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Preface 

Liquid crystals are ordered fluids formed by compounds whose molecules 

have a large shape anisotropy [I, 2, 31. In nematics, which are the simplest of 

liquid crystals, the anisotropic molecules are, on the average, oriented along 

a common direction. This direction is usually denoted by an apolar unit 

vector called the director. There is, however, no long range ordering of the 

centers of mass of the molecules. In the case of smectic liquid crystals, the 

molecules are condensed into layers. Within the layers there is only a liquid- 

like order, but along the layer normal the structure is periodic. In smectic-A, 

the director is along the layer normal. In the case of smectic-C, the molecules 

are tilted along a common direction within the smectic layers. In presence of 

chiral (noncentrosymmetric) molecules, the tilt direction in smectic-C varies 

continuously along the layer normal and is then called a smectic-C* liquid 

crystal. 

The symmetries of these liquid crystalline structures are intermediate 

between those of three-dimensional crystals and isotropic fluids. Since they 

possess a long range orientational order, they can exhibit a large variety of 

topological defects called disclinations in their director field. Apart from 

these, smectic liquid crystals can also exhibit dislocalions, as in crystals, due 

to their layered structure. Since liquid crystals are very soft compared to 

crystals, effects like chiral interactions play an important role in determining 

the equilibrium structures formed by them. As a result they can form exotic 

defect ridden phases when the chiral energy gained by introducing distortions 

exceeds the elastic energy cost of creating the defects. 

In this thesis we describe some experimental and theoretical studies on 

new defect structures observed in nematic and smectic liquid crystal domains. 

We also describe the observation of a new liquid crystalline phase, which 



consists of a network of defects, and give a theoretical model to account for 

its occurrence. 

The topics described in the different chapters are outlined below. 

In t h e  first chapter,  we give a brief introduction to the various liquid 

crystalline phases discussed in the thesis. We also describe some of the 

topological defects commonly seen in various liquid crystals. 

In t h e  second chapter,  we describe the observation of spontaneous chi- 

ral symmetry breaking in three-dimensional domains of a smectic-C liquid 

crystal coexisting with the nematic phase. This new 'chiral' structure is ex- 

hibited by a binary mixture consisting of achiral molecules. The structure 

of the smectic domains could be established by studying the optical texture, 

xray diffraction experiments and optical path difference measurments. The 

smectic-C domains have a helical structure with a surface disclination line 

which coils around the domain surface. Also, these domains have highly 

anisotropic shapes. Experiments performed using an externally applied al- 

ternating electric field show that these domains are equilibrium structures. 

Since the chiral symmetry breaking is spontaneous, both left-handed and 

right-handed domains form with equal probability. This is the first obser- 

vation of such periodic chiral structures in achiral smectic-C liquid crystals. 

We could also demonstrate that the application of a chiral bias field in the 

form of a twist distortion in the director field of the surrounding nematic 

medium can produce chiral discrimination. The mechanism for this chiral 

discrimination is easily explained unlike in the case of crystals. The highly 

anisotropic growth of these domains is also discussed in some detail. 

In t h e  th i rd  chapter,  we present a theoretical analysis of the stability of 

the chiral domain structure described in the previous chapter. We show that 

the chiral symmetry breaking is due to a combination of surface anchoring 



and bulk elastic properties specific to smectic-C liquid crystals. In particular, 

a cross-coupling between the twist and bend distortions in the c-vector field, 

which describes the tilt direction of the molecules within the smectic layers, 

is responsible for the helical structure exhibited by these domains. This is 

the first demonstration of the effect of such a coupling which is permitted by 

the symmetry of smectic-C liquid crystal. The sign and magnitude of the 

corresponding elastic constant are estimated by comparing the theoretical re- 

sults with the experiments. Experimental observations show that the smectic 

domains produce a twist deformation in the director field of the surrounding 

nematic. An estimate of this twist distortion energy.shows that it increases 

rapidly as the domain diameter approaches the thickness of the cell in which 

the sample is taken. An analysis of the domain shape taking this elastic dis- 

tortion and the anisotropy in the interfacial tension into account shows that 

the equilibrium shape is highly anisotropic, as seen experimentally. Also, as 

the volume of the domain is increased, the domain length increases much 

more rapidly than the radius, which is also in accord with the experimental 

observations. We have also simulated the optical texture exhibited by the 

chiral domains and the results agree reasonably well with the experiments. 

