
Chapter 3 

A theoretical analysis of the chiral structures formed 
by the smectic-C liquid crystal domains 

3.1 Introduction 

In this chapter, we present a theoretical analysis of the stability of the chiral domain 

structure described in the previous chapter. We show that the chiral symmetry 

breaking is due to a combination of surface anchoring and bulk elastic properties 

specific to smectic-C liquid crystals. In particular, a cross-coupling between the twist 

and bend distortions in the c-vector field is responsible for the helical structure of 

these domains. This is the first demonstration of the effect of such a coupling which 

is permitted by the symmetry of smectic-C liquid crystals. The sign and magnitude 

of the corresponding elastic constant are estimated by comparing the theoretical 

results with the experiments. We have also analysed the effect of the twist-bend 

coupling on the stability of a straight +2 disclination line. It is shown that the line 

prefers to be tilted with respect to the smectic layer normal. As mentioned in the 

previous chapter, the S m C  domains produce a twist distortion in the surrounding 

nematic. An estimate of this twist distortion energy shows that it increases rapidly 

as the domain diameter approaches the cell thickness. An analysis of the domain 

shape taking this elastic distortion and the anisotropy in the interfacial tension into 

account shows that the equilibrium shape is highly anisotropic. Also, as the volume 

of the domain is increased, the domain length increases much more rapidly than the 



radius, which is in accord with the experimental observations. 

Before going into the details of the calculations, we give a brief introduction to 

the theory of elasticity of S m C  liquid crystals. 

3.1.1 Elastic properties of smectic-C 

As already mentioned in the first chapter, smectic liquid crystals have a crystalline 

order along one direction and a liquid-like order in the orthogonal directions. More- 

over, there is an orientational ordering of the molecules within the layers. Thus 

they can exhibit both 'crystal-like' and curvature elastic properties. In smectic-A, 

'a small distortion of the layer spacing (compression or dilation) creates an energy 

density proportional to (V,U)~,  where u describes the displacement field (Hookeys 

law). Similarly, layer curvatures not involving any change in the distance between 

the layers will cost an energy proportional to ( V ~ U ) ~  due to the splay distortion of 

the Frank-director (note: in SmA, the Frank-director is parallel to the layer nor- 

mal). In the case of smectic-C , there is an additional degree of freedom, namely, 

the orientation of the c-vector. The c-vector can have splay, bend and twist dis- 

tortions like the Frank-director in nematics. But the c-vector is polar unlike the 

Frank-director which is apolar. The magnitude of the elastic constant correspond- 

ing to layer spacing variations is estimated to be around 108erg ~ m - ~ .  Although this 

is small compared to that for crystals (- 10IOerg ~ r n - ~ ) ,  the layer spacing variations 

are energetically very expensive compared to pure curvature distortions. The elas- 

tic constant corresponding to the curvature distortions is N 10-6dyne. Therefore, 

in many situations, it is a good approximation to assume that the layer spacing is 

constant. 

The smectic-C free energy density should be invariant under the transforma- 

tions of the C2h symmetry group which are the following: 

Reflection about a plane containing the layer normal, N and c. 



Two-fold rotations about an axis perpendicular to N and c. We represent this 
4 

axis by p = N x c. 

Also, the energy should remain invariant under global rotations and translations. 

The bulk curvature elastic free energy density of an incompressible SrnC can then 

be written as [35] 

For S m C  , the layer curvature energy is anisotropic. The elastic modulus for 

curvatures in the N - c plane is different in magnitude from that for curvatures in 

the perpendicular plane. The first term in Eq. 3.1 is the isotropic part of the layer 

curvature energy. The second term gives the anisotropic contribution. Terms with 

coefficients Kg, K6, K7 and K8 occur due to the coupling between layer curvature 

and c-field distortions. The terms with constants Kb, Ks and Kt describe the bend, 

splay and twist deformations in the c-field, respectively, and are the three principal 

deformations of the c-field, not involving layer distortions. The term with Kbt is a 

coupling between the bend and twist deformations in the c-field. In the next section 

we show that it is this coupling that is responsible for the helical nature of the chiral 

domains. 

