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CHAPTER |V

ELECTROVECHANI CAL COUPLI NG I N CHOLESTERI C LI QUI D CRYSTALS

4.1 | NTRCDUCTI ON

The cholesteric liquid crystal is a chiral system consisting
of orientationally ordered optically active molecules. The director
twists about an orthogonal axis to form a heiix (Fig. 1.1b in

Chapter 1) with a pitch 'p* in the range of a few microns.

In parity conserving systems the Curie (or Von Neumann)
principle (for e.g., Boccara 1981) requires that the symmetry
of physical effects must be contained in the causes which give
rise to them. But in chiral systems, which lack mirror symmetry
the principle predicts novel types of couplings between fluxes
and forces (Pomeau 1971). In cholesteric liquid crystals the coope-
rative nature of the chiral interactions may/be expected to give
rise to a macroscopic manifestation of the same resulting in unusual
effects which are clearly observable. One such effect - the thermo-
mechanical coupling was observed by Lehmann in 1900. He found
that in small cholesteric drops taken between two glass surfaces
a thermal gradient along the helical axis gives rise to a conti-
nuous rotation of the structure about that axis (see Fig. 4.1).
The thermomechanical effect results in an angular momentum density
of the director even though the applied force has the character

of a polar vector.
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Figure 4.1

Lehmann's diagrams illustrating the rotation
phenomenon in open chol esteric droplets heated
from bel ow(From Chandrasekhar 1977).
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Leslie (1968, 1979) and others have worked out detailed
hydrodynamic theories of cholesterics and obtained solutions corre-
sponding to the Lehmann effect. de Gennes (1975) has pointed out
that any transport current should in principle give rise to a

similar effect. We have used his formulation in our discussion.

4.2 HYDRODYNAM CS OF CHOLESTERI CS

Consider a transport current density which can be an electric
current density, a heat current density or a diffusion current
density. The conjugate field associated with this current is E.
For the three cases mentioned above, E=- vV (where vV = electrical
potential), E-- VTT and E = - Vu (where u is the chemical potential

of the diffusing species) respectively. The entropy source includ-

ing flow, rotation of the director and transport is given by

. ' > >
TS =A : g'+B.N+J.EB- (4.1)

The quantities A = the symmetric part of the velocity gradient
tensor, o' - the complete viscous stress tensor, -F\—the molecular
field and N-the rate of change of the director with respect to
the background fluid are as defined in Chapter 1. A, -1\7 and TE are

> >
chosen as fluxes whileo', h and J are the conjugate forces.

The phenomenological equations between the fluxes and forces
can then be written. Taking into account the Onsager reciprocal

relations also, we can write

N > > -+ > o\
0&8 - cas;-rulnu(Exn)B + Hng (Exn)gy (4.2)
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E = h + vn XE (4.3)

R
Y

O_I_E+(Ol|-0l) (ﬁ-ﬁ) rT+\)?1xf\7
- W +u) R x (A (4.4)

here oé\c]B and hV denote the contributions from the hydrodynamics
of nematics (Chapter I - see Egns. 1.23 & 1.24). OH and GJ_ are

the conductivities, Moy Uy and v are the new phenomenological

coefficients related by U1 _u2 = V.

All the terms in eqgns. (4.2) = (4.4) which are associated
with the coupling coefficients His B and v change sign when the
coordinate system is reflected in a mirror. Then the cross coupling
coefficients must also change sign, i.e., they can only have a
non-zero value for chiral systems. Since the handedness of the
helix changes sign under a mirror reflection the coupling coeffi-
cients must be proportional to q, where g=27m/P is the wavevector
of the helix. Its sign is taken to be positive (negative) for
right (left) handed helix. This would of course mean that in a
nematic or in a compensated cholesteric with gq=0 the cross coupl-

ing does not exist.

The Lehmann rotation is a consequence of the cross coupling

between thermal and mechanical effects.

V¢ now consider in general the effect of a transport current

which should give rise to a similar effect.

L



Let us consider a cholesteric sample with planar texture
and let a relative thermal gradient or an electric field be applied
parallel to the helical axis and we assume that there is no hydro-
dynamic flow, i.e., A=0. The angle $(z) between the director

and a fixed axis x can be obtained from the torque balance equation.