In t h e  fourth chapter, we describe the observation of a new three- 

dimensionally modulated smectic liquid crystal. This new phase belongs to 

the Twist Grain Boundary class of liquid crystalline phases. Twist Grain 

Boundary (TGB) phases are liquid crystalline analogues of the Abrikosov 

phase exhibited by type-I1 superconductors. Some of these remarkable struc- 

tures were theoretically predicted based on an analogy between the two seem- 

ingly very different systems [I, 31. 

The TGBA phase, which is the simplest of the TGB phases, consists of a 

regular twisted arrangement of almost perfect smectic-A blocks separated by 



grain boundaries consisting of arrays of screw dislocations. TGB phases with 

smectic-C-like blocks (TGBc) have also been observed and well studied. The 

structure of the new phase described in this chapter is far more complicated 

than the previously observed TGBA and the TGBc phases. 

We have conducted calorimetric studies to establish the thermodynamic 

stability of the new structure. Detailed microscopic observations show that 

the grain boundaries separating the smectic blocks have a two-dimensional 

height modulation along directions which are orthogonal to the TGB twist 

axis. We have also performed xray diffraction experiments which show that 

the local order is indeed like that of smectics with the molecules tilted with 

respect to the layers. Detailed observations on the response of this structure 

to an externally applied alternating electric field show that the molecules 

within each smectic block are arranged in a helical fashion. This is some- 

what similar to the molecular arrangement in a smectic-C* liquid crystal. 

Based on these experiments we have proposed a structure for this liquid 

crystal. In this, the grain boundaries separating the smectic blocks have a 

two-dimensional height modulation. Within the blocks, the structure is sim- 

ilar to that of smectic-C*. On going from one smectic block to another the 

smectic layer normal changes its orientation like in the other TGB phases. 

Thus the structure is three-dimensionally modulated with twist-axes along 

three mutually orthogonal directions. Since the grain boundaries have two- 

dimensional undulations, we call this the Undulating Twist Grain Boundary 

phase or the UTGBct phase, for short. 

In the fifth chapter we present a simple model which can account for 

the occurrence of the various TGB phases. In this the grain boundaries 

are treated as interfaces with an anisotropic interfacial energy. The smectic 

blocks are modelled by an ansatz which is chosen based on the experimental 



observations. The free energy of the smectic blocks is calculated using a Lan- 

dau type of phenomenological expression. the phase diagrams constructed 

for different parameters like chirality and anisotropy in the interfacial tension 

show all the observed TGB phases, including the new UTGBc* phase. 

In t h e  s ixth chapter,  we present the experimental observations made 

on a new defect configuration in polymer doped nematic drops. 

Nematic drops nucleating from the isotropic phase, or dispersed in an- 

other isotropic liquid which is immiscible with the liquid crystal, show a 

variety of defect configurations. In such drops the director has a preferred 

orientation at  the nematic-isotropic interface, for which the interfacial energy 

is a minimum. Satisfying the alignment condition on such a closed surface 

necessarily involves the formation of topological defects (disclinations). The 

types and configurations of these defects will depend on the elastic properties 

of the nematic apart from the alignment condition at  the boundaries. When 

the director has a preferrance to lie tangential to the interface, topological 

cosiderations require the formation of two surface disclinations. In usual 

drops these disclinations occur diametrically opposite to each other. In the 

polymer doped nematics, however, the two surface defects lie closer together. 

When many such drops merge to form large domains, the domains show a 

periodically distorted structure. Experiments show that the polymer concen- 

tration is coupled to the director field of these nematic domains. A simple 

theoretical model which takes into account such a coupling between the gra- 

dients in the concentration field and the director distortions does not seem 

to explain the experimental results. Therefore, other physical mechanisms 

have to be explored to understand these unusual patterns. 
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