
Chapter 4 

Optical properties of 
antiferroelectric liquid crystals 

4.1 Introduction . 
The orientational order in the liquid crystalline phases coupled with the anisotropy of 
the constituent molecules gives rise to strong anisotropies in their macroscopic properties. 
For instance the magnetic susceptibility, refractive index and electrical conductivity are 
highly anisotropic in these phases. The anisotropy in the refractive index and the rich 
variety of structures of the liquid crystalline phases which can be easily changed by ex- 
ternal means give rise to many interesting optical effects. On the one hand these optical 
properties are employed for applications in liquid crystal display (LCD) devices and on 
the other hand polarized light is often used as a probe to investigate the structures of 
these phases. Many optical measurements using a variety of powerful techniques such as 
polarized light microscopy, conoscopy, ellipsometry, circular dichroism, optical rotatory 

f 
power measurements, Rayleigh scattering and photon correlation spectroscopy are used 
for this purpose. 

As we have mentioned in previous chapters the compounds exhibiting the antiferro- 
electric SmCL phase also exhibit a number of ferrielectric and other sub-phases as the 
temperature is varied. We have shown in chapter 2 that our discrete model can account 
for all these sub-phases exhibited by antiferroelectric liquid crystals. Further, in Chap- 
ter 3 we have calculated the effect of an external static electric field on the structures of 
these phases and it is shown that the calculated apparent tilt angle eapp agrees well with 
the experimental variations. In this chapter we will describe calculations of conoscopic 
patterns, ellipsometric parameters and optical rotatory power corresponding to the dif- 
ferent structures predicted by our model and compare the results with the experimental 
observations. 

Conoscopic observations have been extensively used in elucidating the characteristic 
changes in the structures of the various phases exhibited by AFLC as a function of an in- 
plane static electric field (for a general introduction to conoscopy see Sec. 4.3.1). Fig. 4.1 
shows the conoscopic figures obtained experimentally by Gorecka et al. [15] for homeotrop- 
ically aligned AFLC sample (MHPOBC) in various phases. The thickness of the cell used 
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Fig. 4.1: The experimentally observed conoscopic figures in the ferro, ferri and antiferr- 
electric phases under several field strengths. After Ref. [15] 
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to obtain the conoscopic figures is 200pm as relatively thick samples are required for this 
purpose. They found the following characteristic changes of the conoscopic figures as a 
function of field in the various phases exhibited by AFLC: 

1. All the tilted phases in the absence of the field give rise to a conoscopic pattern 
which corresponds to that of an uniaxial medium. Thus the conoscopic figures (left 
column of Fig. 4.1) in these cases consist of a Maltese cross with the isogyres parallel 
to the crossed analyzer and polarizer and a series of concentric circular isochromes 
(see Sec. 4.3.1 for the definition of isogyres and isochromes). This indicates that in 
the absence of the field, all the tilted phases have helical structures giving rise to a 
macroscopic uniaxial medium with optic axis parallel to the layer normal. 

2. In the SmC; phase, the field induced changes in the conoscopic figure are the same 
as those of the well known ferroelectric SmC* phase. The uniaxial profile due to the 
helical structure in the absence of the field changes to a biaxial one upon application 
of a field and the center of the conoscopic figure shifts in a direction decided by the 
positive sign of polarization in this compound (in Fig. 4.1 towards right). This is 
because of the field induced helix unwinding and the weak biaxiality of the tilted 
SmC* layers. The optic axial plane containing the two optic axes of the resulting 
biaxial medium is perpendicular to the field. The shift of the center indicates that 
the acute bisectrix in the medium is at an angle with respect to the layer normal. 

3. The field dependence of the conoscopic figures in the ferrielectric SmC; phase is 
somewhat complicated. Again the uniaxial figure in the absence of the field goes 
over to a biaxial one upon the application of a field with the shift of the center 
in the same direction as in the SmC; phase. But unlike in SmC; phase, at low 
fields, the optic axial plane in this phase is parallel to the field which switches to the 
perpendicular direction at higher fields (see middle row of Fig. 4.1). 

4. The field induced changes in the conoscopic patterns in the antiferroelectric SmCI 
phase is also quite characteristic of this phase. The uniaxial figure under increasing 
field strength changes to the biaxial one with the optic axial plane perpendicular to 
the field. However, there is no significant shift of the center upto the maximum field 
strength of 1200V/mm used in the experiment. 

5. The conoscopic figures obtained experimentally by Hiraoka et al. [14] in the SmCL 
phase as a function of field is shown in Fig. 4.2. The characteristic changes of the 
conoscopic figures in this phase are similar to those in the ferrielectric SmC; phase. 
However, as the SmCL phase appears just below the SmA phase, the tilt angle in 
this phase is very small and hence the shift of the center as well as the splitting of 
the isogyres are very small. 