Let us first consider the viscous torque

I1viscous R
.z yX Xy -

Substituting for the o's from eqns. (4.2) when A =0, we have

rviseous . 4 nn +0Lnxfxy-anr'1 -a

z 2y X 3 2%y rlnx

3y

+ u,lny(—nyEZ) + uznx(anz) - M 1nx(anz) - M 2ny(-nyk’:)z)

1]

. . 2
(a2—63) (nynx-nxn})—\)py E, -vnfEz (4.5)

Now nxzcosq) and nY=S|n¢

Therefore
viscous /
r, (a, -a ) (-d¢/dt) = VE,
d¢ _
Y1 a " VE, (4.6)
as
OL3—C12 = Y, and 1,[1-“2 = V. (4.7)

The elastic torque I‘ilaSt'C is given by
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relastic _ o (4.8)
Z XYy y X '

h, and hY can be obtained from the expression for the free energy

density
Fd : = [(n.cur qo]
K an dn
. 22 X _ Y 2
-2 [ny dz "x 3z qo] (4.9)
V¢ then have

X anx 9z a<anx/az)

and
F oF
d 9[ d ]
h 2 e o | m—— (4.10)
) )
y ng 0z (any/ z)
Therefore
elastic 82n 82ny .
r = -K,,[nh—=" - n ] (4.11)
z 22 y 822 X 8z2
Agai n substituting ny =Ccos ¢ and Ny = sin$
elastic 2 2
r, = K22(8 $/9z") (4.12)

Equating the el astic and vi scous torques,

9 _ vk
Z

2, 02
Y1 at Kyp (370/827)

or

2 2 .
Yy @ ° K22 (39 /9z7) +VEl (4.13)



where E_l. is the component of E normal to -ﬁ i.e., E:Z, and V is
the thermo- (or electro-) mechanical coupling coefficient. Eqgn.
(4.13) can be integrated using proper boundary conditions. If
the anchoring energy for azimuthal orientation is zero %% = 9=

ar/P at both the boundaries and hence a constant in the sample.
The solution is then of the form ¢ = qoz+})—${£+ c, where ¢ is a
constant of integration. The director rotates with a constant
angular velocity given by VE/Y, . The angular velocity IS proportio-
nal to the relative temperature gradient or electric field E and
the sense of rotation should change when E is reversed. Also the

sense of rotation should depend on the handedness of the helix,

i.e., the coupling coefficient is proportional to q.

Leslie concluded that the rotation phenomenon observed by

Lehmann is a consequence of the cross coupling term V.

Lubensky (1972, 1973) developed a hydrodynamic theory of
cholesterics valid for spatial distortions whose wavelength is
>>p the pitch. Again he concluded that the symmetry of such systems
allows for a thermomechanical effect which couples the phase of
the layers with a temperature gradient. For a cholesteric, the
phase is determined by the azimuthal angle of the director and
one again gets solutions corresponding to the Lehmann rotation.
He also recognised that such a rotation would crucially depend
on the boundary conditions (Lubensky 1973). Martin et al. (1972)

developed a general theory of hydrodynamics of layered systems

93
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applicable to cholesterics also and got similar solutions. The

Lubensky formulation is specifically meant for cholesterics.

The Onsager relations were not used in the theory of Leslie.
Prost (1972) used these relations in the Leslie theory and in
this case the thermo (or electro) mechanical coefficients are
found not to contribute to the entropy production in an undistorted
cholesteric. This can be shown by using Eqgns. (4.2-4.4) which

already incorporate the Onsager relations.

Let us consider the terms associated with the thermo (or
electro) mechanical parts in the expression for the entropy produc-

tion, i.e., in Egns. (4.1) and (4.2) = (4.4)

TS

A: [1111'10L(Ex1f1)B +u2‘nB(Exn)0;
-> > > - > P>
+vnxE.N+vnxN.E

_(p1+u2)[;x(A:;)7E] S (daw)

> > - > > > > >
(u1+u2)[nx(A:n).E]+\me.N+\)an.E

it

-<u1+5)[3xm:3).¥:3 = 0 (4.15)

Thus we see that the cross coupling coefficients have a reactive
and not a dissipative character. As mentioned earlier, in the
original formulation of Leslie, the Onsager relations have not
been used. The thermomechanical coefficients would then contribute

to the entropy production. The 'v' coefficient in the model develo-
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ped by Lubensky (1973) is also seen to contribute to the entropy

production.