No chiral (pseudoscalar) terms are allowed in the free energy expression by the 

C2h symmetry of the SrnC layers. This is not the case if chiral molecules are added 

to a SrnC liquid crystal. In such chiral systems, the point symmetry of the layers 

is reduced to C2, and hence chiral terms can be included as we shall see in the fifth 

chapter, Sec. 5.2.3. 



3.2 Stability analysis of the chiral domain structure 

In this section, we calculate the elastic energy of the SmC domain and show that 

with the bent c-field configuration described in the previous chapter within each 

layer, the elastic free energy is indeed minimised for a helical stacking of such layers. 

To simplify the analysis we make the following assumptions: 

We assume that there is no compressive or dilative distortion of the smec- 

tic layers. This assumption is based on the following argument. Consider a 

SmC domain of size L. Layer dilation/compression elastic energy scales as 

B ( V , U ) ~ L ~  - Bc2L3, where B is the relevant elastic constant. Similarly, dis- 

tortions in the c-field cost energies which scale as (K/L2)L3. For these two 

contributions to be comparable, - ( ~ / ~ ) l l ~ ( l / L )  = AIL, where X is of the 

order of molecular dimensions. Therefore, AIL has to be negligibly small if the 

two energies are to be comparable. In other words, layer spacing variations 

are energetically very expensive compared to curvature distortions. 

The experiments described in the previous chapter indicate that the SmC 

layers are flat. Therefore, terms describing layer curvatures can be dropped 

from Eq. 3.1. 

We assume strong 'anchoring' of the molecules at  the N-SmC interface and 

assume that the singularity lies on the surface of the domain (the effect of 

relaxing this condition will be discussed later). This allows us to calculate 

the contributions to the total elastic energy from the smectic domain and the 

surrounding nematic independently. 

The analysis is for long domains in which the elastic energy contribution from 

the tips can be ignored compared to that from the bulk and the domains can 

be considered as perfectly cylindrical. Experimentally, domains as long as 



Figure 3.1: (a) The c-field within each SmC layer (shaded region) can be considered 
as a part of a +2 disclination (dashed curves). (b) The pattern in (a) rotates from 
layer to layer to  produce a helical structure. Three typical layers within half a pitch 
of the helix are shown. 

be along the X-axis, Eq. 3.4 reduces to 

which is in a form originally written by the Orsay group [37]. The free energy density 

(Eq. 3.5) can be written in the form 

where 

is a real symmetric matrix. The stability condition is given by K > 0, Kt > 0, and 

det [Kij] > 0 (which implies K Kt - Kb2, > 0). 

The Euler-Lagrange equation corresponding to Eq. 3.4, assuming a one elastic 

constant approximation, is 

K [v2$ - 4 cos 4 V,Vz4 - 4 sin O V,VzO 



Figure 3.2: Definition of the coordinate system and the angles used in the theoretical 
description of the structure of the domain. 

Equation 3.7 is highly non-linear and seems intractable analytically. We, therefore, 

analyse the stability of the chiral domains by assuming an ansatz for 4(x, y, z). 

From the experimental studies it is clear that the c-field within each layer is like 

part of a +2 disclination (Fig. 3.la). The structure rotates from layer to layer such 

that the locus of the singular point describes a helical line of period 27r/q (Fig. 3.lb). 

This structure can be modelled as follows: The local coordinate systems (X", Y", 2") 

and (XI, Y', 2') have their origins at  the singular point, S, and co-rotate with the 

singularity. The former is rotated by an angle a = qz with respect to the latter 

which is parallel to the lab-fixed (X, Y, 2) system (Fig. 3.2). The +2 structure can 

then be described as 

qS"'xN, y", 2") = 2$" =t 7r/2 , (3.8) 

where the sign of the 7r/2 term defines the sense of rotation of the c-field. A neg- 

ative(positive) sign of the 7r/2 term leads to a clock-wise(anti-clock-wise) sense of 



the c-field within each layer; Fig. 3.1 corresponds to the negative sign. In a local 

(XI, Y', 2') system (Fig. 3.2), which is parallel to the lab-fixed x, y, z system, with 

$I = arctan(yl/x') and a = qz, the angle made by the c-vector with respect to the 

