CHAPTER |

| NTRODUCTI ON

11 LI QUI D CRYSTALS

The term liquid crystal describes a state of matter that
exists between the anisotropic crystal and the isotropic |iquid.
The liquid crystalline or nesonorphic substances exhibit strong
anisotropy in certain properties, yet mintain a certain extent
of fluidity. Liquid crystals were discovered by Reinitzer (1888),
but the first detailed observations characterising these phases

were made by Lehmann (1890).

A highly anisotropic shape of the nolecules is necessary
for mesonorphism |like for exanple the long and narrow rod-1|ike
or disc-like shape. The transition to the nesophase can take place
either due to purely thermal processes (thernmotropic nesonorphism
or due to the influence of solvents (lyotropic nesonorphism). This

thesis deals with the study of only thernotropic nesophases.

12  THERMOTRCPI C LI QU D CRYSTALS

The thermotropic liquid crystals conposed of rod-like nole-
cules have been known for a long time. However liquid crystals
conposed of disc-shaped nolecules were only recently discovered
(Chandrasekhar et al. 1t977). Liquid crystals made up of rod-like
mol ecules can be classified broadly into three types of phases,

viz., nematic, cholesteric and snectic (Fig. 1.1).
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The nematic phase (Fig. 1.%a) is characterised by a long
range orientational order of the molecules but without any transla-
tional order. The long axes of the molecules are aligned apprexi-
mately parallel to one another. A vector %, called the director,
defines the average direction of orientation of these long axes.
The director is found to be apolar, i.e., +h and “h are equivalent.

The mesophase IS optically positive and uniaxial.

The cholesteric mesophase is basically a,nematic type, with
a screw axis superimposed normal to the preferred molecular direc-
tion (Fig. 1.tb). It consists of orientationally ordered optically
active anisotropic molecules, the director twisting about an axis
orthogonal to the director. The distance between layers in which
the director has turned through an angle of 2Zm defines the pitch
'p'. Over a certain spectral range cholesteric phases show a selec-
tive reflection of circularly polarized light. The cholesteric

phase is optically negative.

The smectic phase has a layered structure. Within each of
these layers various molecular arrangements are possible. The simp-
lest types are smectic A and C. In the smectic A phase (Fig. 1.1¢)
the molecules are approximately parallel to one another and are
arranged in layers, with the long-axes perpendicular to the layer.
Within the layer the centres of gravity of the molecules are situa-
ted at random and the molecules have a relatively high degree of
mobility. The structure of the smectic C phase (Fig. 1.1d) is rela-

ted to that of the smectic A phase, i.e., it consists of essentially



7

[T I
I i
AT I

Schematic

representation

in different liquid

(b) Chole

steric,

crystalline
(c) Smectic A,

Figure 1.1

of the nmolecular arrangement
phases. (a) Nematic,
and {d) Smectic C



parallel molecules in the layers, but these are tilted in a parti-
cular direction with respect to the layer normal. There are various
other types of smectics, smectics B, D, E, F, G, H and | which

are more ordered than A and C.

Examples of two typical ‘rod-like' molecules and the phases

exhibited by them are given in Fig. 1.2.

In some systems the nematic phase reappears on cooling from
the smectic phase. This lower temperature nematic phase is called

the reentrant nematic phase.

Discotic Liquid Crystals

As mentioned before, thermotropic mesomorphism is found to
occur in compounds made up of disc-shaped molecules also. In these
systems the director is parallel' to the short axes of the molecules.
The different kinds of mesomorphic phases formed with disc-like

compounds are:

1 the columnar phases (D) (Chandrasekhar et al., 1977; Tinh

et al., 1978; Levelut et al. 1979)

2 the nematic phase (ND) {Tinh et al. 1979}, and

3 the twisted nematic phase (Nf) (Destrade et al., 1980).