A detailed comparison of these experimental observations with our theoretical predictions 
will be taken up in Sec. 4.3.3 of this chapter. However, here we want to point out that 
Gorecka et al. [15] based on their observations particularly those in the ferrielectric SmC; 
phase argued that the theoretical models of xy-type based on the azimuthal degrees of 
freedom of the director ri within the layer could not account for the optic axial plane lying 
parallel to the field. Using qualitative arguments they tried to interpret their observations 
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Fig. 4.2: The experimental conoscopic figures in the SmC: phase. Note the optic plane 
change from (b) to (c). After Ref. [14]. 

by assuming the orientational configuration of the director fi within each layer as an Ising 
variable. Their observations in the ferrielectric phase are often quoted in the literature 
against the xy-type models of the AFLC and used in favour of other alternative models 
[13, 191 of Ising type. However, the xy character of the orientational order parameter in 
such systems is well known [31, 501 from the studies of ferroelectric SmC* liquid crystals 
which is also one of the phases exhibited by AFLC. The uniaxial character of the zero field 
conoscopic figures in all the tilted phases exhibited by AFLC indicates that the azimuthal 
degrees of freedom of the director f i  can not be ignored. Therefore, the assumption of the 
Ising character of the orientation of the director f i  in each layer is questionable. 

On the other hand we will show that the theoretically simulated conoscopic figures 
corresponding to the field free and field induced structures predicted by our xy-type model 
is in complete agreement with the experimental observations. Thus the conjecture [15] 
that the xy type model can not account for the experimentally observed conoscopic figures 
in the ferrielectric phase is not sustainable. 

Another powerful optical technique often used to elucidate the structures of the dif- 
ferent phases exhibited by AFLC is the ellipsometric studies on the free standing films 
(see Sec. 4.4.1 for a general introduction of ellipsometry). Bahr et al. [5, 23, 241 have 
performed a number of experiments on AFLC free standing films. In their experimen- 
tal setup free-standing films are prepared by drawing a small amount of sample in the 
smectic state across a 3x12 mm2 rectangular hole in a 0.15 mm thick glass plate. In 
a free-standing film, smectic layers align parallel to the film surface and the film normal 
corresponds to the layer normal. The long sides of the hole are condi~ctively coated and an 
electric field can be applied in the film plane. The film is maintained in a one stage oven 
with a temperature stability of % 0.05"C. A He-Ne laser beam ( A  = 633 nm) is incident 
on the film at an angle of 45" with respect to the film normal and perpendicular to the 
aligning electric field. The light is linearly polarized with an azimuthal angle of 45" with 
respect to the plane of incidence, i.e., the p- arid s-polarized components of the incident 
beam have the same phases (A, = A,) and amplitudes (ITp[ = IT,/). They can measure 
the ellipsometric parameters A = A, - A, and = tan-l(I~pl/ l~,I)  of the transmitted 
light. The polarization state of the incident light is described by A = 0 and = 45". 
After the transmission through the film, the light is elliptically polarized with a non-zero 
phase difference A and a value of deviating from 45". They measured A+ and A- 
corresponding to the two polarities of the small applied electric field (- 6.0 V/cm) as a 
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function of temperature in different phases exhibited by AFLC. 
The details of their experimental observations will be presented in Sec. 4.4.3. Some 

of the important experimental observations in these ellipsometric studies are: 

The difference (A+ -Ap) in the antiferroelectric SmCi phase is zero for even number 
of layers but nonzero for odd number of layers in the film. This clearly demonstrates 
that the SmCI phase has almost opposite tilt directions in successive layers [5]. 

a All the sub-phases exhibited by AFLC persist even in films consisting of only 4 or 5 
layers. 

A small difference between A+ and A- remains even in the SmA phase. This has 
been attributed to the fact that even though the interior layers are in the SmA state 
the surface layers may be tilted [23]. 

a They have not found the evidence for the 1:2 structure which is often proposed [8] as 
the structure of the ferrielectric SmC; phase. The ellipsometric parameters obtained 
in this phase show a non-smooth variation with temperature. 

a In the SmCi phase, they found a number of oscillations of the ellipsometric parame- 
ters A+ and A- as a function of temperature. The number of oscillations decreases 
as the number of layers in the film is decreased. 

a They claimed that the aligning field applied is so small (6 V/cm) that it cannot 
distort the helical structure in a significant way. However, this aligning field can 
align the net polarization which will in general be nonzero for the finite number of 
layers used in the experiments. 

They qualitatively argued that the oscillations seen in the SmC; phase correspond to the 
structures given by the devil's staircase produced by the Ising picture. However, in this 
chapter, we will show that these ellipsometric observations can also be explained on the 
basis of our model. 

For the sake of completeness, we have also calculated the optical rotatory power 
(0R.P) in the different phases as a function of temperature in the absence of the field. 
Philip et al. [lo] have performed some experiments to measure the ORP in the various 
phases as a function of temperature. They did not perform experiments in the ferrielectric 
SmCq phase as they found that even if the alignment in the higher temperature SmCz 
phase and in the lower temperature SmCL phase appear uniform under the microscope, 
the ferrielectric SmC; phase appears highly non-uniform and turbid with in-plane bire- 
fringence. 

Due to the underlying layer structure of the smectic phases and the inhomogeneous 
orientation of the director f i  along the layer normal, the appropriate technique to calculate 
the reflection or transmission properties of the medium is the Berreman7s 4 x 4 matrix 
method. Therefore we start with a brief discussion of the basic ingredients of this method. 
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4.2 Berreman's 4 x 4 matrix method 

An appropriate formalism for the computation of the parameters describing the propaga- 
tion of light in an anisotropic medium stratified along one direction is the 4 x 4 matrix 
method, which was introduced by Teitler and Henvis [51] and applied to liquid crystalline 
systems by Berreman [52]. The method is a generalization of the Abele's 2 x 2 matrix 
method [53] applicable to a stratified isotropic medium. 