XI-axis is 

( x ,  I ,  z )  = $I1 + a 

= 2$' - al f 7r/2 

= 2 arctan(yl/xl) - qz f 7r/2 

Going to the lab-fixed coordinate system $ (x, y, z) can be written as 

y + R sin(qz) 
$ (x, y, z) = 2 arctan 

x - R (1 - cos(qz)) 

where R is the radius of the domain. The handedness of the helical structure depends 

on the sign of q. Fig. 3.lb corresponds to negative q. The elastic energy density 

diverges as the singularity is approached. Due to this reason, a core region (of 

radius p, 100A) around the singularity will be 'melted' and is a natural cut-off 

while performing the integration. I t  is convenient to choose a local polar coordinate 

system (Fig. 3.3) such that 

I x1 = p cos $ I ,  y' = p sin $', z = z 

and 

The free energy density, Eq. 3.4, becomes 

The energy per unit length of the domain, neglecting the energy cost for creating 



Figure 3.3: Definition of the polar coordinate system used in the calculations. 

the 'molten' core of the disclination line, can be obtained as 

where p, is the cut off length. Thus the elastic free energy per unit length of the 

cylindrical domain can be obtained as 

+ n K t ~ 2  q2 [ln (E) + % - 11 

since p, << R. Equation 3.16 has a minimum for 



Domain radius (in microns) 

Figure 3.4: Variation of the pitch of the helical band as a function of the radius 
of the domains. The experimental points (*) were obtained using cells of different 
thicknesses. The solid line is the theoretical fit obtained using Eq. 3.17. 

where terms of order p,/R and higher have been ignored and the sign on the r.h.s. 

of Eq. 3.17 corresponds to that of the 7r/2 term in Eq. 3.10. It is clear that a nonzero 

Kbt implies an elastic free energy minimum for a nonzero value of q. From Eqs. 3.10 

and (3.16) it follows that for a given sign of the bend in the c-field the sign of q, 

is determined by that of Kbt. For Kbt > 0 the disclination line has the same sense 

of winding as the ii-field on the surface of the domain, and for Kbt < 0 the two 

have opposite senses. From the observations on the domains formed in the twisted 

nematic cells, we infer that Kbt is positive for this system. 

A plot of the theoretical fit to the experimental values of the pitch as a function 

of the domain radius is shown in Fig. 3.4. Assuming q, 21 Kbt/KtR, the ratio Kbt/Kt 

is estimated to be 0.35. 

Thus we see that the system prefers a chiral structure for the domains even 

though the achiral system does not permit chiral terms in the free energy expression. 



contribution from the tips is negligible compared to that from the 'cylindrical' por- 

tion of the helical structure described earlier.. The electric field experiments indicate 

that the chiral structure is preferred even in domains which are a few hundred mi- 

crons long. We feel that the observed bent c-field configuration may be preferred 

due to the reasons stated below. 

(i) An orderelectric polarisation near the interface: The orientational order 

parameter Q can be expected to vary sharply over a coherence length J (typically a 

few molecular lengths) at the N-SmC interface. This gives rise to an orderelectric 

polarisation 

lpol - e (6Q)/ t ,  (3.18) 

where e is the relevant coupling coefficient, and an electric field 

normal to the interface, where E is the appropriate dielectric constant [38]. The bend 

distortion in the c-field generates a flexoelectric polarisation 

where R is the radius of the cylinder and for simplicity we have used the same 

coefficient e. If the mutual orientation between E and Pf is favourable, the gain in 

energy per unit length of the cylinder 

The bend distortion costs an energy per unit length is 

where K is an elastic constant and rc the core radius. Using the values (in cgs units) 

e - 5 x 6Q - 0.1, E - 5 and K - 0.3 x for the c-vector distortions, there 

is a net gain in energy up to R - l p m  if the c-field has a bend distortion. 



(ii) An elastic coupling of the c-field to the concentration gradient in the binary 

mixture: In the two-component system the gradient of the concentration x across 

the interface can be large. This can favour a bent c-field configuration at  the surface. 

The surface-like term 

Fconc = n / d V V [C x (VX x c)] = n 1 d S [c x (VX x c)] 

in the elastic free energy is of particular interest. A negative value for n favours 

the bent c-field configuration a t  the N-SmC boundary. Note that VX can also 

contribute to Po discussed above. 