An experimental determination of the thermomechanical coupling
coefficient is of obvious interest, but to our knowledge the Lehmann
experiment has never been reproduced though there have been several
attempts to do the same. For example, an attempt in our own labora-
tory to reproduce the Lehmann experiment did not succeed (Chandra-
sekhar and Suresh). The reason for this negative result is that
in none of these attempts, the anchoring energy at the boundary
surfaces was sufficiently weak. V& can indeed make an estimate
of the allowed upper Iimit of the anchoring energy, for the rota-

tion to be possible.

To simplify the argument |let us assume that the upper surface
at z=d is free and has zero anchoring energy. The lower surface
at z=0 which is resting on the glass plate has an anchoring energy
given by w/2 sin? ¢ wherecpo is the angle made by the director
with respect to the easy axis. The restoring torque at z=0 due
to this anchoring energy is W sin ¢o cos ¢o, which has a maximum
value at q)o = w/4. V& can then assume that the surface anchoring
can be overcome if the angle ¢o exceeds T/4 due to the action
of the thermomechanical coupling and then the rotation becomes

possible, though not freely.

Let us now estimate the maximum allowed value of W by treat-
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ing the problem in the static limit. The surface torque balance

is given by

Wsin ¢ cos ¢ = K,,[(380/32) + q.] (4.16)
and the bulk torquebalance equation in the static limit is

K, (ach/azzv) = VE (4.17)

we have a free surface at z = d, hence [3¢/azlzzd = q,- The solution

is then

o = (\)EI/2K22)22 v az + 9 (4.18)
where

q = [qo - (\)E/Kaz)d].

Therefore using this, at z=0, we get

_ .___VEd
sin ¢O coscbo

W (3.19)

As v has the dimension of an energy/unit area and as we noted
earlier Yoc Gy, & dimensional estimate for v is (de Gennes 1975)
, Vo= XK22qO’ where X can be assumed to be =1. This givesV'lo_3
.cgs units. If q>o= T/4 we get W = 10_4 cgs units. This is equal
to an extrapolation length L=K22/W ~10 um. For the drops to rotate

the anchoring energy must be lower than this. To our knowledge

a measurement of the azimuthal anchoring energy is not available,
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but for the polar angle &, a silicon monoxide coated surface gives
an extrapolation length of only ~ 0.1 um (Berreman 1972, 1973;
Wolff et al. 1973) and it is not easy to obtain surfaces which
give homogeneous alignment with weak anchoring. We could hence
conclude that the azimuthal anchoring with an extrapolation length
>10 um is also difficult to achieve on a solid surface. If the
cholesteric is in contact with solid surfaces on both sides, we
can expect that the anchoring energy must be much weaker than
the above estimate to obtain any rotation of the cholesteric.
We believe that in none of the earlier attempts to reproduce Lehmann
rotation the anchoring wes sufficiently weak for the structure

to rotate.

There have been several papers suggesting alternate experi-
mental geometries to measure the coupling coefficient. We now

give a brief outline of these.

Prost (1972) suggested that a planar cholesteric sample
subjected to a rotating magnetic field acting in a plane perpendi-
cular to the helical axis would produce a rotation of the director
and result in a temperature gradient along the helical axis. How-
ever, for practical rotational speeds, the estimated temperature

gradient is only —10_6 deg/cm.

Prost (1972) also pointed out that a cholesteric sample

flowing in a capillary tube with the helical axis along-the tube
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would give rise to a rotation of the director, due to the permea-
tion process (Helfrich 1969). The rotation again results in a
temperature gradient which is in principle measurable. Ranganath
(1983) has pointed out the possibility of the reverse effect:
a temperature gradient along the cholesteric sample in a capillary
results in a permeation flow. To our knowledge, such experiments

have not been tried.