The molecular arrangement in these phases is shown in Fig.
1.3.  The columnar phases are formed of columns of stacked disc-like
molecules. Four different types of columnar phases have been identi-

fied (Figs. 1.3a-1.3d). These have been classified taking into
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Figure 1.3

Schematic representation of the nolecular arrangement in discotic
liquid crystals. (a) Columar phase, {b) hexagonal , and
(c) rectangular modifications of the columar structure. (g) tilted
col umar phase, (e) Ny phase, (f) tw sted nematic (Ns) phase



account the regular (o) and irregular {d) stacking of the discs
and considering the symmetry of the two dimensional lattice of
columns, 1i.e., hexagonal (h) or rectangular (r}. The different
types of columnar phases thus obtained are D

D D and & .
ro

ho' “hd’ “rd
A tilted phase where the discs appear to be tilted with respect

to the column axis is also present and is called the D, phase (Fig.

t
1o3d)-

The ND phase is an orientationally ordered arrangement of
the discs with no long range translational order (Fig. 1.3e}. In
contrast to the classical nematic of rod-like molecules, the ND
phase is optically uniaxial and negative. The twisted nematic phase

NB is similar to the cholesteric phase (Fig. 1.3f). The ND phase

is quite fluid while the columnar phases are very viscous.

The reentrant phenomenon has also been observed in disc-like
mesogens (Tinh et al. 1984). Both reentrant columnar phases and

reentrant ND phases have been obtained.

Examples of two typical discotic compounds is given in Fig.

1.4.

Most of the results in this thesis pertain to the nematic
phase. Hence the properties of this phase will be described in

detail in the following section.

13  PROPERTIES GF THE NEMVATI C PHASE

The nematic phase is more ordered than the isotropic phase
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and has a |lower synmetry. W can therefore define an order para-
meter, wviz., the orientational order paraneter which exists in

the nematic phase but vani shes in the isotropic phase.

In principle a conplete description of the nematic phase
requires a hierarchy of n-particle distributions to be specified.
But for sinplicity only a singlet distributionis taken into account
in the nean field approximtion. The state of alignment of the
mol ecules in the nediumis then specified by an orientational distri-
bution function. If the molecules are considered to be cylindrically
symmetric, the medium is uniaxial and if & is the angle made by
the long axis of the molecule with the director, the distribution

function can be witten as f{cos 8).

It is difficult to determne even the singlet distribution
function conpletely, but the first few coefficients of an expansion
I n Legendre polynomals of the distribution function are accessible
by experiment. Only the even coefficients are non-zero because
of the apolar character of the director. f(cos 6) can be expanded

as

f£(cos 8) ='Zi’ﬁ-éi-l<p2£> P,, (c0s @) (1.1)
=0

where the coefficients <P, o> are the order paraneters. <P2> can

be measured by various techniques like NVR, optical birefringence,

Infrared dichroism neasurenents, etc. This is often referred to



as '"the order paraneter’ and is denoted by S

The rmeasurenent of <P4> is more conplicated. Depolarized
Raman scattering technique seens to be the nost convenient (Jen

et al. 1977). Not many neasurenents of <p, > are avail able.

M

If all the molecules are aligned along n such that 8 : 0,
then <cos g>:= 1l and 8 = 1L If the nolecules are randomy distri-
buted in all directions as in the isotropic phase, all values of
@ are equally probable and < cos? §> = U3 giving 8 : 0. The nematic-

isotropic (M-I) transitionis of first order.

14  MOLECULAR THECR ES

If a fluid of hard rods is considered with no forces between
them other than the one preventing their interpenetration, at
| ow densities the rods can orient randomy and the fluid is isotro-
pic. As the density is increased it is difficult for the rods to
orient in all possible directions and the fluid undergoes a transi-
tion to the anisotropic phase. This transition was theoretically
treated by Onsager (1949). The excess free energy relative to an
i deal gas has to be evaluated using the orientational distribution
function of the rods. Onsager nade a virial expansion of the free
energy and retained only the second virial coefficient. This approxi-
mation is valid only for very long rods with a length to breadth
ratio = 100. Zwanzig (1963) evaluated the higher virial coefficients

by restricting the nolecules to take up only 3 mutually perpendi-
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cular orientations. Flory (1956) and Flory and Ronca (1979) used
a lattice model and made calculations at relatively high densities.
But all these descriptions are valid for long polymeric molecules
(Straley, 1973) and the predicted S at the nematic-isotropic transi-
tion is quite high (-0.85) leading to an abrupt transition from
a strongly-ordered nematic to a completely disordered isotropic

phase.

For relatively short rods (of length to bseadth ratio — 3-5)
and high densities the scaled particle theory provides a convenient
method for obtaining the excess free energy relative to an ideal
gas. Cotter (1977) has obtained the most complete form of this

theory as applied to nematic liquid crystals.