For simplicity, we will assume that the medium is free of optical activity and is non- 
magnetic i.e., = 1. Maxwell's equations in such a medium in the absence of charges and 
currents ( p  = J = 0 )  are given by 

where E = ~ ( z )  is the dielectric tensor, whose principal values are €1, €2 and €3.  For a 
medium stratified along the z-direction, E depends only on x. The invariance of Eqs. 4.1 
under translation of time and of x, y coordinates implies that the soluttions are of the 
following type: 

-+ 1 + E = - ~ ( ~ ) ~ ~ ( k ~ ~ + k v Y - ~ t )  
2 

+ C.C., 

-+ 1 - 
H = -~(~)~ i (kx"+kYY-wt )  + 

2 
C.C.. 

Following Berreman, we have used the convention of e-iwt for time dependence. The 
equations corresponding to the eiWt convention can be obtained by replacing i  by -i in 
the appropriate expressions. By substituting 4.2 into Eq. 4.1, we obtain 

0 -d/dx iky  ( d/dz  0 k ) ( ) = - ( ) ( ) (4.4) 
- ilc, 0  € 2 ,  E Z Z  

Here we have two sets of three equations. The last equation in each set does not contain 
derivatives with respect to x. Consequently, E,  and Hz can be expressed in terms of the 
other components as 

Eliminating H,  and E, from the other four equations, we get 

where 
$T = (Ex ,  H y ,  Ey, -Hz)  
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is the generalized field vector and 

is the 4x4 differential propagation matrix of the medium. Note that not all the elements 
of the differential propagation matrix D are independent. It has been proved by Eidner 
et al. [54] that D has only 10 independent elements with the following symmetry: 

The matrix D(z) depends mainly on the components of the dielectric tensor and therefore 
on the director configuration within the liquid crystal. The solution of Eq 4.6 can be 
written using a 4 x 4 transfer matrix F as 

where h = z2 - zl . All relevant optical parameters can be computed from F. Therefore 
the main problem of the 4 x 4 matrix technique is to determine the matrix F which relates 
the tangential component of the electric and magnetic fields at zl to those at 22. 

When the medium is homogeneous (i.e., D is independent of z) over a finite distance 
h (= z2 - zl) along the z-axis, Eq. 4.6 may be integrated to give 

and a closed form expression for P can always be found. To see this, first note that there 
will be four periodic solutions of Eq. 4.6, which are of the form 

The four eigenvalues qj may be obtained by substituting Eq. 4.11 into Eq. 4.6 and then 
solving the quartic polynomial equation in q resulting from the determinant in the secular 
equation 

Det (koD - qI) = 0 (4.12) 

where Ic, = w / c  and I is the 4 x 4 identity matrix. The corresponding eigenvectors $j 

can then be found by three of the four simultaneous equations represented by the matrix 
equation 

k o W j  = ~ j $ j .  (4.13) 

Now an expression for P(h)  can be written as 

where XI! is a 4 x 4 matrix formed from the elements qij of the four eigen vectors and K(h) 
is a 4 x 4 diagonal matrix with elements 1 t 

1 
Kjj(h) = exp(iqjh). (4.15) 
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An alternative expression for P is obtained by simply expanding the exponential function 
in powers of the matrix D as 

From Eq. 4.16, one useful symmetry of P(h)  is 

where m is any positive or negative integer or zero. 
For a medium in which the dielectric tensor depends on 2, in general an analytic 

solution of Eq. 4.6 can not be found. However, a numerical solution can always be found 
by assuming the medium as a stack of layers of thickness h along the z-axis and the 
dielectric tensor E within each layer as homogeneous. When E varies continuously along z, 
the above approximation can be made better by choosing h sufficiently small. In smectic 
liquid crystals, the medium can be well approximated as stacks of layers along the z-axis 
and the method can be applied efficiently. 

With this approximation, let the matrix Pi(]$) denote the transfer matrix of the i-th 
layer, which relates the generalized field vector 111 of the i-th layer to that of the (i+l)th 
layer. Because Eq. 4.10 applies to each layer, we may use the equation repeatedly to 
obtain the transfer matrix F( i ,  n) which relates the vectors 111 of ith and (i+n)tli layers as: 

If E is a periodic function of x, Eq. 4.18 needs to be used over only one period or cycle and 
the transfer matrix corresponding to m such cycles can be obtained by taking the rnth 
power of the transfer matrix for a single period. In the above exposition of the Berreman's 
4 x 4 matrix technique, we have assumed that the rnedium is non-magnetic i.e., 11 = 1 
and free of optical activity. Since the molecules are chiral in the AFLC, the medium is in 
principle not free of optical activity. However, the optical rotation produced by the optical 
activity of the medium is far less compared to that produced by the form of the director 
field. Thus this assumption is often used in the discussion of optical properties of other 
chiral liquid crystalline phases viz. cholesteric and SmC* phases. Indeed, the inclusion of 
the weak optical activity of the medium will not change appreciably the optical properties 
investigated in this chapter and can be neglected as a first approximation. However, in a 
more general theory the above assumptions can be relaxed. The description of this general 
case can be found in the original treatment by Berreman [52]. 

