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CHAPTER 4

INFLUENCE OF FLEXOELECTRICITY ON THE EHD INSTABILITIES IN

NEMATICS: A THREE-DIMENSIONAL LINEAR ANALYSIS FOR DC

EXCITATION

4.1 INTRODUCTION

In this chapter we extend the one-dimensional linear
analysis presented in the previous chapter by including
the boundary conditions. In addition to confirming the
results of the one-dimensional model these calculations
predict a new flow pattern of the fluid particles within
the convective rolls. W also present some experimental

observations in support of the theory.

4.2 THE ELECTROHYDRODYNAMIC EQUATIONS

The geometry considered is the same as that in chapter
3 (Fig.1). When the boundary conditions are taken into
account all the variables in the problem become functions
of & and Z. Thg treatment of the problem presented below
follows closely that of Penz and Ford ([1] for normal
rolls (see chapter 2). The variables appearing in the
problem are the +two polar angles 8 and ¢, the three
components of the velocity v_, v and v, , the transverse

5 7
field E5 and the pressure p. W assume solutions of the

form



Fig.1. Illustration of t he coordi nat e system and
definitions of the angles used in the text.



& = 8, exp(ig.r) , ¢ = ¢ exp(iq.F),

ELTE exp(i8.F) , v, = - 8y, exp(iq.r), (1)
v, = v, exp(ig.7) , v, = v, exp(iq.r),
and p = p exp(iq.r) where S = Q_ / q -

g

The ¥ and Z components of the velocity are related by the

continuity equation div V = 0. This leads to a velocity
field given by
A -—
v = ( —S Vz ’ V.o ] v )
Since the Maxwell relation curl E = O, is to be
satisfied, there is a contribution to the Z-component of
electric field from the internal field E_. The total

g
electric field is given by

where Ea is the applied field. Using the above solutions
the following equations describing the system can be set
up.

1) The g -component of the equation of motion,
2
ip- S + v - + To= 2
R-I[7a 7. al v, [77305 774qu 1v, 0 (2)

where 77 = % [aq.+(a6+ a3) cz]’ 772: 771 + (05 +01c’») cZ |
1
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'73—[06+aic]sc, '7+-i(ae+03)sc,
S = sin a and ¢ = cos a.

2) The 7-component of the equation of motion,
[ 2% g a+27 a> sl v+ [Na” +nq° 1V =0 (3)
Z- gz 74- z ° Vsqﬁ 7eqz °

~ _ a3 _ _ 2 2 2 2
where 174- 774+ a,c s,?s- a4+(a5 az)c + (c:6 +a3)s +201s (o}
2
= + a + S.
and '76 a, ( . a )

3) The Z-component of the equation of motion,

[}

. 2 2 2
- + ' o
iq p [T)7qz +17e qa ]v° + T/)q qg qz v, (et+e3) Ea qg s co®

+[{ie, E: c/an -(e, +e, )E, q clq

%
-(iE: /4m)(e, a, S +e. a  )o,18,=0 (4)
where 77= ¥[(a; +a, )Cz'%]' 7, = ¥l(a, -a, )C'L-'Cl"_],

2 2 2
T]q- i(az+as)sc, ec—eJ_+eac, o, = cac/[cl(1+s )+cac ]

4) The E -component of the torque balance equation,

il(a,-a,S )qgc]vo - ia,q,s v, + [R a.9, —1'(e1—e‘,‘)anEs]d>o
2. 2 2
+[M q_+K,q_-i(e, +e,)0,E q,c - E 0, /4n]g, = 0 (5)
where M = K282+ K:sc2 , 0, = 1-g,¢ and R = (Ki— Kz)s.

5) The Z-component of the torque balance equation,

-11’)quv°— 19,9.% +[R g + i{(e ~o,)-(e +e, )olc}Eas]quo

2 2 -
+ (L qg+ Klqz_)m° =0 (6)
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= (a - -
wher e Za 2 +a Jsc , Vn_ a, +(a, +a, )s

- 2 2
and L = K1 s+ K3 c’.