Jayaram et al. (1983) have suggested that a temperature
gradient normal to the helical axis imposed on a planar aligned
sample of a cholesteric liquid crystal induces lateral flows and
in turn gives rise to a distortion of the director field due to
the effect of both the thermomechanical coefficients. They propose

that the distortion can be detected by optical studies.

The only claim of an experimental determination of the thermo-
mechanical coefficient is due to Eber and Janossy (1982, 1984).
They have used a mixture of two liquid crystals which shows a
compensation temperature T, The medium has a left-handed helical
structure below TC and the pitch increases to become w and reverses
sign at T,» i.e., the structure becomes right handed above TC.
In the experiment, a homeotropically aligned sample near T, Wes
subjected to a transverse temperature gradient (dT/dX). This results
in a tilting of the director. In a linear approximation the tilt

angle is given by



- Aerr L2 yz% 4T
6(z) = K33 8 ax (4.20)

where L is the thickness of the sample, K33 is the bend elastic

constant. - Assuming that the thermomechanical coefficients are

independent of the magnitude or sign of q(=2m/P) Eber and Janossy

derived
>‘ef‘f‘ = >\3 + K22 dq/dT ' (4.21)
where the coefficient X 3= v/T. K.22 is the twist elastic constant.

Eber and Janossy have measured the deformation by an optical techni-
gue and estimated K22dq/dT by an independent measurement. Egns.
(4.20) and (4.21) can then be used to calculate )\3. However the
cross coupling term which arises due to the helical arrangement
of the cholesteric should vanish when q=0, i.e, at the compensa-
tion temperature. (Indeed, the theory requires that A3oc g and
should change sign with that of g.) Since Eber and Janossy assumed
that )\3 is independent of g in deriving Egns. (4.20) and (4.21),
they assume in effect that the thermomechanical coefficient is

molecular rather than structural in origin (and in that case

>\3 can be expected to be very small).

Further, in analysing the data they have used the temperature
at which the homeotropic texture goes over to the fingerprint
texture to estimate dq/dT. In a recent letter, Pleiner and Brand

(1987) have pointed out that the above method of measuring dq/dT
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cannot be very accurate since the derivation of the formula for
estimating dq/dT does not take into account the defects present
in the fingerprint texture. Indeed the estimate of dq/dT by Pleiner
and Brand would make the value of v = 0. They have also pointed
out that a non-Ilinear hydrodynamic theory is necessary to produce
any thermomechanical effects in a compensated cholesteric. Thus
the thermomechanical coefficient extracted by Eber and Janossy
from their experiment is subject to doubts, and in any case it

is not of structural origin.

Janossy (19817a & b) has made another interesting observation.
He took a planar aligned cholesteric sample between two discs,
and slowly rotated one with reference to the other. He then obser-
ved that small (1- 2 um thick) dust particles drifted radially.
For one sense of rotation, the particles concentrate near the
axis of rotation, while for the opposite sense the particles drift
away from the axis. He has interpreted the result in terms of
a 'diffusomechanical coupling’ in analogy with one of the thermo-
mechanical coupling coefficients. However the shear flow induces
a secondary flow of the material with the same characteristic
features (Chandrasekhar et al. 1980) and the separation between
the two is not clear. Careful experiments are necessary for a

detailed analysis to separate the two effects.

In view of all these studies we see that the Lehmann experi-

ment seems to be the most convincing demonstration of the cross



coupling coefficient v. It could also be used to check the depen-
dence of the sense of rotation on the sign of E and of q for a

given system.

We thus attempted to reproduce the Lehmann experiment, so
that a measurement of the coupling coefficient could be made.
The first task is to obtain flat cholesteric drops whose structure
can rotate freely, i.e., the azimuthal anchoring energy at the
surface of the drops must be zero. Therefore we see that choleste-
ric drops which are in contact with glass plates are not suitable
for observing the Lehmann rotation phenomenon. On the other hand,
one can expect that the azimuthal anchoring energy at the choleste-
ric-isotropic interface to be essentially zero. With this idea
in mnd we tried to sandwich cholesteric drops between two glass
plates coated with various liquids like glycerine, ethylene glycol,
diethylene glycol, nujol and water. But in all the cases this
resulted only in spherical drops which do not have a suitable
geometry. We found that a convenient method of getting the required
type of drops was to dissolve in the cholesteric a small quantity
of Lixon by weight, which is a non-mesomorphic epoxy compound.
This results in a lowering of the cholesteric-isotropic transition
temperature, and a broad two phase region. Moreover, one can form
cholesteric drops which no longer have a spherical shape, but
have a flattened appearance. More interestingly, they are surroun-
ded by the isotropic phase on all sides. The reason for this confi-

