a soliton or a kink lattice. Finally, at  a certain critical 

field Hcj the walls become infinitely separated(P -+ oo) and we obtain a nematic 

structure. The pitch variation with the increase of field is shown in the figure 1.10. 

As shown in the figure the pitch is essentially undisturbed at  low fields. At higher 

Figure 1.10: The variation of the pitch P as the magnetic field is varied. Pitch 
diverges at a critical field H,. 

fields P increases and finally diverges at  the critical field. 

We could also study this transition from the point of view of existence of 

a single wall in an infinite nematic medium. Assuming always a one-dimensional 

situation of pure twist, where 

nz = cos d(z), ny = sin d(z), n, = 0, 

we find the equilibrium equation (as discussed earlier), 

a2 d t2 = sin cos 9 



The first integral to this equation is 

ensuring that + 0 as 4 -+ n. 
The free-energy (per unit area) of the wall, compared to  the energ- of nematic 

conformation, is then 

Using equation (1.16) we find that the first and the third term are equal and the 

energy of the wall becomes: 

Here, t = d m .  Thus it becomes unfavourable to have kinks ahen this 

energy becomes positive i.e., 

In terms of the field this corresponds to a critical field 

where Po is the unperturbed pitch. 

Typically, K2 z dyne, = cgs, Po = 20 pm which gins for 

Hc = 15000 G. 

Incidentally, this transition is a thermodynamic second-order phase transi- 

tion. 

Nematic  in  a s ta t ic  electric field : 

We next consider a nematic made of either pear-shaped or banana shaped 

molecules. In such nematics a new type of contribution to the &-energy densiry is 

possible. It is well known that in certain solids, a strain will induce a polarisation 

P. The sources of the strain is usually external pressure and this effect is referred 



Figure 1.11: (a) The  pear shaped molecules and a splay distortion resulting in a non- 
zero polarisation. (b) The banana shaped molecules and a bend distortion which leads 
to a non-zero polarisation. 

to as piezoeledric. In liquid crystals made of molecules mentioned above, a splay or 

a bend distortion can create a polarisation as depicted in figure 1.11. This effect is 

called "flexoelectric" effect [18]. From symmetry arguments the distortion induced 

polarisation can be written in the form, 

where el and e3 are called flexoelectric coefficients. This involves the splay and bend 

terms only. The twist term does not contribute to the polarisation. For a distortion 

of the form, 

nx = sin 4(z), n, = cos 4(z) 

where is the angle between n and x-axis, we get Pflao = e 3 Kith el = -e3 e. 

Thus the free-energy density becomes 

in the one-elastic constant approximation. If we neglect the dielectric term by assum- 

ing the dielectric anisotropy to be very small, thereby minimising this free-energy we 

find for the equilibrium configuration: 



This leads to a flexoelectric lattice which involves alternate splay and bend distortions 

as shown in the figure 1.12. 

Figure 1.12: A nematic i n  the presence of a static electric field leads to  a Jexoelectric 
lattice. The lattice wavevector is parallel to z-axis. E is the static electric field. 

We observe that the free-energy density (1.21) is mathematicalll; similar to  

the free-energy density in the case of cholesterics (see equation (1.17)). In fact, the 

equilibrium equations in both cases are identical. The wavevector associated with 

the periodicity of the structure is given by q = $ and is equal to q = e E. K. As this 

structure exists in an electric field, obviously the periodicity is a function of the field. 

Extending the analogy further nre can consider the analogue of cholesteric-nematic 

transition. We find that this condition < ( H )  < 2/7rq, reduces to 

< 2 K l s e E  

Thus we find that a flexoelectric lattice exists only when (1.23) is satisfied [19]. 

1.5.3 Undulation instability 

Cholesterics : 

We next examine the effect of a magnetic field acting along the helical axis of a 

cholesteric film. If boundary effects are such as to maintain the orientation of heli- 

cal axis, then we expect a deformation where the director is tilted towards the field 

leading to  conical type of distortion. It was realised by Helfrich that ~t another 

type of deformation can set in [20]. This distortion is in the form,of periodic &.or- 

tion of layers. The layers are ripple-like along a direction parallel to  the layers(see 



figure 1.13). Such a distortion has been experimentally obsenred both in magnetic 

Figure 1.13: The (a) geometry for the undulation instability i n  a cholestem'c and (b) 
the corrugation of layers. The twist axis is  along z-axis. - 

and electric fields [21, 221. The theory of this instability was worked out by Helfrich 

[20] and subsequently also by Hurault [23]. We briefly summarise the theory here. 