Egqs.(2-6) form a set of honpbgeneous equations in the
variables e, , Vo v, and p, . For the existence of
non-trivial solutions the determ nant of the coefficients
of these variables in these equations should vanish. This
condition vyields the following 12th degree polynom al
in S

12
T a. S = 0 (7)

where s’ is the i" power of S The coefficients of the
pol ynam al are:
2, MAC, - (E, /a_ ) [AB,C /4n +A,C,+A D 5],
Aa1=i(Ea/qg)[AM10—Pcicac -A D, s +(Ea/qgf {-A B,c/4an +A,C}],
a,=o,M C, -A M, -(E,/a_) [A B, c/4m -A P B +A B, c/4n
+(C, +C,)A, +A D, s +P C,0,c +(e , -e )0 D, s],
a3=1(Ea/q&)[A M,-D;A;s -P C,0,c +o, M, -(e,~e, )0, D;s
+(E,/a,) {(C,+C,)A, -A B c/4n ~A B c/an}],
a,=-A M,=0,M,~(E,/a,) [-A P B, +A B, c/4T +A B,C/4T +A D, s
+(C,+C )A, +P C,o,c +(e, -e,)0, D, s -0, P B, ],
aszi(Ea/qg)[A M, -Asts -P C;g,c +o, M, —01(91_95)013
+(E,/a,) {C A, -A B c/an}],
a,= ~A M, —o,M; ~(E,/a,) [AB, c/4m +A B, C/4T +(C, +C,)A,

+ASD7S -o P B; +(ei—es)c_LD4s],
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a7=~i(Ea/q€)[(R D -P B,)A -A.D ;s +o, M, —(e,~e )0 D;s

-P C,o,cl,
a,=-AM, -0, M, -(E /) [A B, /4T +(C +C,)A, +(e, -8, )0, D, 5],
a,=i(E,/a. )[-P C,0,c +(R D,~P B, )0, ~(e, -e,)o, D _s],

2
a, =A Kic7 --c:J_M1 —(Ea/qa) [A2C7],

a = 0,
a = KLOLC‘I
- 2 —-— — -
where, A = g +o,c” , A, =€,0, -0O,€ , A, = ea°¢/4“ ,

A_= (ei—es)A —caPc , A

3 =eloac/4n » A, =A3 +(el—e3)A y

4
=A, +eaA , Ag =eaA3 +(el—ez)A1, P=(e1 +e3 e, R=(K1—Kz)s,

L=Klsa+K3c2 ,M=K232 +K302 , Ny :1751710-2174 /R

Ny =20 (0,-7) + U,(0,-7,) + 07T

N, =(g.a -7 a, )c - 2'?); a, s , N, =0.",~ 20 My

Ne =(, e = 27, s)ag o Ny =27, (0,+ - 7,) +7,(7,-7,)-9,7,
No=2nt-mm, 0 BTG ¢ s By SN R AL S8, K,
B,=N, (e, ~e,)s , B, =N, R +N K +N_ L

, By =Na (91‘93)5 ,

By =N, K, C,= 7L C, =N,Ps, C, = N, L +175778K2, C, =N,Ps,
Co=N, K N L, Co=NJK,+N, L, G =N,K,, D =N, R, D= N R,
D,=(e,-e,)N,s +P N,s , D, =(e ,-e )N s + P N;s , D =7 T,R,
Dsnys['?a(ei—%) -a,P cls , D, =(el—e5)N7s , D3= NR
M,=RD;, ~MC, -KC, , M, =RD, -MC, - KC,

=R D, -MCg - K,C M

173 4

RD, -MC, - KC, ,

M,
Mg ==[P By +M C,+R P7) a,sc],M =-[ PB +M C,+K,C,-P R N;s],
M =-[P B4 +K,C, -P R N.s], Ma =-[P 8, +K,C, -R D4_ 1,