Another type of mean field theory was developed by Maier
and Saupe (1959) according to which the anisotropic dispersion
interactions between the molecules are responsible for the stability
of the phase. Each molecule was assumed to be in an average orien-
ting field due to its environment, but otherwise uncorrelated with
its neighbours, i.e., the short range order was ignored. Assuming
a cylindrical distribution about the preferred axis Maier and Saupe

expressed the orientational potential energy of the molecule as

-2 3(30082 8- 1)
2

elcos 9) = - AV

where V is the molar volume and A is a constant depending on the

molecular species. Cotter (1977) has shown that thermodynamic con-



sistency demands e€(cos € ) to be proportional to V'1, rather than

to V-2 as in the original Maier-Saupe model.

The normalized orientational distribution function

f(cos 8) = % exp [-e€e(cos 6)/kT] (1.3)

where k is the Boltzmann constant and T the absolute temperature,

Z the partition function for a molecule which is given by

1

Z = Jexp[— e{cos 8 )/kT] d{cos 6 ). (1.4)
0

The internal energy is given by
1
1

E = 3 N JOE(cose) flcos §) dicosB) = -'-%Nk'I‘BS2 (1.5)

where N is the Avagadro number and B = A/VkT.

The entropy in relation to that of the isotropic phase is given

by

S = -Nk <1lnf>

n

'Nk[% BS(25+1) - 1ln Jexp (—g BScosZB ) d{cos 8)1 (1.6)
0

and the Helmholtz free energy in relation to the isotropic phase

is

1
F=E-TS8S = NkT[%BS(S-»‘l) - 1In Lexp (-g-BSc:os2 9) dlcos 8] (1.7)

The condition for equilibrium is (3F/3S)VT = 0, which leads
3
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to the following self consistency equation for 3
1 3 >
S = J (-écos g - 1) f(cos 9) d(cos 9) (1.8)
0

This theory leads to a first order nematic-isotropic transition

with an S value of 0.42 at the transition point T Experimentally

NI®
S at TNI varies between 0.3 to 0.5 for different compounds. Higher
order terms can be introduced in the potential to account for these
differences (Chandrasekhar and Madhusudana 1971, Humphries et
al. 1972). But the main drawback of the mean field theories is
that they predict a heat of transition which is usually higher
by a factor of 2 or 3. The theory can be improved by taking into
account near neighbour correlations (Madhusudana and Chandrasekhar,

1973). However the shape anisotropy of the nematogenic compounds

has not been taken into account in these theories.

A more realistic theory incorporates the attractive potential
between the molecules as well as the hard rod features. Several
hybrid models have been proposed. Among these Cotter (1977) has
used the scaled particle theory to develop a hybrid model and has
obtained the coefficient of the potential with a temperature depen-
dent attractive part and an athermal part corresponding to the
hard particle contribution. These theoretical results have been
improved further by using the Andrew's (1975) model (Savithramma

and Madhusudana 1980, Madhusudana 1981).

However in all these models the molecules have been taken



to be cylindrically symmetric. In reality most molecules deviate
from this shape so that the transverse cross section deviates from
a circular shape. Alben et al. (1972}, Straley (1973), Luckhurst
et al. (1975), Gelbart and Barboy (1979) have shown the importance
of taking this deviation from cylindrical symmetry into account

in the theoretical calculations.

Alben et al. (1972) have pointed out that one order parameter
is not adequate to describe the uniaxial nematic phase made up
of particles without rotational symmetry and that two order para-

meters are reauired.

In general for a molecule of arbitrary shape the orientational

order in the nematic phase can be characterised by the tensor

a8 _ 1 - 1
Sij = 3 <31a38 GaB Gij > (1.9)
where ¢ ,8 - x,y,z refer to the laboratory fixed coordinate system

and i,j = £,n,t refer to the frame linked to the molecule. The
tensor SoiBJ is real, symmetric and has zero trace. If the molecular
coordinate system is chosen such that S?L‘E is diagonal two indepen-

dent order parameters which are denoted by S and D result.

This will be discussed in more detail in Chapter 3 where
we also present some experimental results on the determination

of the order parameter S, utilising the Infra red dichroism method.