We consider the description of cholesterics in the coarse-grained approximation as 

described earlier. The free-energy density for u = u(z,x) is rewritten here for easy 

reference: 

We introduce perturbations in u: u = u, cos(q,x) C O S ( ~ , Z ) ,  where q, = r/ t .  t is 

the sample thickness. 1Iinimising the total free-energy we get for the equilibrium 

equation 

where we have used the one-constant elastic approximation. The distortion comprises 

of two components bend and twist. The limit q, + oo excites the bend mode while 

q, + 0 excites the twist mode. The optimum wavevector corresponds to admixture 

of both modes and is given by 

The threshold field for the instability to set in is given by: 



For typical values of the material parameters K = dyne, Po = 20 pm, t = 

100 pm and X, = lov7 cgs, the critical field is of the order of 3 kG. 

Smectics : 

We should expect a similar instability in smectics as well. The critical field for the 

instability to set in and the wavevector of distortion are given by similar expressions. 

The critical field is given by 

27rK 
H ~ e l  f rich = 4 X. JKIBt 

Here K is the curvature elastic constant and B is the elastic constant associated with 

the dilation of layers. The wavevector of lateral periodic distortion is given by: 

For typical values of the material parameters and t = 1 mm gives for the critical field 

Hc = 50 kG. It should be noted that even for large sample thickness the critical field 

is quite high. 

1.6 Well Known Nonlinear Optical Processes in 
Liquid Crystals 

In this section we present' briefly the important nonlinear processes that are well 

established in liquid crystals viz., the laser induced director reorientation and thermal 

indexing. Some of the nonlinear optical effects in liquid crystals have already been 

reviewed by others [24, 25, 26, 27, 281. 

1.6.1 Laser induced director reorientation 

It was realised in 1980's that the electric field associated with a laser beam can 

simulate the effect of an external static or low frequency electric or magnetic field 

since the field effect is quadratic in the field strength. As a result, the director tends 

to  align along the electric field E of the laser field. This in turn changes the refractive 

index as seen by the laser beam. This effect was first reported by B. Ya. Zeldovich and 



his collaborators [8, 29, 301. They reported a large nonlinear response from a nematic 

liquid crystal. Around the same time I. C. Khoo reported a large nonlinear it,^ in an 

experiment on self-focusing and four wave mixing [31] a work based upon a suggestion 

made by Hermann and Serinko in an earlier paper [32]. It also appears that even 

A. Saupe in 1969 had studied the effect of a laser field but unfortunately he did not 

publish his views [33]. 

Consider a uniform nematic as shown in figure 1.1. Let the incident linearly 

polarised laser light propagate at an angle to  the director with its E in the (n, k) 

plane. The refractive index p as seen by the electric field E is found from the crystal 

optics formula given by: 

The optical field E, being at an angle to  the director leads to director reorientation. 

After reorientation the refractive index and hence the phase acquired by the beam 

changes. This effect is similar to the familiar nonlinear optical effects where the laser 

affects the refractive index of a medium. The director reorientation also affects the 

laser beam itself. This is similar to self-action effects found in traditional nonlinear 

optics. 

The process of director reorientation is a nonlinear process that is indepen- 

dent of the frequency of the incident laser field. Also the induced change in refractive 

index is proportional to intensity, and is thus similar to the classical Kerr process. 

Nonlinear optical effects due to the director reorientation process has been exten- 

sively studied by various groups. Many well known nonlinear optical effects like self- 

focusing, self-defocusing, self-phase modulation, pump-probe type of experiments, 

degenerate four-wave mixing, etc have been studied theoretically and demonstrated 

experimentally. But in liquid crystals there are certain nonlinear optical effects pe- 

culiar to t hem like hydrodynamic flows [34] and structural inst abilities [8] associated 

with the director reorientation. 