4.3 Generating conoscopic figures 

4.3.1 What is conoscopy? 

The examination of a medium in a parallel beam of light between crossed polarizers reveals 
its optical character only along one direction. Very important additional information 
may be obtained by passing a strongly corivergent beam of light through the niediurn 
to examine its optical properties in many directions at the same time. The observation 
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between crossed polarizers in this case does not focus on the image of the object(object 
image), but on another optical image formed at the principal focus of the objective by the 
strongly convergent beam of light. This image is variously called, the direction image (as 
opposed to object image), the conoscopic figure or the interference figure. 

Since the rays of the convergent beam passing through the anisotropic sample are 
not parallel, the path followed by different rays will be longer the greater their angle 
of incidence. Moreover, these rays will be normal to different sections of the refractive 
indicatrix. It therefore follows that the interference figure from a flat slab with parallel 
sides made of such an anisotropic sample will not show a uniform interference colour as 
it does when it is viewed in parallel light between crossed polarizers. A series of curved 
interference bands, which are coloured in white light and bright and dark in monochromatic 
light, will be seen. These interference bands are systematically arranged around the optic 
axis (or axes) and are called isochromes. In addition to these isochromes there are dark 
"brushes" or isogyres, the shape of which is determined by the position of those points on 
the interference figure, where the plane of vibration of the rays are parallel or perpendicular 
to the polarizer (see Fig. 4.1). 

By studying the conoscopic figure or the interference figure of the sample, the following 
optical characteristics may be determined: 

In general 

1. Isotropic substances may be differentiated from the sections of an anisotropic 
sample normal to the optic axis. 

2. Anisotropic substances may be classified optically as belonging to the uniaxial 
or biaxial class. 

3. For uniaxial samples, the positive or negative sign of the uniaxiality of the 
substance may be determined. 

4. If the thickness of the sample is known, an estimate of the birefringence may 
be made. 

In a biaxial medium 

1. The direction of the optic axial plane i.e., the plane containing the two optic 
axes of the medium may be found. 

2. The angle between the two optic axes or the optic axial angle may be measured. 

3. The dispersion of the optic axes may be studied. 

4.3.2 Simulating conoscopic figures for AFLC 

We now apply Berreman's 4 x 4 matrix method described in Sec. 4.2 to calculate the cono- 
scopic figures produced by a cell containing homeotropically aligned AFLC. It is assumed 
that the polarizer and (crossed) analyzer are perfect polarizers for normally incident light 
and the condenser and objective lens systems are free from spherical and other aberra- 
tions for the monochromatic light used. Fig. 4.3 shows the experimental geometry and the 
coordinate system used in the conoscopic calculations. A parallel beam of light passing 
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Fig. 4.3: A schematic diagram of a general experimental arrangement for observing the 
conoscopic figures. The angle of the polarizer and analyzer axes are measured with respect 
to the x-axis. 
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through the polarizer aligned at an angle of 45" with respect to the x-axis is made con- 
vergent and focused onto the homeotropically oriented AFLC cell by the condenser. The 
transmitted beam from the sample cell then passes through the objective lens system and 
the crossed analyzer to form the required conoscopic figure. For simplicity we assume that 

, each ray of the conver-ent beam from the condenser can be represented as a plane wave 
with the wave vector k defined as 

2 = k(sin A cos C, sin A sin C, cos A) 

where A and C are the polar and azimuthal angles of measured with respect to the z-axis 
and x-axis respectively. For each such propagation direction, we calculate the transmitted 
intensity by Berreman's 4 x 4 matrix technique. In our calculation the azimuthal angle 
C is taken to vary from 0 to 2.rr in steps of n/18 whereas the polar angle A varies from 0 
to 7r/4 in steps of ~ 1 9 0 .  Though smaller step sizes improve the quality of the conoscopic 
figures the calculations become time consuming. We found this discretization of A and C 
are optimum without loosing the clarity of the figures. 

To calculate the transmitted intensity for a given direction (A,C) consider an AFLC 
cell consisting of N flat layers with the layer normal perpendicular to the bounding glass 
plates ( i .e. ,  along z-axis). Since each of these smectic layers with tilted molecules is 
optically biaxial, the dielectric tensor E' in the principal coordinate system x'y'z' can be 
written as 

E ' = [""':I (4.19) 
0 0 €3 

where 2'-axis is assumed to be parallel to the director f i  and yl-axis is along the C2 axis 
(fi, x k) as shown in Fig. 2.1. We define the dielectric anisotropy AE and the dielectric 
biaxiality 6e as 

A E = c ~ - - E ~ ;  b ~ = ~ 2 - ~ 1 .  (4.20) 

The dielectric tensor E in the lab frame (xyz system) can be obtained from E' in the 
principal coordinate system (x'y'z' frame) of the layer by transforming the latter as 

where T is the transformation matrix from the principal coordinate system (xly'x') to lab 
frame (xyx). If the orientation of the director fi in the lab frame is given by 

fi = (sin 0 cos 4, sin 0 sin 4, cos 8 )  

where the azimuthal angle 4 of the director fi is measured from the x-axis, the transfor- 
rnation matrix T takes the form 

[ 
cos 8 cos 4 - sin 4 sin 0 cos 4 

T = cos $sin 4 cos sinOsin4 I (4.22) 
- sin 0 0 cos 0 

Using T from Eq. 4.22 and E' from Eq. 4.19 in eq. 4.21, the dielectric tensor E in the lab 
frame is given by the symmetric matrix 
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where 
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EXY = = AE sin2 0 sin 4 cos 4 - 6~ sin 4 cos 4, 
€22. = eZx = AE sin 0 cos 0 cos 4, 
eyy = €1 + AE sin2 0 sin2 4 + 6~ cos2 4, 
EYZ 

= ezy = AE sin 6 cos 0 sin 4, 

In our calculations we have assumed that the dielectric anisotropy AE = 0.64, the dielectric 
biaxiality SE = 0.009 and €1 = 2.25 [15]. 