As the deviation from cylindrical symmetry of the molecules



increases and the molecules become more and more biaxial, one can
expect that the medium itself becomes biaxial. Freiser (1970) has
generalised the interaction employed in the Maier-Saupe (MS) theory
of the nematic state in a manner consistent with the assymmetry
of the molecules. Such an interaction leads to a first order transi-
tion from the isotropic phase to a uniaxial phase followed by a

second order transition to a biaxial phase at lower temperatures.

Another possibility of obtaining the bi'axiality has been
theoretically investigated. These theories are concerned with mix-
tures of nematogens composed of rod-like and plate-like molecules.
When two nematogens made up of rod-like molecules are mixed together
usually a continuous miscibility in the nematic phase iS obtained.
The Schroder-Van-laar (Schroder 1893, Van-Laar 1908) equation per-
mits the calculation of the eutectic temperature and composition
of the crystal to nematic transition. A typical phase diagram of
mixtures of two nematogens is shown in Fig. 1.5. This kind of beha-

vior is true for most nematic mixtures.

If one of the components of the mixture iS non-mesomorphic,
the nematic-isotropic transition temperature of the nematogen 1S
depressed. Further the nematic and isotropic phases coexist over
a considerable range (Fig. 1.6) {(Martire 1979). VW have found that
special types of defects (the high strength defects) occur in cer-
tain mixtures of this type. The studies on these defects will be

discussed in Chapter 6.
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Figure 1.6

Coexi stence of nematic and isotropic phases
in mxtures of mesomorphic conmpounds with
non- mesonor phic solutes. (From Martire 1979).



Often when terminal polar and terminal non-polar compounds,
both of which exhibit only a nematic phase in the pure state, are
mixed together a smectic phase results in the mixed state (e.g.,
Fig. 1.7) (For example, Dave et al. 1966, Schroeder and Schroeder
1968, Heppke and Richter 1978, Engelen et al. 1978). There iS evi-
dence that the occurrence of this 'induced smectic phase! in some
mixtures can be attributed to charge transfer complexing. However
an induced smectic A phase has been found in a system in which
neither of the components has an appreciably strong polar end group

(Suresh 1983).

One of our studies is on binary phase diagrams of two nemato-
gens having rod-like and plate-like molecules. Alben (1973) theore-
tically studied such mixtures based on a lattice model and predicted
the occurrence of a biaxial phase (Fig. 1.8). Later Rabin et al
(1982) arrived at similar conclusions. The theories of Chen and
Deutch (1984) using a Van der Walls type of theory and that of
Caflisch et al. (1984) also using a lattice model, gave essentially
the same type of results. The first experimental evidence for this
biaxiality was observed in a lyotropic system (Yu and Saupe 1980)
in a concentration and temperature range separating two uniaxial
phases, one composed of disc-shaped micelles and the other of rod-

shaped micelles.

However, when two thermotropic nematogens, one of them having

rod-like molecules and the other having disc-like molecules, are
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mixed together, instead of getting a biaxial nematic phase, we
found a coexistence of two nematic phases. This result will be

discussed in Chapter 2.
15 CONTINUUM THEORY OF NEMATIC LIQUID CRYSTALS

Since nematic liquid crystals are characterised by an orienta-
tional order, any deformation of the director field is opposed
by a restoring torque. The deformations are described by the conti-
nuum theory. Oseen (1933) and Zocher (1933) initiated the continuum

model which was reexamined by Frank (1958).

These deformations cost elastic energy. Oseen assumed that
the intermolecular forces are additive and have short range. The
deformation dependent part of the energy density wes expressed
by him as a linear combination of ten terms whose coefficients
define a total of eight elastic constants. Five of these terms
and three of the elastic constants do not enter the Euler-Lagrange
equation which determines the possible equilibrium structures of
the liquid crys‘fal. They were thus omitted by Oseen {1933). Frank
derived the theory in a phenomenological approach and some of the

terms dropped by Oseen were reintroduced by him.

Following the formalism of Frank an expression for the elastic
free energy density can be obtained as follows. Let A(r) represent
the preferred orientation at any point r. It is assumed to vary

slowly with position and is defined at other points by continuity.