It should be mentioned here that the change in refractive index is very sen- 

sitive to  the initial director orientation, sample preparation and polarisation of the 



incident laser beam. For instance, if the electric field of the laser is parallel t o  the 

director no director reorientation occurs and the nonlinearity due to this process is 

absent. On the other hand, if the director is perpendicular to the electric field of the 

laser the director experiences maximum torque and the nonlinearity is maximum. It  

is also an example of saturation nonlinearity because the director reorientation torque 

is zero after the director has aligned itself parallel to the laser field. In cases where the 

director is rigidly anchored at  90" a t  the boundaries and the incident electric vector 

of the laser is perpendicular to the director then again we find static field effects. The  

director reorientation is absent upto a threshold intensity beyond which we get the 

director reorientation. 
Another feature must be mentioned here which makes this process different 

from other familiar nonlinear processes. Usually a laser beam has a finite beam m-idth 

with a central peak intensity distribution. This yields maximum director reorientation 

at  the centre relative to the outer regions. This leads to non-local effects, due to  the 

inherent elasticity of liquid crystals, because of which the director reorientation occurs 

even in regions outside the laser beam [35, 361. 

The importance of laser induced director reorientation as a nonlinear process 

can be appreciated by looking at  the laser induced changes in the refractive index. 

The birefringence of the liquid crystals is of the order of 0.1. Hence the maximum 

change in the refractive index due to  this process is 0.1 when the director turns 

through 90". Even when the director is anchored at the boundaries a change in 

director orientation by 30" can easily be affected with an intensity of 50 W / m 2 .  

This corresponds to a change in refractive index of the order of 0.01. In some cases 

we can find the change to be even greater than this. If the refractive index is defined 

as p = p, + p21, incorporating the intensity dependent part then p2 corresponds 

to  the nonlinear coefficient. In the process of director reorientation p2 is of the  

order of cm2/W. This should be compared with the nonlinear coefficient of 

10-l2 cm2/W found for CS2- one of the most optically nonlinear media. It is for this 

reason B. Ya. Zeldovich and coworkers described the nonlinearity in liquid crqstals 



due to the director reorientation as 'Giant Optical Nonlinearity'. 

1.6.2 Thermal indexing 

In addition to the process of director reorientation there can be an additional non- 

linear process due to laser absorption in the medium which heats the material with 

a consequent change in the refractive index. This process is referred to in the liter- 

ature as Thermal Indexing. The refractive index change 6 p  is related to change in 

temperature dT [37] : 

Here t is the sample thickness, x is the optical absorption coefiient: and K. is the 

thermal conductivity of the medium. The raise in temperature could be as large as . 

10K for an absorption coefficient of 0.01 cm-' [3?]. From symmetry considerations 

it is easy to see that in nematic liquid crystals which are uniaxial. the ordinar?; and 

extraordinary refractive indices should suddenly change to a single refractive index 

a t  the nematic-isotropic phase transition at  which the medium becomes an isotropic 

liquid. In this process the extraordinary refractive index decreases and the ordinary 

refractive index increases with the raise of temperature. If the laser polarisation 

is such that the electric vector is parallel to the director the change in refractive 

index, 6 p  is negative. For an incident beam with intensity peak at the center if the 

electric vector of the laser beam is parallel to the director then an incident plane 

wavefront emerges as a convex wavefront. This leads to self-divergence as shown 

in figure 1.14 (a). If the electric vector of the laser beam is perpendicular to the 

director, the change in the refractive index is then positive. This converts an incident 

plane wavefront into a concave wavefront. This leads to self-focusing as shonm in 

figure 1.14 (b). In the second case the director is assumed to be so strongly anchored 

that the process of director reorientation is absent. Incidentally, when the electric 

vector is at an angle 4 to the director, in the plane of the electric field and the 

direction of propagation then the change in the refractive index is given by [37]: 



Here, <($) = ~ ( 4 )  [e C ~ ~ C L  - l w . 1  e11-e~  sin 4 with defined as: $ = -a1& d~ ' 

a1 > 0 ,  and p($)  is the refractive index as seen by the optical beam when the director 

makes an angle with the electric vector. We note that for [(O) = 1 , F  = 3 and for 

<(n/2) = -a1, 9 = 9. Also there exists certain angle 6. a t  which = 0.  

intensity n self-diverging 

front A wavefrOn> > 
n 

intensity self-focusing 

front 

Figure 1.14: Effect of thermal indexing on beam width. (a) Light propagating in a 
homogeneously aligned nematic with the electric vector parallel t o  the director. The  
beam diverges on  propagation. (b) Light propagating i n  the homogeneously aligned 
nematic with the electric vector perpendicular to  the director. T h e  beam converges on  
propagation. 