It should be noted that the boundary alignment with the c-vector tangential to 

the interface is compatible with a structure consisting of a straight +1 disclination 

line running along the domain axis (Fig. 3.6a). Such a configuration, which can be 

expressed as 

is a solution to the Euler-Lagrange equation obtained from Eq. 3.4. The energy per 

unit length for a domain with a +1 line can be easily obtained as 

where p, is the radius of the core of the defect and eCore is the energy cost for 

creating the core. This is lower than that for the structure with a helical line 

running along the surface which is given by Eq. 3.16. As pointed out by Langer 

and Sethna for the 2 0  case [31], the advantage of having the +2-like structure with 

the core near the periphery over the +1 is that in the former case the defect core 

can be expelled from the domain by violating the boundary alignment over a small 

region (Fig. 3.6b). This would, of course, cost surface free energy which is always 

finite. Since the elastic energy density diverges logarithmically as the defect core is 

approached, expelling the defect by even a small amount can result in considerable 

reduction in the distortion free energy [31]. 



Figure 3.6: (a) The c-field in a SmC layer with a +1 disclination line. (b) A SmC 
layer (shaded region) where the defect core is 'expelled' from the layer by violating 
the boundary alignment condition. This costs additional surface energy but at  the 
same time reduces the bulk elastic energy. 

Apart from the above possibilities, the boundary alignment of fi could also 

have led to a 'biitonnet' structure which includes a focal-conic domain. Unlike 

in SmA, the focal-conic structure in SmC is 'broken' and costs additional energy 

[23]. Moreover, the preferred boundary alignment condition (director parallel to the 

interface) is violated over a larger area in'the case of biitonnets, compared to the 

other structures discussed above (see Fig. 2.1). 

3.4 Stability of a +2 disclination line 

Since the defect structure within each layer of the chiral domains is like part of a 

+2 disclination, it is interesting to see the effect of the bend-twist coupling on the 

stability of a full +2 line in SmC . The symmetry of the +2 structure allows us to 

restrict our attention to a case where the line stays in the Y Z  plane and is allowed 

to tilt in the direction of the Y axis (Fig. 3.7) by an angle P. The smectic layers are 

parallel to the XY plane. This structure can be described as 



Figure 3.7: A schematic diagram showing a +2 disclination line 1 which is tilted by 
an angle ,d in the ZY-plane, with respect to the SmC layer normal. 

where a = tanp.  We put x = x' = pcosll, and y - QZ = y' = psinll, so that 

4 = 1/1 + ~ / 2 .  

From Eq. 3.4, the elastic free energy density for such a structure can be written 

as 
1 fL:2) = 2 [K + 4 a 2  cos2 1/1 + 4KbtQ cos2 1/11 - 
p " '  

(3.27) 

Equation 3.27 has to be integrated over unit length of a cylindrical volume with the 

defect line as the cylinder axis. The intersection of a plane parallel to the X-Y plane 

with the cylinder of radius R is an ellipse of the form xI2/a2 + yI2/b2 = 1, where 

a = R and b = R/ cos ,d (Fig. 3.8). After integrating over p and z, the 1/1 integration 

was done numerically (using Gaussian Quadrature method [39]). With the following 

values (in CGS units): K = Kt = 0.5 x lod6, Kbt = 0.1 x lov6, PC = 1 x and 

R = 5 x the integrated energy has a minimum for ,O = 35". A similar analysis 

done for a +1 line shows that the line prefers to be along the layer normal (no tilt). 



Figure 3.8: The elliptical section made by the intersection of a cylinder, whose axis 
is along the disclination line, with a plane parallel to the smectic layers. 