Mq

=[P B, +M C4 +K1Cz -R D?_ ] and M10 =-{P B1 +M C, -R 06].
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Note that all the coefficients of the odd powered terms in
the above polynomial are imaginary and proportional to the
flexcelectric coefficients. Therefore, when the
flexoelectric terms are neglected, all the odd powered
terms drop out and Eq.(6) becomes a 6th order polynomial
in S2. Since the coefficients of the even powered terms
are all real, the roots of S2 that are not real occur in
complex conjugate pairs. Taking each of these roots with

positive and negative signs we get the 12 roots of S.

When the flexoelectric terms are included, the roots of
S that are not purely imaginary are complex and occur in
pairs of the form (a + ib) and (-a t ib). It may be noted
here that roots of this type are also found in the case of
the Benard instability in a rotating fluid subjected to a

magnetic field [2].

The 12 roots of S can be determined using the 12

boundary conditions that the six variables, viz, 8, ¢, EE,,

Ves Vpi Va have to satisfy at the two surfaces. These

are:
8 (Z =+d/2)y =0, & (Z =% d/2) =0,
Eg (Z ot d/2) =0, Vy (z = £ d/2) =0, (8)
v, (Z=%*4d/2) =0 and v, (Z =+ d/2) =0

7
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Substituting the 12 roots S, in solutions (1) and using

the above conditions, we get 12 equations in Sj and

8 = QE‘ d/2. For example, the two boundary conditions on

v lead to the following two equations.
Z

z V. exp(isja)

1
o

(9)

12
T v. exp(-iS.d)
=1 J 3

"
(o]

(10)

where v, are arbitrary coefficients. Egs. (9) and (10)

yield, on adding and subtracting, respectively

il
o

12
53:1 vj cos(sj 5)

(11)

12 .
z V. s1n(Sj€5)
j:l J

n
o

(12)

The other boundary conditions also lead to similar
equations. These equations can be written in terms of the
coefficients V; using Egs.(2-6). Thus we obtain a set of
12 equations in v, relating the roots $; and &. For the
existence of solutions satisfying the boundary conditions
the 12 x 12 determinant associated with these equations
must vanish. This boundary value determinant (BVD) is
given by

D.. =0 ; 1,d = 1,12 (13)



The elements of the determinant are:

ij = cos(SjG), D,; = sin(SjG), Dsj= Sijj ,D‘j= SjDz-J ,

D5 = T3Dy5 » Dg3 = T3 D3 0 Dyy ™ FyDyy 5 Dgy = FyDyy s Doy = G305
D3 = G;D,5 » D,y5 O Hj D1j , Dnj = H, Dzj .

where,

—
n

~ 3 2
; (Sj174+ Sy 174)/(175 + 8y 776) , Fy = (bj-cj)/(db—eﬁ),

2 2 - _ = -
3 Fj/[cl(1+Sj) to, ¢ 1, H, = (f, gj)/(dj e;), bj— mn;

(0]
"

cy= py 1y 0 93T Fyly sy tyny, FyE Rty 9= npmy

- n.= R S. - i(E e, -~ e, ) s ,
my= 2 Ty - sagm M 3 (Ey/a.) (e, 5

"

1
(a, - a SJ.)c+2Tisjass,l L+Kzs.J

3 7

- 2 2 2 3 . .
n =M+K, S} (Ea/‘m)(Ea/qg) o (1+48;)/0; -i(E,/a )PS;0,¢ /95,

. - 2
t,= R S; * 1(Ea/qg) Bys , 0= c, (1 +8;) +o,c

and B.J:(e1 -e,)-Po c/ o,.