In this thesis x-e have not considered some of the other phenomena which also 

contribute to  the nonlinearities in liquid crystals. In the dye-doped liquid crystals 

it was realized by Janossy that with certain dyes known as anthraquinone dyes the 

process of director reorientation can be affected [38]. In fact they reported an order of 

magnitude higher nonlinear coefficients due to this process. This effect is also known 

as Janossy effect [39]. -4s this process is not yet completely understood and also is 

not a universal effect for all dye-doped systems we have not considered this process. 

In certain molecules the conformational transformation can also be induced by the 

laser beam. The molecules can undergo t r a n s  - cis isomerisation leading to nonlinear 

optical effects [40]. Again these effects are not considered since they are specific to 



certain type of molecules. 

Optical Solitons 

We have briefly described in the previous section the static kinks or walls in the 

presence of external fields . These are to be distinguished from the optical solitons 

associated with light beams in nonlinear media. Optical solitons in liquid crystals 

have not received enough attention and the last chapter is devoted to beams prop- 

agating through liquid crystals. In this section we briefly present what is known 

of soliton formation and propagation in usual nonlinear media [41]. These optical 

solitons could be either spatial or temporal solitons. The optical nonlinearities of 

a medium will have to  be considered along with not only the usual self-diffraction 

but also dispersion effects. I n  some media, self-divergence effects of diffraction or 

dispersion on a light beam are opposite in sense to that due to the nonlinearity. At 

a certain intensity the nonlinear effect can balance exactly the effect of diffraction 

or dispersion. This results in beams which travel in the medium without change of 

spatial intensity profile or pulse shape and width. If the nonlinearity balances the 

effects of dispersion, the resulting soliton is termed a temporal soliton. On the other 

hand, if the nonlinearity compensates the effects of diffraction then the resulting soli- 

ton is referred to as a spatial soliton [42, 431. In case of spatial solitons it is possible 

that the nonlinearity could be either positive or negative. If the nonlinear coefficient 

is positive the resulting soliton will have a central peak with vanishing asymptotes. 

In literature this is called a bright soliton. On the other hand if the nonlinear co- 

efficient is negative then the soliton solution has a central dip in the intensity on a 

uniform intense background. Such a soliton is called a dark soliton [44]. It should be 

remarked here that usually the term soliton refers to special solutions which preserve 

their shape after a painvise collision. They are usually described by a system of dif- 

ferential equations which are completely integrable. It is known that only the Kerr 

nonlinearity leads t o  an integrable differential equation. But most of the nonlineari- 

ties in liquid crystals are not of the Kerr type and the resulting differential equations 



are not integrable. Hence, they only possess solitary wave solutions. Unfortunately 

solitary waves are also sometimes referred to in the literature as solitons. However, 

optical solitons in liquid crystals has not been given enough attention. There are very 

few studies in this subject [45, 46, 47, 481. 

Next we present the analysis of finding a spatial soliton solution when the 

usual Kerr nonlinearity is operating. At low intensities diffraction dominates xhile 

at  high intensity self-focusing predominates. Hence a t  a particular intensity the two 

opposing effects annul each other. This leads to self-trapping of the laser beam with 

an unchanging profile. This was first studied by Talanov [49]. The governing one 

dimensional nonlinear equation is given by [44, 501: 

where E is the envelope of the electric field, Z = k,z is the scaled distance along 

the direction of propagation, X = k,x is the scaled transverse coordinate, p, is the 

linear refractive index and k, is wavevector of the laser beam. Incidentally, this is a 

nonlinear Schrodinger equation. The local nonlinearity is introduced by the function 

pnr(I ) .  Assume a solution of the form E(Z, X )  = $ ( X )  e x p ( i v Z ) ,  where $ ( X )  is a 

function of X only. In case of the usual Kerr nonlinearity the function nnl(I )  takes 

a simple form pn l ( I )  = p2 1, where p2 is a constant. The permitted spatial soliton is 

described by: 

where a = 2p0k0v and b = 2p0k2p2. Here v is a real positive parameter and I/+ is 

directly related to  the soliton width. In practice the width of the soliton depends on 

the full solution of the differential equation subject to the boundary condition that a t  

Z = 0, the solution matches the input pulse profile. This parameter also determines 

the amplitude and the wavevector of the soliton along the propagation direction. In 

liquid crystals, however, p,,~ takes a complicated structure and the corresponding 

solitons are very different structurally. Some of these studies are described in detail 

in the chapter 7. 
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