guration is that the epoxy compound has a strong affinity for



glass, i.e., it wets the glass much more efficiently than the
cholesteric compound. The cholesteric phase has a lower concentra-
tion of the epoxy compound than the isotropic phase, which would
hence prefer to be close to the glass plates. W can also note
that the interfacial tension between the cholesteric and its own
isotropic phase is iikely to be <107° dyne/em (see for e.g., Faetti
and Palleschi 1984) and hence the energy required to change the
shape of the drop from the spherical shape is negligible. Further,
the relative difference in density between the cholesteric and
its own isotropic phase is also very small (~107%) which enables
the cholesteric drop to be surrounded by the isotropic phase on
all sides. This results in the configuration shown in Fig. 4.2.
In thin cells, with the glass plates separated by = 8 um, we could
easily form cholesteric drops with a lateral diameter of 20-50
pum using this technique. It is clear that the gap between the
plates is too small for having a steady temperature gradient bet-
ween them. However, as mentioned earlier, cross couplings can
be expected for any transport current. It is extremely convenient
to apply a DC electric field to such thin cells. Hence we chose
to look for the electromechanical rather than the thermornechanical

coupling.

4.3 ELECTROMECHAN CAL EFFECT

If Ve is the relevant coupling coefficient we can write

on the basis of dimensional arguments
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Figure 4.2

Vertical cross section of the flattened
cholesteric droplet surrounded by the | phase
between two glass plates.
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V) -
s = nK22q/V

where n is a small number ~1 and V is a characteristic voltage
of the material. ldentifying it with the redox potential of the
mesogen V ~ 1 volt = 1/300 e.s.u. and using Ky ~ 1077 dyne we get

5 cgs units. However, we must note that the director

|vg/al ~3x 107
also couples to an external electric field through the dielectric
anisotropy. Since the field has to be applied along the helical
axis in the present experiment, we have chosen materials with
negative dielectric anisotropy to avoid change in the orientation
of the director due to this coupling. V& made a binary mixture
of ethoxy- phenyl-trans-butyl cyclohexyl carboxylate (EPBC) and
methoxy- phenyl~trans-pentyl cyclohexyl carboxylate (MPPC) in the
ratio of 18:82 weight % to get a room temperature nematic with
a dielectric anisotropy ~ -1. However the negative material can
exhibit electrohydrodynamic instabilities wunder the action of
a DC field beyond a threshold voltage (Helfrich 1969). We checked
that the material used by us did not exhibit such instabilities
up to about 8 volts. By dissolving a small percentage of Lixon,
we could get a nematic-isotropic two phase region at room tempera-
ture. The nematic drops had the bipolar configuration (Dubois-
Violette and Parodi 1969, Candau 1973) characteristic of a tangen-
tial boundary condition at the interface. In order to get choleste-
ric drops, we added suitable chiral compounds to the mixture.

The left-handed helical arrangement with a pitch ~5 ym (as measured

I8



using a fingerprint texture exhibited by a thin sample) was obtai-
ned by dissolving 5% by weight of cholesteryl chloride in the
sample (System 1). Similarly dissolving 10% by weight of methyl
butyl benzoyloxy heptyloxy cinnamate yielded a right handed helical
arrangement'with the same pitch (system II). The structural formulae
and transition temperatures of the compounds are given in Fig.
4.3. The handedness of “the helical arrangement weas determined
using a wedge-shaped sample of the chiralised material (without
Lixon). The relative movement of the dark brushes near the edge
of the wedge in relation to that of the analyser can then be used

to find the sense of the helix.