Eas.(7) and (13) together form a characteristic value
problem and hence any arbitrary set of roots of Eqg. (7)
will not, in general, satisfy Eq.(13). In order to obtain
the solutions we have to find a set of values of §; that
satisfy Eqs.(7) and (13) simultaneously.These calculations
were done numerically. For a given set of values of the
material parameters and a given value of a, we choose some
values of the applied voltage vV, and & and the roots of
Eq.(7) are obtained. These are then substituted in Eg.(13)
and the BVD is evaluated. the value of & is then varied

till the BVD becomes zero. The calculations are repeated
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for different values of the voltage. The lowest value of
the voltage at which such solutions exist is the threshold
voltage V,, . The above process is then repeated for
different values of a. The lowest value of Vin gives the
critical voltage vV, for the onset of the instability and
the corresponding values of 6 and a give the magnitude
and direction of the wavevector of the convective rolls,

respectively.

4.3 RESULTS AND DISCUSSION
a. Calculations without flexoelectricity

In this case we get normal rolls at the threshold for
the standard values of the MBBA parameters listed in table
1 of chapter 3. However, iIf the values of some of these
parameters are suitably altered oblique rolls are
obtained. For example, if the twist elastic constant Kz is
decreased slightly, with all other parameters having the
standard MBBA values, a nonzero value of a can be obtained
at the threshold. Similar results were obtained by
Zimmermann and Kramer [3] using stress-free boundary
conditions. In order to get a non-zero value of a at the
threshold we have taken K, to be 2x10-7 dynes instead
of the standard MBBA value of 4x10-7 dynes, with all
other parameters as in table 1 of chapter 3. Fig.2 shows

the variation of Vth with a obtained from the calculations.



Fig.2. Variation of the threshold voltage (in Volts) with
a (in radians). The curves |abelled a and b correspond
to cal cul ations fl exoelectricity,

respectively.

without and with
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V¢ have also calculated the variation of all the
variables across the thickness of the sample at a voltage
slightly above the threshold ( Figs.3-7). As mentioned
earlier, when the flexoelectric terms are neglected the
roots of Eq.(7) occur in * pairs. Therefore the profiles
of all the variables are symmetric about the mid-plane of
the sample. 1t should be noted here that the axial
velocity Vy results from the oblique flow of the fluid in
relation to , with a vertical velocity gradient. This
situation is similar to the so-called nematic Hall effect
[4], discussed in chapter 2. Fig.8 shows the trajectories
of two fluid particles in adjacent rolls. The plane
containing these trajectories is at an angle to the &2
plane because of the axial component of the velocity. The
symmetry of the velocity profiles, however, results in

closed trajectories of the fluid particles.

b. Calculations including flexoelectricity

In this case obligue rolls are obtained at the
threshold for the standard MBBA values of the material
parameters. However, for the sake of comparison with the
previous case we retain the value of K, used in that
section,ie, 2x10-7 dynes. The variation of Ven with a

is shown in Fig.2. It is clear from the figure that

flexoelectricity strongly favours oblique rolls. The
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difference inV, at a = 0 between the two cases with and
without flexoelectricity arises from the contribution of
the flexoelectric polarization to the space charge density

in the medium.

The variation of the different variables across the
thickness of the sample calculated at a voltage slightly
above the threshold voltage is shown in Figs.3-7. The odd
powered terms in Eq. (7), which are present when the
flexoelectric terms are taken into account, give rise to
the asymmetry in their profiles. The strong coupling to
the flexoelectric terms leads to a conspicous asymmetry in
the ¢ profile (Fig.5 ) and in turn to that in the v

7
profile (Fig.7). The asymmetry in the v profile results

7
in an open helical trajectory of the fluid particles
within the convective rolls. Fig.9 shows the calculated
trajectory of two fluid particles in adjacent rolls, close
to the periphery of the rolls. 1t is <clear that they
spiral in opposite directions. 1t must however be noted
that within the same roll the particles close to the axis
of the roll spiral in one direction and those close to

the periphery spiral in the opposite direction. This is

clear from Fig.10, which shows the two halves of the v
7

profile superposed. Further, as can be seen from the

figure, the difference between the two halves of the Ve
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Z2/d