If the director configuration of each layer is known, one can construct the differential 
propagation matrix D for each layer from Eq. 4.8 using the dielectric tensor in Eq.4.23 
and k,, ky as 

k,=nlsinAcosC, ky=nls inAs inC . (4.24) 

where n l  is the refractive index of the entrance medium. Therefore the transfer matrix P 
for each layer can be coniputed as described in Sec. 4.2. We calculate P for a giver1 layer 
by exponentiating the matrix D as in Eq. 4.16 using MATLAB. In calculating tlie matrix 
P for each layer, we use the thickness of tlle layer as d cos 0 where d is assumed to be 40A. 
This process is repeated and the resulting P matrices are multiplied as in Eq. 4.18 to get 
the final transfer matrix F ( l ,  N )  for the entire N layer system. 

Then the vector $1 at the first surface is related to the vector $N at the second surface 
by the matrix equation 

$N = F(1, N)$I. (4.25) 

The field vector at the first surface is made up of two parts with the incident- and reflected- 
wave contributions 

$1 = $i + $7.. (4.26) 

The field at the second surface matches only a single transmitted wave field 

If the entrance and exit media are non-absorbing and isotropic, only two electric field 
components are needed to complete the definition of the incident wave, since the magnetic 
field components can be expressed in terms of the electric field components in isotropic 
media. Therefore we write 

where 

a1 = nl  tan Asin AsinCcos C, 

a2 = nl  tan A sin A cos A cos2 C, 
- nl tan A sin A cos A sin2 C. as - 
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Fig. 4.4: Theoretically simulated conoscopic figures in the different phases at different 
fields. Left column: SmCI phase (a) Ee f f  = 5.0 (b) Ee f f  = 7.1; middle column: FIL 
phase (c) E e f f  = 2.0 (d) E e f f  = 3.0; right column: SmCz phase (e) E e f f  = 1.6 (f) 
E e f f  = 4.4, where E e f f  = xXE x lo4. Note the optic axial plane in (c) and (e) is 
orthogonal to that in other figures. At higher fields (b),(d) and (f) the better unwinding 
causes the shift of the center towards the top. 

A similar definition of a;, ah and a$ can be obtained from Eq. 4.29 by replacing the 
refractive index nl of the entrance medium with the refractive index n2 of the exit medium. 
In our calculation both the entrance and exit media are taken as glass with refractive 
indices nl = n2 = 1.5. 

Now substituting and qN from Eq. 4.26, Eq. 4.27 and Eq. 4.28 in Eq. 4.25, we 
get four linear equations for T,, Ty, R,, and R,. Therefore, the transmitted electric 
components T,, Ty, and reflected electric components R,, Ry can be obtained by solving 
these linear equations. 

4.3.3 Comparison with experiments 

The simulated conoscopic figures in different phases are shown in Fig. 4.4. For this purpose 
the equilibrium configurations of the N-layer stack are found by the procedure discussed 
in Chapter 3. To generate the patterns the transmitted intensities are mapped to a plane 
using 128 level grey shade by MATLAB routines. Since in the absence of electric field all 
the tilted phases have helicoidal structure, the medium is optically uniaxial. Therefore 
the conoscopic figure in these uniaxial phases consists of a Maltese cross with the isogyres 
along the polarizer and analyzer directions and a series of concentric circular isochromes. 
These are not shown in Fig. 4.4. But in the presence of the electric field, the uniform 
helical structure is distorted and the medium acquires biaxial characteristics. In the 
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SmC> phase, at intermediate fields, the commensurate 112 structure is stable and gives 
rise to the conoscopic figure as shown in Fig. 4.4a. The conoscopic figure in this phase 
corresponds to that of a biaxial medium with the optic axial plane perpendicular to the 
field. At higher fields, all the layers tilt in the same direction in the unwound ferroelectric 
phase giving rise to the conoscopic figure shown in Fig. 4.4b. 

In the ferroelectric SmC; phase as the field is increased, due to the unwinding of the 
helix, the conoscopic figure shows the characteristics of a biaxial medium with the optic 
axial plane perpendicular to the electric field. In the ferrielectric FIL phase at intermediate 
fields a 213 commensurate structure is stable (see Fig. 3.8b) and the conoscopic figure 
(Fig. 4 . 4 ~ )  in this phase corresponds to that of a biaxial medium with the optic axial 
plane parallel to the electric field . At higher fields this phase reenters to the soliton 
lattice structure and gives rise to a conoscopic figure with the optic axial plane orthogonal 
to 3 as shown in Fig. 4.4d. This trend is in close agreement with that seen in experiments 
in the ferrielectric SmC; phase (see Fig. 4.1). In the SmCL phase' the field induced 214 

structure (see Fig. 3 . 8 ~ )  gives rise to a small splitting in the plane containing (Fig. 4.4e) 
indicating biaxiality. At higher fields, the unwound structure again produces a splitting 
in the orthogonal plane as shown in Fig. 4.4f. In this case, as the tilt angle is very small, 
the shift of the center as well as the biaxiality of the medium are relatively small. We see 
that the patterns shown in Fig. 4.4 compare extremely well with the experimental results 
on the relevant phases shown in Fig. 4.1 and 4.2. 

