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Abstract 

Wide field imaging with the Mauritius Radio Telescope 

Sandeep Sachdev 

The present work describes various aspects of wide field imaging with the 

' ~ a u r i t i u s  Radio Telescope (MRT). The hardware systems and the tools de- 

veloped for wide field imaging with the MRT are described along with their 

application to the observations made with the new system. 

At the MRT we normally use a bandwidth of 1 MHz. Since the east-west 

groups have a narrow primary beam of two degrees in RA, this bandwidth 

does not pose a problem for synthesizing the primary beam in this direction. 

However both the east-west and the north-south groups have wide primary 

beams in declination extending from -70" to -10". The thesis describes the 

problems of imaging this wide field of view with the MRT. The need for a 

hardware system (recirculator) to efficiently image this large field of view is 

described. The design aspects of the recirculator along with a description of 

the hardware systems developed and the observations made with them are 

given. Calibration and imaging of the recirculator data for wide fields are 

discussed. As part of data analysis, interference detection and their handling 

in the images are also discussed. 

The thesis discusses various results obtained. Images of a one hour region 

with a resolution of 4' x g1.2sec(6 + 20°.14) covering the entire declination 

xxiii 
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range of the MRT, -70" 5 S 5 -10°, are presented. Noise in the images and 

estimation of positions and flux densities of unresolved sources in the images 

are also discussed. 



Principal symbols 

Listed below are the symbols and abbreviations used in the thesis. 

AGC Automatic Gain Control. 

AN Normalized antennalinterferometer response function. 

b, Synthesized beam pattern; Point source response. 

B Brightness distribution. 

C(T) Correlator response. 

DAS Data acquisition system. 

DSB Double sideband. 

DFT Direct Fourier transform. 

er f Error function. 

E Eastern group. 

EW East-west group. 

FFT Fast Fourier transform. 

F Image volume. 

f,, Degradation factor. 

f, Sampling frequency. 

fh Highest frequency in the bandpass. 

fi Lowest frequency in the bandpass. 

FWHP Full width half power 

G Complex gain. 
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H, HA Hour angle. 

HPBW Half power beam width. 

H (v) Power spectrum. 

IF  Intermediate frequency. 

kb Boltzmann constant. 

L Length. 

LO Local oscillator. 

LST Local sidereal time. 

MEM Maximum entropy method. 

MRC Molonglo Reference Catalog. 

MRT Mauritius Radio Telescope. 

MST Mauritius standard time. 

NS North-south group. 

os Oversampling factor. 

P Probability distribution; Period. 

PSF Point spread function. 

RA Right Ascension. 

RBC Redundant baseline calibration; Roger, Bridle and Costain flux den- 

sity calibration. 

RF Radio frequency. 

S Southern group or trolley. 

S Flux density. 

Scan Confusion noise power. 

S/N Signal-to-noise ratio. 

S I P 0  Serial-In-Parallel-Out. 

SS Surveying sensitivity. 



Principal symbols 

SSB Single sideband 

T, Temperature spectral index. 

T,,, System temperature. 

V Complex visibility. Voltage pattern of an antenna(s). 

Kh The threshold voltage of the quantizers. 

VSWR Voltage standing wave ratio. 

W Weighting function of the visibilities (Spectral sensitivity function). 

W Western group. 

x spatial frequency in the east-west direction. 

' y spatial frequency in the north-south direction. 

z spatial frequency along the vertical (height). 

za Zenith angle. 

Z Characteristic impedance. 

a Spectral index defined by S m u-"; The ratio of threshold voltage to the 

RMS voltage. 

6 Declination; (Dirac) Delta function. 

X Wavelength. 

v Frequency. 

A u  Bandwidth. 

4 Latitude; General angle. 

p Correlation coefficient. 

p~ Output of the digital correlator. 

p, Normalized correlation coefficient. 

pa Equivalent analog correlation coefficient. 

a Standard deviation; RMS noise level. 

T Time delay. 



Principal symbols 

Ar Uncompensated delay. 

rg Geometrical delay. 

ri Instrumental delay. 

< Direction cosine w.r.t. the east-west direction. 

q Direction cosine w.r.t. the north-south direction. 

5 Direction cosine w.r.t. the zenith direction. 

fi Convolution in two dimensions. 

-k -k * Convolution in three dimensions. 

+ Fourier transform relationship. 
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