Fig.3. Variation of 8 across the thickness of the cell at
=0, ie, along the vertical |ine passing through the
centre of the roll. The labels a and b have the sane
significance as in Fig.2.
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Fig.4. Variation of Eg across the thickness of the cell at
= 0. The labels a and b have the same significance
as in Fig.2.
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Z/d
Fig.5. Variation of & across the thickness of the cell at
E= n/q,. , ie, along a line passing through the edge
of a roll. The Tlabels a and b have the sane

significance as in Fig. 2.
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Fig.6. Variation of v, across the thickness of the cell at
€ = 0. The labels a and b have the same significance
as in Fig.2.
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Fig.7. Variation of v, across the thickness of the cell at
E=0. The labels’a and b have the same significance
as in Fig.2.



Fig.8. The closed trajectories of two fluid particles in
adjacent rolls obtained from calculations wthout
flexoelectricity. The ellipticity of the trajectories
arises froma steep angle of viewing. Further, the
scales along 8,7 and 2 have been chosen to be
rat her di ff erent for the sake of clarity.

Fig.9. The helical trajectories of two fluid particles in
nei ghbouring rolls obtained when the flexoelectric
terns are included. The asterisks indicate the initia

positions of the particles.



profile is relatively small close to the axis of the roll.
Let us denote by '\7,7 the net velocity along . of a fluid
particle close to the periphery of the roll. From the
above discussion it is clear that 77 is opposite in
adjacent rolls with opposite vorticity. For a given sense
of the vorticity V,) changes sign with either that of a

or E,, reflecting the flexoelectric origin of the helical

flow.

4.4 EXPERIMENTAL STUDIES

In continuation of the studies on EHD instabilities
under DC excitation, presented in the previous chapter, we
have also made careful observations on the flow within the
rolls. The trajectory of tracer particles could be clearly
seen only when they were close to the periphery of the
rolls. These particles were found to move along helical
trajectories with particles in adjacent rolls spiralling
in opposite directions. Further, the observed direction of
'\77 agrees with that obtained from the calculations for
given signs of a, E_, and the vorticity. Vo Wwas also found
to change sign with that of any one of these three

parameters, in agreement with the calculations.

Helical motion of the tracer particles within the

convective rolls has been reported even under AC



0.0

1+
o
5
N
~
jal

Fig.10. The two halves of the v, profile shown superposed
(a). The difference between the two halves 1s also
shown on an expanded scale for «clarity (b). It 1is
clear fromthe figure that the net axial conponent of
the velocity near the centre of the roll is relatively

and is in opposite directionto that near the

smal |
peri phery of the roll.
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excitation [5,6]. But our calculations do not predict such
a flow, as the direction of Y is reversed when Ej
changes sign. BFthe density of the tracer particles is
very different from that of the nematic, then the
trajectories of these particles will not be symmetric
about the mid-plane of the sample. This can in principle
give rise to a helical flow of the tracer particles,
because of the Z dependence of the velocity profiles. 1t
should be noted here that this effect will be present even
iT the velocity profiles are symmetric about the mid-plane

of the sample and the motion of the fluid particles is

confined to closed trajectories.

Recently Thom et al.[7] have also developed a three-
dimensional analysis of the DC EHD instability i n nematics
taking into account the flexoelectric effect. In addition
to a full numerical solution they also present solutions
based on some trial functions. It is gratifying to note

that their results are in agreement with those presented

in this chapter.

Thus the three-dimensional analysis, which takes into
account the rigid boundary conditions, confirm the
importance of flexoelectricity in the oblique-roll

instability in nematics under DC excitation. Further, it
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predicts a helical'flow of the fluid particles within the
convective rolls. This prediction is confirmed by

experimental observations.
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