Here we like to emphasize again the following experimental observations: 

1. The apparent tilt angle in the absence of field is zero in all the tilted sub-phases. 

2. There is a plateau at one third of the tilt angle for intermediate fields in the ferri- 
electric phase (see Fig. 3.10). 

3. The conoscopic figures in all the tilted phases in the absence of a field corresponds 
to that of an uniaxial medium (Fig. 4.1). 

4. For intermediate fields, the conoscopic figures in the ferrielectric phase corresponds 
to that of a biaxial medium with the optic axial plane parallel to i. e., containing the 
field (Fig. 4.1). 

Indeed these experimental observations can be explained naturally from our model. Both 
the observations (1) & (3) is due to the helicoidal structure of the ferrielectric phase 
predicted by our model in the absence of a field. On the other hand the observations (2) 
& (4) arise due to the field induced 213 structure in the ferrielectric phase predicted by our 
model. This implies that the 2/3 structure, which is similar to the 1:2 (/\\ . . .) structure 
often proposed for ferrielectric phase is field induced but does not occur in the absence of 
field. Thus, the claim made by Gorecka e t  al. that the xy-type model can not explain the 
observed conoscopic figures in the ferrielectric phase is not sustainable. 
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Fig. 4.5: An operational diagram of a general ellipsometer arrangement. L, P, S, A and D 
represent a light source, controlled polarizer, optical system under investigation, variable 
polarization analyzer and the photo-detector respectively. 

4.4 Ellipsometry 

4.4.1 General introduction 

Ellipsometry is an optical technique for the characterization of, and observation of events 
at,  an interface between two media or a film and is based on exploiting the polarization 
transformation that occurs as a beam of polarized light is reflected from or transmitted 
through the interface or the film [55]. Although measurement of the state of polarization 
of a light wave is important in its own right, ellipsometry is generally conducted in order to 
obtain information about an optical system that modifies the state of polarization. In the 
general scheme of ellipsometry, a polarized "probe" light beam is allowed to interact with 
an optical system under investigation. This interaction changes the state of polarization 
of the wave. The ellipsometric study consists of measurement of the initial and the final 
states of polarization of the wave as a function of external parameters that control the 
properties of the optical system under investigation and/or as a function of initial state of 
polarization of the probing light wave. 

An operational diagram of a general ellipsometer arrangement is shown in Fig. 4.5. A 
well collimated monochromatic or quasi-monochromatic beam from a suitable source (L) is 
passed through a variable polarizer (P) to produce light of known polarization. This light 
beam interacts with the optical system (S) under study and its polarization is modified. 
The modified state of polarization at the output of the system is measured (analyzed) by 
a variable polarization analyzer (A) followed by a photo detector (D). 

Assuming the optical system to be investigated as non-absorbing and the interaction 
between the light wave and the optical system is linear, the optical system can change 
the state of polarization of the probe wave through one or a combination of the following 
basic processes: 

1. Reflection or Refraction: When a light wave is reflected or refracted at the interface 
between two dissimilar media, the state of polarization is changed abruptly. Such a 
change occurs due to the difference in the Fresnel reflection or transmission coeffi- 
cients for the two linear polarizations parallel (p) and perpendicular(s) to the plane 
of incidence. 

2. Transmission : The change of state of polarization of light as it traverses through a 
medium which exhibits optical anisotropy. 

3. Scattering: This is caused by the spatial inhomogeneity of the refractive index of the 
medium with the wave vector corresponding to this inhomogeneity comparable to 
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the wavelength of light used. In contrast with the reflection and transmission modes 
which do not significantly affect the collimation of the beam, scattering is usually 
accompanied by a redistribution of the scattered energy over a wide range of solid 
angles. 

Depending upon the prevalent mode of interaction that modifies the state of polarization 
of light, we may distinguish between three types of ellipsometry (i) Reflection or surface 
ellipsometry (ii) Transmission ellipsometry and (iii) Scattering ellipsometry. 

4.4.2 Calculation of ellipsometric parameters for AFLC thin films 

To test the validity of the predictions of our model, we have calculated the ellipsometric 
parameters A+ and A- as a function of temperature to compare with the experimental 
ones carried out by Bahr et  al. [5, 23, 241 (see Sec. 4.1). To calculate these ellipsometric 
parameters we assume that the electric field applied (- 6vlcm)' is so small that it can 
not distort the helical structures of the director 6. In fact it is claimed by Bahr et al. [23] 
that the electric field applied in their experiments is three orders magnitbde lower than 
the field required to induce the transition from the antiferroelectric to the ferroelectric 
phase. However, this small field can align the net polarization 6 of the entire stack of 
layers. Note that the net polarization f' is in general non-zero for the finite number of 
layers used in these experiments. As in the experiments, the wave length of the light used 
in the calculations is 632.8nm corresponding to a He-Ne laser bearn and the entrance and 
exit media are assumed to be air with the refractive index nl = n,z = 1.0. Further, some 
of the experiments have been carried out on the compound 12FlM7 for which we do not 
know the various material parameters required for the calculations. Thus we have used 
the same material parameters used in simulating the conoscopic figures. In particular 
the thickness of the smectic layers in the SnlA phase is assumed to be 40W. With these 
assumptions, the calculations of the ellipsometric parameters A+ and A- for an N layer 
system proceed as follows: 