At any point r a right handed Cartesian coordinate system x,y,z
with z-axis along N is introduced. The x-axis is arbitrarily chosen

but is taken to be perpendicular to z and y-axes. The six components

of curvature (see Fig. 1.9) are given by:

an An

S - _.._X S - __,_Y

1 ax ! 2 T 3y ’

on . an

b, = - =¥ b, = oa—

1 ox ! 2 ay !

an an

b1 = _BZ , b2 = _XBZ , (1.10)

where S, t and b denote splay, twist and bend deformations respec-

tively. Considering the symmetry of the uniaxial nematic phase

Frank (1958) has shown that the free energy density Fd is given
by
o - 2 2 2 .2
Fd = 2[K11(S1+32) + K22(t1+t2) + K33(b1+b2)]
- (K22+K24) (S1S2+t1t2) {(1.11)

where KH’ K22 and K33 are the splay, twist and bend elastic con-
stants associated with the three independent bulk distortions of
the nematic (Fig. 1.9). The equilibrium structure of the liquid
crystal can be determined by minimising the volume integral of
the free energy density. A necessary condition for a structure

to have an energy minimum is that T is a solution of the Euler-
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Lagrange differential equation. As we have seen Fy is a function

of % and its gradients.
_ BnB ‘
gag = Bx, 0B =123
, o
where X, = Xy ¥y =¥, Z;% 2 and NG = n. ny,zny andn3 z
n, - Imposing a small variation Gg(r) at all points we have

' BFa 3F, 4 6 7av
SF ':J[w—sn + — == (Ong ] . (1.12)
d 31’18 B 3ga8 Bxa é

Integrating the second term by parts and neglecting the surface
term, i.e., assuming that the anchoring at the boundaries is strong
oF

aF
_ d 3 d
GFd = J[anB | 3xa(38a?3] GnB dy (1.13)

This yields the Euler-Lagrange equilibrium equation

Fy s OF4

— ([ = 0 (1.14)
BnB axa agas

Terms of the form div G where u(r) is an arbitrary vector field,
may be transformed to surface integrals using the Gauss theorem.
These terms do not contribute to the equilibrium condition (1.14).

For example the term associated with (K + K

50 214) introduced by

Frank can be written as (Ericksen 1962)
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In. on 3n_ 9n dn_ on dn_ 3
Sx oy Sy Txooo 8 e Ty 2 T 00y
ax dy ax y dx " x 3z y 3y 9 y 9x z 92
an; an
2 on =X 2
* oz (nz dy X 09X ) (1.15)

and can thus be omitted. Finally in vector notation the free energy

density of the nematic is usually written as

1 o2 > *.2 *42
Py = E[K11(dlv n) + K22(n .curl n) +K33(T1 x curl n)“} (1.16)

The free energy density is a quadratic function of the curvature

in the director fields, i.e., in the gradients on n.

Nehring and Saupe (1971} argued that the terms linear in
the second derivatives of # can make contributions of the same
order of magnitude as the quadratic terms of the first derivatives.

If this is taken into account a term of the form div(#{ div &) connec-

ted with K13 should be included in Fd. Frank who considered terms
of similar order associated with (K22 + Kau)’ ignored this term.
However as in the case of the latter, the K13 term makes no contribu-

tion when there is strong anchoring at the boundaries. This problem
will be dealt with in detail in Chapter 5 along with an experimental

method of determination of the elastic constant K13'

As mentioned earlier the nematic medium is characterised

by an apolar director. Most of the nematic liquid crystals made

up of rod-like molecules have a positive diamagnetic susceptibility. 1

Therefore if a magnetic field is applied perpendicular to the origi-
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nal direction of alignment of a nematic sample that IS strongly
&nchored at the boundaries, distortions in the uniform pattern
can be obtained (Fig. 1.10). However as the effect of the magnetic
field is opposed by the strong anchoring at the boundaries, these
distortions take place only at a field strength. greater than a
certain threshold value Hc' Distortions of this kind were first

studied by Freedericksz (1933).

At a given field the stable equilibrium state can be found
by minimising the free energy with respect to the variations in
the director profile. The expression for the critical field is

.1 172
B, = g (Kii/ax) (1.17)

Different geometries as shown in Fig. 1.10 can be used for
measuring the three elastic constants K11' K22 and K33, Hc is usually
measured by employing an optical technique for detecting the distor-

tion (see for e.g., de Gennes 1975, Chandrasekhar 1977).