3.5 Distortion energy for the nematic medium 

From the experiments it is clear that the nematic surrounding the domain has a twist 

distortion. At the surface of the domain, the nematic director, ii, lies in the tangent 

plane and is tilted with respect to the domain axis. This angle is roughly equal to 

the SmC tilt angle, Oo, a t  the given temperature. At the cell walls the director is 

forced to lie along the alignment direction. These boundary conditions are satisfied 

by having a continuous twist deformation in the nematic director field surrounding 

the domain. For simplicity, we assume that the distortion is cylindrically symmetric 

with the twist angle changing from 80 to zero over a distance (Ro - R),  where 2Ro 

is the cell thickness and R is the domain radius (Fig. 3.9). The director distribution 

can be represented as 

ii z (nT, n4, n,) - (0, sin 0, cos 0) . (3.28) 

The Frank-elastic energy expression, with the usual one elastic constant approxima- 

tion, can be written as 



Figure 3.9: Schematic representation of the nematic distortion around a SmC do- 
main. The shaded region represent the cross-section of the SmC domain. The nails 
represent the projection of the Frank-director in the nematic. 

In polar coordinates, 

The Euler-Lagrange equation obtained from 3.30 is 

and the boundary conditions are 8 = O0 at  r = R and 8 = 0 a t  r = &. Eq. 3.31 

can be integrated assuming 8 to be small (so that sin8 - 8) to obtain the relation 

Substituting 3.32 in 3.30 and integrating from r = R to r = &, we get the nematic 

elastic free energy per unit length along the domain axis as 

where K, is the Frank-elastic constant of the nematic. Note that the distortion 

energy due to the nematic diverges as R + &. This is because as the domain 

radius increases, the nematic director has to twist by O0 within shorter and shorter 

lengths. As we shall see in the next section, this distortion has a very significant 

role in deciding the equilibrium shape of the SmC domains. 
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Figure 3.10: Dependence of the radius of the domains on the cell thickness (2R, ) .  
The solid line is the theoretical curve obtained for the parameters given in the text. 
The *'s are the experimental data obtained from cells of different thicknesses. Each 
point is an average over several domains in a given cell. 

3.6 Domain-shape analysis 

In order to find the equilibrium shape of the domain we have to minimise the total 

free energy 

F = FZmC + Firm + Fsurf , (3.34) 

where the first two terms are the elastic distortion energies for the SmC domain 

and the surrounding nematic given by Eqs. 3.16 and 3.33, respectively. The third 

term is the surface energy contribution from the N-SmC interface. As before, we 

assume the domains to be perfect cylinders with flat ends. The interfacial energy 

can then be written as 

Fmrf = y l12xRL + ̂ /12xR2 , (3.35) 

where yll and y l  are the interfacial tensions for interfaces which are parallel and 

perpendicular to the cylinder axis, respectively and L, the length of the cylinder. 

Equation 3.34 has to be minimised at  constant volume. This constraint gives the 



the S m C  domains the director makes a constant angle 8, with the layer normal, N, 

which is along the Z-axis. As before, we assume that the domain is cylindrical. 

The variation in 4 is described by Eq. 3.10. In the nematic medium, the director is 

taken to be parallel to the Z-axis a t  the two parallel glass surfaces of the cell. At 

the surface of the domain the Frank-director in the nematic and that in the S m C  

are parallel to each other. The variation of 8 and r#~ in the nematic between the glass 

plates and the domain is assumed to  be linear along the Y-axis. 

A plane wave is assumed to be incident on the cell after passing through a 

polariser. The cell is oriented such that the alignment direction and hence the long- 

axis of the domain is parallel to the electric vector of the incoming polarised light. 

Since there are distortions in the director along the propagation direction, inside 

the cell the light is, in general, elliptically polarised. This polarisation state can be 

decomposed into two linearly polarised states which have their polarisation vectors 

orthogonal to each other. These are called the ordinary and the extraordinary states 

and they, in general, travel with different velocities given by the refractive indices 

no and net t ,  respectively. 

Since the director-fields in the nematic and in the S m C  domain are inhomo- 

geneous both along the propagation direction and in the perpendicular planes, we 

divide the entire medium into cubic cells of constant volume. The dimension of a cell 

is chosen such that the director field within it can be assumed to be uniform. Since 

the principal refractive indices of the nematic and the S m C  are comparable, we 

assume the same values of no (ordinary) and n, (extraordinary) for both the media. 