1. For a given temperature, the minimum energy configuration of the N layer system 
is found (see Sec. 2.4.3). 

2. The direction of the net polarization f' of the N layers system is then found by 
vectorially adding the 2-d polarizations of all the layers. 

3. As the net polarization f' aligns along the field, the light is chosen to be incident 
on the film in a plane perpendicular to f' and at an angle of incidence of 45" (-45") 
with respect to the film normal. The light is linearly polarized with the plane of 
polarization making an angle 45" with respect to the plane of incidence. Berreman's 
4x4 matrix technique as described in Sec. 4.2 is used for the propagation of the light 
through the film. The ellipsometric parameters A+ (A_)  of the transmitted beam 
corresponding to the two directions of propagation 45" (-45") with respect to the 
film normal are then calculated. 

The above procedure is repeated for different temperatures. Thus the calculation in this 
case is somewhat simpler than in Sec. 4.3.2 as we have to calculate the propagation prop- 
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Fig. 4.6: Temperature dependences of the ellipsometric parameters A+ and A- for 4-layer 
and 3-layer films of MHPOBC (8:2 mixture of R and S enantiomers). After Ref. [5]. 

erties only for two directions. The results obtained in the various phases are described 
below. 

4.4.3 Comparison with experiments 

As mentioned in Sec. 4.1, to investigate the structure of the SmC; phase, Bahr etal.  [5] 
carried out ellipsometric studies on the sample consisting of 8:2 mixture of R and S enan- 
tiomers of the prototype compound MHPOBC. The mixture possesses the following bulk 
phase sequence: SmCi-114' C-SmCz- 120" C-SmA-150' C-Isotropic. The temperature 
dependence of the ellipsometric parameters A+ and A- as obtained by them for 4-layer 
and 3-layer films are shown in Fig. 4.6. For temperatures above 136' C, the A values are 
constant and the difference between A+ and A- is zero as expected in the SmA phase. 
At 136" C the transition to the tilted layers takes place, giving rise to A+ - A- # 0. For 
the 4-layer case, the tilt process seems to take place in two steps: first at 136" C only 
the two surface layers tilt while the interior layers remain un-tilted. Then at 127" C the 
remaining two interior layers also tilt. On cooling further, below 120' C, the difference 
between A+ and A- vanishes again as expected in the SmCi phase of the film consisting 
of an even number of layers. The temperature variation of A values in the 3-layer case 
is similar to that of 4-layer film except for the fact that in the SmCz phase all the layers 
tilt simultaneously and in the SmCi phase the difference between the A+ and A- is non 
zero due to the presence of an odd number of layers. They have also studied a 2-layer film 
in which they found the difference between the A+ and A- in the SmC: phase is again 
zero. 

The above experimental observations clearly indicate that the bulk phase sequence 
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persists ever1 for 4,3 and 2 -layer films and in the SmCi phase, the alternation of the tilt 
direction occur in successive layers. Thus the periodicity of the unwound SmCi phase is 
over two molecular layers. This has also been confirmed earlier by Galerne et al. [4] for 
the compound MHTAC. 

In other studies Bahr et al. [23, 241 investigated the temperature dependence of the 
ellipsometric parameters of the compound 12FlM7. The compound 12FlM7 exhibits, in 
addition to the paraelectric SmA, ferroelectric SmC; and aritiferroelectric SmCL phase, 
also the ferrielectric SmC; and the SmCT, phases. The temperature dependences of the A 
values in the various phases for different film thicknesses are shown in Fig. 4.7. For this 
compound, they found that the difference (A+ - A _ )  is nonzero (see Fig. 4.7) throughout 
the range of stability of the SmA phase implying that the surface layers are tilted in the 
whole range of stability of the SmA phase. In the ferrielectric SmC; phase, there exists 
a considerable scattering of the A values as can be seen from the Fig. 4.7 and they did 
not find evidence for the 1:2 structure in the SmC; phase. In the SmA, SmC; arid SmCL 
phases the variation of the A values are similar to the case of the compound MHPOBC 
as described earlier. 
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In the SmCT, phase, they found a number of oscillations in the A values as a function 
of temperature. The temperature variations of A+ and A- for a 122-layer thick film by 
Bahr et al. [24] are shown in Fig. 4.8. For the 122 layer thick film there are 4 regions in the 
stability range of SmCT, phase where the difference (A+ - A_) is zero. They qualitatively 
interpreted these oscillations as alternating sequences of antiferroelectric and ferrielectric 
phases given by the Ising model first developed by Bak et al. [38]. As we have described 
in Sec. 2.3, this model was invoked for AFLC system by Takanishi et al. [13]. 