Typically Ki.1 is of the order of 10_6 dynes. For example
the values of the three elastic constants for para-azoxyanisole

at 120°C are:

Ky = 0.7x 1070 dynes
_ -6

K22 = 0.43 x 10 ~ dynes
-6

K3-3 = 1.7 x 10 ~ dynes.

The Kii values decrease rather strongly when T increases. (They
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Figure 1.10

The three geometries used in Freedericksz transition experiments
(From Chandrasekhar 1977).
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vary roughly like the square of the order paraneter.) Since the
three elastic constants are of the same order of nagnitude, it
is often very convenient to treat problens of curvature distortion

if the three elastic constants K K and K are taken to bhe

117 722 33
equal (one constant approxi nation).

In Appendix | we present revised absolute val ues of the elas-
tic constants Kipr Koy and K33 of several cyano biphenyls which
were originally neasured using experinental techniques nentioned

above.

1.6  DEFECTS

In liquid crystals various defects are easily visible under
the mcroscope even under |ow magnification. These defects are
stabilised by boundary conditions. They also occur when there is
a disturbance of the orientation caused by electric or nagnetic

fields, tenperature gradients and nechani cal stresses.

The term tdisclination' was suggested by Frank to describe
defects caused by discontinuities in the director field a(r). There

are two types of disclinations, line and point disclinations.

Linear defects occur frequently in nematic liquid crystals.

They can be visualised by wusing the Volterra process (Volterra

1907),



Vol terra Process

A perfect medium is cut along an arbitrary surface s and
the two lips s* and sS" of the cut surface are displaced relative
to each other by a symretry permtted rotation around a certain
axis. The void which now exists is filled with perfect material,
or if there is an overlap of the tw parts the excess of the nate-
rial is removed and the nmedium is allowed to relax such that the
director continuity is still naintained. This produces a line dis-

continuity along a line L (see for exanple fig. 111).

The nost frequently occurring types of disclinations are
those in which the rotation axis is parallel to the line L. These
are called wedge disclinations. The Schlieren texture exhibited
by nematics is due to these wedge disclinations. If the rotation
is perpendicular to the singular line, we get a tw st disclination.
In this case the line of singularity is in the plane in which the
nmol ecules lie. These are often seen as |oops separating regions

of different twist.

Schl i eren Text ures

Wien a sufficiently thin (-20 um) nenatic sanple is taken
bet ween gl ass surfaces that have not been treated to give any pre-
ferred alignment at the boundaries, one often sees a set of singular
points. These correspond to discontinuities in the director orienta-
tion and are disclination lines viewed end on. Wen the sanple

is taken between crossed polarisers these points are seen to be



Figure 1.11

Generation of a disclination line by
Volterra process.



connected by black brushes. This texture is called the Schlieren

texture. A typical example is shown in Fig. 1.12.

The brushes are regions where the director is either parallel
or perpendicular to the plane of polarisation of the incident light.
The polarisation is unchanged by the sample in these regions and
the light is extinguished by the crossed analyser. Usually the
points are associated either with four brushes or two brushes.
I f the polarisers are rotated simultaneously the brushes also rotate
continuously showing that the orientation of the director changes
continuously about the points, which themselves remain unchanged.
The sense of rotation may be the same as that of the polarisers
(positive disclinations) or opposite (negative disclinations).
The rate of rotation is about equal to that of the polarisers when
there are four brushes and twice as fast when there are only two

brushes.

The different types of disclinations can be characterised
by a number 's' called the 'strength' defined as 1/4 X (number
of brushes). The ®#m of s of all disclinations in a sample tends
to be zero. Disclinations with opposite values are always connected
together. Often near the nematic-isotropic transition point, the
disclinations merge together. If the sum of their s values equals
zero they totally annihilate each other. If on the other hand the
s values add up, a new disclination with an s value equal to the

sum, results



Figuwre 1.12. A typical Schlieren texture exhibited.by

nematic liquid crystals.
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The significance of. these textures was first lunderstood by
Lehmann (1830) and Friedel (1922), but a mathematical treatment
of the actual configuration around the disclinations was given
by Oseen (1933) and Frank (1958). A more thorough discussion of
the Schlieren texture is due to Nehring and Saupe (1972)}. The conti-
nuum theory of elastic deformations forms the basis of such theoreti-
cal treatments. Assuming a one constant approximation, solutions
to the director field around disclinations can easily be obtained.
If ¥ is the angle made by ?1 with the x-axis, and a is the angle
that the radius vector connecting the given point to the centre
of the defect makes with the x-axis, and assuming that % is confined

to the xy plane the solutions take the form
Y = sa+c (1.18)

where ¢ is a constant. In this approximation ¥ becomes multiple
valued at the origin and hence leads to a singularity at that point.
Assuming that a core region extends from the origin to Fos the
energy per unit length of an isolated disclination is given by