This allows us to neglect effects like reflection and refraction a t  the N-SmC inter- 

face. Also, since the birefringence, (n, - n,) << n, or n,, refraction within a medium 

can be ignored wherever the gradients in the director-field are small. However, the 

refraction effects might be considerable very close to the singular line, near which 

there are sharp variations in the director-field and hence in the effective refractive 



Figure 3.12: Diagram showing the different angles described in the text. 

index, n,ff .  For the sake of simplicity, we have ignored these effects in calculating 

the transmitted intensities. In the simulation the incident plane wave after passing 

through the polariser PI has its wave-vector, ko, along the Y-axis and the elecrtic- 

vector parallel to the Z-axis. The analyser is set such that this polarisation state is 

completely extinguished. 

3.7.1 The 2 x 2 matrix method 

In order to calculate the transmitted intensity, we make use of the 2 x 2 matrix 

method [40, 411. In this method, a one dimensionally inhomogeneous, birefringent 

medium is assumed to be made up of a stack of perfectly homogeneous birefringent 

plates along the ray propagation direction. When a plane wave passes through 

such a system, there is a phase difference introduced between the ordinary and the 

extraordinary rays on passing through each plate and a rotation of the polarisation 

vectors (index ellipsoid) on going from one plate to another. The rotation is due 

to the twist distortion in the director along the propagation direction of the wave. 



The values of each of these effects depend on the orientations of the optic axes of 

the plates as well as on the two refractive indices, n, and no, of the medium. 

The rotation of the polarisation vectors and the path difference introduced can 

be expressed in the form of matrices R and S, respectively. If the wave-vector, ko, 

of the incident plane wave is taken to be along the Y-axis, the rotation introduced 

on passing from the ( j  - l)th plate to the jth plate is 

where $j is the angle made by the projection of the optic axis (or the director in 

our case) on to the XZ-plane, as measured from the Z-axis (see Fig. 3.12). More 

precisely, the rotation matrix R performs the transformation of the polarisation 

vectors from the frame determined by the optic axis in the ( j  - l)th plate to the jth 

plate. The path difference introduced between the ordinary and the extraordinary 

rays by the jth plate of thickness Ay is given by 

where A is the wave-length of light. The value of neff, which is the effective refractive 

index, is given by the expression 

where aj is the angle made by the director with respect to the propagation direction, 

ko. The orientation of the director in the jth cell can be described using the angles 

Oj and +j as ii ZE (sin Oj cos +j, sin Oj sin +j, cos Oj) The angles aj and $j can be 

related to Oj and +j as (see Fig. 3.12) 

cos aj = sin ej sin dj (3.38) 

- sin ej COs 4.j 
- 

sin aj 



Figure 3.13: Simulated texture of half a pitch of the chiral domain. Only quarter 
pitch was simulated at  a time for computational convenience. The vertical line is 
due to this reason. 

The output state E, is obtained from the input state Ei through the relation 

where P1 and Pg are matrices representing the polariser and the analyser, respec- 

tively. The matrix RN+i is the reverse transformation matrix to bring the system 

back to the lab-fixed frame. 

3.7.2 Results 

The simulated optical texture of a section of the helical domain is shown in Fig. 3.13. 

The texture shows a dark band running close to the disclination which appears as a 

highly distorted line. This texture resembles the experimentally observed patterns 

shown in Fig. 2.4, which was recorded using white light. In the simulation the 

disclination line was assumed to be running on the surface of the domain. In the 

actual domains this line may be expelled from the domain as was discussed earlier. 

This might smoothen out the pattern very close to the disclination line. 



3.8 Conclusion 

We have theoretically analysed the stability of the chiral domain structures described 

in the previous chapter. This analysis shows that the helical structure is due to a 

cross coupling between the bend and twist deformations in the c-vector field. This 

is the first demonstration of the effect of such a coupling which is allowed by the 

symmetries of the smectic-C liquid crystal. By comparing the theoretical results 

with the experiments, we were able to determine the ratio of the elastic constants 

Kbt /Kt - 

An analysis of the twist deformation produced in the nematic shows that the 

energy cost for this deformation restricts the radial growth of the domains in thin 

cells. The unusual shape of these domains is due to this and the anisotropic nature 

of the N-SmC interfacial tension. 

We have also simulated the optical texture exhibited by the chiral domains and 

the results agree reasonably well with the experiments. 