For a quantitative comparison of the above experimental observations with the the- 
oretical predictions one should take into account in the theory the well known fact that 
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Fig. 4.7: Experimental temperature dependence of A+ and A- in the different phases for 
a 20-layer film of 12FlM7. After Ref. [23]. 
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Fig. 4.8: Temperature dependence of A+ and A- in the SmA, SmCT, and SmCz phases 
for a 122-layer thick film of the compound M12F1. After Ref. [24]. 

the surface layers in a free-standing film tilt even at 20 to 30" C above the transition 
temperature at which the bulk layers tilt. Moreover, even in the tilted smectic phases the 
surface layers have in general a different tilt angle compared to that of the bulk. There- 
fore, these surface layers will contribute differently to the ellipsometric parameters than 
the bulk layers. Further, the actual values of the rnaterial parameters of the compounds 
used in the experiments are not known to us. Therefore, our simple minded calculations 
which neglect these factors can not yield results which can be quantitatively compared 
with the experimental observations. 

The calculated temperature variations of the ellipsometric parameters A+ and A- 
in the different phases for different thicknesses of the film are shown in Fig. 4.9. It is 
clear from Fig. 4.9 that there is a symmetry in the theoretical temperature variations 
of A+ and A- unlike in the experiments. This asymmetric variation of A+ and A- in 
the experimental observation can arise from the nucleation of defects when the aligning 
field is reversed as pointed out by Bahr e t  al. [23]. In spite of these differences, we see 
that in the SmCT, phase and in the high temperature region of the SmC? phase there 
are a number of oscillations of A+ and A- as seen experimentally. The points where 
the difference (A+ - A-) vanishes correspond to those temperatures at which the helical 
pitch of the sample is such that the net polarization of the N-layer film is zero. As the 
variation of pitch according to our model is very sensitive to temperature in the SmCT, 
phase and the high ternperature region of the SmCz and also in the ferrielectric phases, 
these oscillations of the A values rlatr~rally arise in these phases. Moreover the number 
oscillatiorls decreases as the number of layers is reduced as seen experimentally. In the 
SmC; phase where the pitch is relatively large, A+ and A- separate out giving rise to 
the large difference between them as observed experimentally. In the SmC2 phase, pitch 
varies relatively slowly with temperature and gives rise to the A values which are almost 
equal again as seen experimentally. 
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Fig. 4.9: The temperature variations of the theoretically calculated ellipsometric param- 
eters in the different phases for (a) 122-layer, (b) 50-layer, (c) 20-layer and (d) 10-layer 
thick free-standing films of AFLC. The solid and dashed lines correspond to A- and A+ 
respectively. 
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As pointed out by Bahr et al. [23] they do not find any evidence for the 1:2 struc- 
ture of the ferrielectric phase, which corroborates the point we made earlier that the 1:2 
(/\\ - .  a )  is not a zero field structure. Further according to the ANNNI type models pro- 
posed for this system (see Sec. 2.3), we expect a large range of stability for the <22> 

, ( / /\\ - a )  antiferroelectric structure. If this were true, we could expect in the 20-layer 
thick film (Fig. 4.7) a wide range of temperatures in the ferrielectric phase with a zero 
difference between the A values corresponding to the <22> (//\\ .) structure. But the 
experimental observations (Fig. 4.7) does not give any indication of such a trend. This 
again implies that the ANNNI type models proposed for the antiferroelectric liquid crystal 
may be appropriate. 

On the other hand, our model predicts sharp variations of the ellipsornetric parameters 
in the ferrielectric range and can easily account for the scatter in the ellipsometric data. 
Thus sharp variation of the ellipsometric parameters with temperature arise from the large 
variations of 64 with temperature in our model. 

4.5 Optical rotatory power 

Another method often used to study chiral media is to measure the opt,ical rotatory power 
of the sample. An incident linearly polarized plane wave after passing through the sample 
along the helical axis of the AFLC becomes in general elliptically polarized. The optical 
rotatory power (ORP) is defined as the rotation per unit length of the major axis of the 
polarization ellipse measured with respect to the polarization direction of the incident 
beam. In optically active liquid crystals, such as cholesterics and chiral smectics, optical 
rotation is much stronger than that of isotropic optically active liquids consisting of chiral 
molecules. The huge optical rotation of these liquid crystals is due to the characteristic 
helical structures in these phases. Therefore, optical rotatory power (ORP) measurements 
provide information about the helical structures in these phases. 

For the sake of completeness, We have calculated the ORP in different phases by 
Berreman's 4 x 4 matrix technique. The temperature variation of the ORP in the different 
phases is shown in Fig. 4.10. From the figure we see that in the SmC; phase there is 
two anomalous inversions of the ORP. These arise because the wave length of the light 
used in our calculation falls inside the selective reflection band of the sample due to the 
temperature variation of the pitch. This type of double inversion has been seen in the 
experiments by Furue et al. [56]. However, as we have mentioned earlier, Philip et  al. [lo] 
pointed out that the alignment of the sarnple in the ferrielectric phase is highly turbid 
and reliable rneasurernents of OR,P can not be made in this phase. Due to the lack 
of experimental results a detailed cornparison with the calculations of ORP can not be 
made. 
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Fig. 4.10: The temperature variation of the theoretically calculated optical rotatory power 
in the different phases. The wave length of the light used in calculation is 632.8 nm 
corresponding to a He-Ne laser beam. 
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