{Nehring and Saupe 1972)
W=W +TKs® 1n R/r (1.19)

where wo arises from the core region and R is the size of the sample.
For a given R the elastic energy carried by a defect is thus seen
to be proportional to 32 which means that all defects with Isi
>1/2 should spontaneously break up to form defects with Is[ = 12,

However defects of strength #1 are frequently seen.




Cladis and Kleman {1972) and Meyer (1973) resolved this prob-
lem and showed that the energy of the disolination of strength
Is| = 1 is reduced if the director is allowed to relax out of the
plane perpendicular to the disclination line, such that it is along
the z-axis at the origin. This solution has no singularity and

the'line energy does not depend on R.

Often pairs of disclinations with opposite s values are seen.
In the one constant approximation the solutions for the director
pattern around a pair of defects with planar director field and

of strength ts, can be written as
g = S(a1—a2)+c . | (1.20)

where o, and «, are the angles as defined earlier with respect

1 2
to the two defects. The constant c¢ determines the orientation of

the director far away from the defects.

Until recently only defects of strength 1 and %%2 had been
observed in nematic liquid crystals. In Chapter 6 we report the
first observations of defects of strength #3/2 and #2 in thermotro-

pic nematic liquid crystals.

I nversion Val | s

Schlieren textures may also arise when the surfaces try to
impose a uniform orientation on the sample, for example when the

glass plates have been rubbed. The alignment is generally parallel




I
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W

Figure 1.13

Mol ecul ar alignment in the vicinity of an
inversion wall of the first kind.
(From Nehring and Saupe 1972).
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to the direction imposed by the surfaces except in the region of
the wall (Fig. 1.13) (Nehring and Saupe 1972). In this region the
alignment changes continuously with a change of m/2 at the centre.
The total change in crossing the wall corresponds to a turn of
the preferred orientation by n. Between crossed polarisers two
black brushes appear one on either side of the central line (m/2
line). One brush of each pair is more diffuse than the other. These
walls are called inversion walls of the first kind. Another type
of inversion wall called inversion wall of the second kind occurs
when molecules are tilted out of the plane of the bounding surface.
These are inversion walls with respect to the tilt direction. Mole-
cules on different sides of the wall are tilted in opposite direc-
tions and on going through the wall a continuous change in tilt,
angle takes place, with the molecules aligned parallel to the sur-

face in the centre of the wall (Nehring and Saupe 1972).

The inversion walls may form closed loops or start from diseli-
nations of strength z1/2, which may be connected to disclinations
of strength #1. In Chapter 6, we report observations on inversion

walls of the first kind associated with defects of strength +3/2.

1.7 HYDRODYNAMICS OF NEMATICS AND CHOLESTERICS

The nematic liquid crystal flows but there is a close coupling
between the flow and the orientation of the molecules. The flow
can induce a change in orientation which in turn affects the motion,

or a change in orientation can lead to flow which tends to counteract



or reinforce the change of alignment.

Dynamic problems of anisotropic liquids were first studied
by Anzelius (1931) and Oseen (1933). The coupling between orienta-
tion and flow for nematic and cholesteric liquid crystals in parti-
cular was analysed by Ericksen (1966) and Leslie (1968, 1979).
Quantitative studies on flow properties have been made by various

groups (see de Gennes 1975; Chandrasekhar 1977).

As in conventional hydrodynamics the dynamical situation
for a nematic liquid crystal is specified by a velocity field V(r)
giving the flow of matter, and in the Leslie formulation (Leslie
1979}, the director ;(r) describing the local state of alignment
is specified in addition. Vé first write an expression for the
dissipation or the entropy source, due to all friction processes
in the fluid. There are two types of dissipative losses, conventio-
nal viscosity effects and losses associated with a rotation of
the director with respect to the background fluid. Following the
notations of de Gennes (1975) the dissipation TS is given by

N .

\ ' > o '
3 - f'[ﬁ:os—P.T.u-t- h . nlddr (1.21)

where ¢® is the symmetric part of the stress tensor, A is the

symmetric part of the velocity gradient tensor given by

1
AqB = -Z-(BOL VB + 38 Va)- '
@ = —;curl V, is the antisymmetric part of the velocity gradient

S
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+ +  + . _ _
tensor,' = n x h IS the torque per unit volume exerted by the inter-

+ +
nal degrees of freedom. t is the material derivative of n, i.e.,

-> . . . .
change of n per unit time as experienced by a moving molecule,

Y
h is the molecular field.

Eg. 1.21 can be written as

. : s =+ *> 3
TS =j[_A:c_+h.N]dr (1.22)
> 'r > e =
where N = 'fi = @ x n . The vector N represents.the rate of change

of the director with reference to the background fluid. Egn. (1.22)
contains the two types of dissipative losses due to viscosity effects

and rotation of the director.

In the Ericksen-Leslie model the hydrodynamic stress is

assymmetric and has in general six viscosity coefficients.

The contribution to the entropy source IS now expressed as
a sm of products of fluxes and the conjugate forces (de Groot
and Mazur 1962). Choosing as fluxes the components of the symmetric

-
and the components of the vector N , a set of phenomeno-

tensor AaB
logical equations expressing the forces in terms of the fluxes
can be written. Usually one is concerned with very slow motions
so that the fluid can be treated as incompressible. In the [imit
of slow motions the fluxes are linear functions of the thermodynamic
forces. Cross effects between various phenomena exist, since each

flux may in principle be a linear function of all thermodynamic

forces. Spatial symmetries of the nematic reduces the number of



phenonenol ogi cal coefficients. The Onsager reciprocity theorem
gives rise to additional relationships amongst the phenomenol ogi cal
coefficients thus reducing the nunmber of independent viscosity
coefficients. Thus the followi ng equations are obtained for the
conpl ete viscous stress O&B and the hydrodynamc nolecular field
h (de Gennes 1975)

' _ _
UaB = a1naan n_A

1hofyo + aznaNB + a3nBN

o

+ quAaB + a5nanuAuB + a6n8nuﬁua (1.23)

and

hu = Y1NU + anaAau (1.24)
together with the relations

¥ = oy - - 1-25)

Y, = G, +Q =0t6-0£5 (1.26)

The six coefficients a, are usually called the Leslie coefficients
and have the dinensions of viscosity. Egquation (1.26) was first
derived by Parodi (1970) using the Onsager principle. This reduces

t he nunber of independent coefficients to five.

The. cholesteric liquid crystal is a chiral system consis-
ting of orientationally ordered optically active anisotropic nole-
cules, with the director twsting about an orthogonal axis. In
parity conserving systens the Curie (or Von Neumann) principle

requires that the symetry of physical effects nust be contained
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in the causes which give rise to them. But in chiral systems which
lack mirror, symmetry the principle predicts novel types of coupling

between fluxes and forces.

Hence in cholesterics a possibility novw exists of a coupl-
ing between thermal and mechanical effects. This type of thermo-
mechanical effect was observed by Lehmann (1900) soon after the
discovery of liquid crystals. He found that in small cholesteric
drops taken between two glass surfaces a thermal gradient along
the helical axis gives rise to a continuous rotation of the struc-
ture about that axis. The thermomechanical effect results in an
angular momentum density of the director even though the applied
force has the character of a polar vector. Leslie (1968) worked
out a detailed hydrodynamic theory of the cholesteric state and
obtained solutions corresponding to the Lehmann rotation phenomenon.
Later Martin et al (1972) and Lubensky (1972) developed a hydrodyna-
mic theory of layered systems and shOW(\ed that the symmetry of such
systems allows for a thermomechanihal effect which couples the

phase of the layers with a temperature gradient.

To our knowledge the Lehmann experiment has never been repro-
duced. W have studied an analogous effect = the electromechanical
coupling in a cholesteric, under the action of a DC electric field.

These studies are reported in Chapter 4 in detail.
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