h.y  STRUCTURE OF THE CHOLESTERI C DRCP

Spherical cholesteric drops were obtained in thick cells
(=100 ym) when the liquid crystal sample was emulsified with gly-
cerine. These had the characteristic radial X line of strength
+2. Such a pattern was first studied by Robinson and Ward (1956).
Pryce and Frank have given a model (quoted by Robinson et al.
1958) to explain this configuration. If we consider the spherical
surface of the drop, the director orientation is described by
a family of circles passing through the singular point P (Fig.
4 . These are tangential to a line PQ passing through P. In
the next shell the tangent line P'Q' is such that it makes an
angle 6 with PQ. Every intersection of a circle on the first shell

with a corresponding circle on the second shell makes an angle 6.
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Figure 4.3

Structural formulae and transition temperatures of compounds used

in the experimental studies.



Figure 4.4

Family of circles constructed in accordance with Pryce and
Frank's model. (From Robinson et al. 1958)



Concentric spheres have a sequence of such families making an
angle n§ with the first, and the singular point moving out along
a radius gives rise to the x line. As the thickness of the cell
is reduced the drops get flattened and then it is clear from Fig.
4.5a that the x line extends only in the lateral curved region
of the drop. In thin cells with d =8 pm, cholesteric drops with
a lateral diameter of 20-50 um can be formed. These are highly
flattened versions of the spherical drops described earlier. The
director configuration is stretched such that the X line is now
confined to the. small lateral curved region, and has a length
~ d/2. The drops are surrounded by the isotropic phase on all
sides and since the director has tangential alignment at the inter-
face, the central r'flat' region of the drop has an essentially
planar texture with the helical axis perpendicular to the flat
surface. However, in each horizontal layer, the director has a
splay-bend distortion and we can see 4 dark brushes emanating
from the X line for suitable settings of the polariser and analyser
which are set at suitable angles to get the dark brushes (Fig.

4.5b)

4.5 EFFECT OF A DC ELECTRIC FIELD ON THE CHOLESTERIC DROPS

In the experiment flat cholesteric drops were formed in
cells with electrically conducting glass plates. (h application
of a DC electric field to the electrodes nothing happens as the

voltage is increased gradually from 0 to 2 volts. ‘At 2 volts
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Figure 4.5

Photograph of the cholesteric droplet showing
the X defect line in a nearly spherical drop
in a sample of thickness =150p}m(crossed pola-
risers X 1000). Note that the line defect

extends only in the curved region of the droplet.

A flat droplet of a left-handed cholesteric
when E=0. Analyser rotated by ~20° from the
crossed position in relation to the polariser.
The dark brushes emanate from the short X
line near the edge of the droplet and signify
a distorted director field in the cholesteric
planes (x 1000).

Photographs of the drop shown in 4.5pb at diffe-
rent times after the application of a voltage
to the cell. (c,g,e) correspond to +2V and
(d,f,h) to -2V.
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the dark brushes get curved such that all of them have the same
curvature, unlike in the field free case (Fig. 4.5b). This results
from a rearrangement in the director configuration and indicates
that the reorientation of the director is easier if it is far
away from the X line. Then the whole structure starts rotating
apparently without any further deformation of the director field
(Fig. 4.5c~4.5n). These rotating structures are indeed remini-
scent of the diagrams sketched by Lehmann (1900, see also Chandra-
sekhar 1977). The angular velocity can be measured by observing
the motion of the defect on the periphery of the drop. In order
to minimise the errors in measurement the time taken for 10 rota-
tions was noted and the average time required for one complete
rotation obtained. The defect at the periphery of the drop could
be clearly seen up to 3.5 volts and quite accurate measurements

were possible.

Detailed observations lead to the following results:

a) All the drops rotate in the same direction for a given sense
of the field. The left handed system has a clockwise rotation
when viewed along the field direction, and the right handed
system has an anticlockwise rotation when viewed along the
field direction. When the voltage is reversed, the curvature
of the dark brushes and the sense of rotation of the struc-

ture reverse.



b) The angular velocity does not depend on the radius of the
drop, which shows that there is a rotation of the structure
rather than that of the rigid body of the drop. It increases
linearly with applied voltage up to = 3.5 volts (Fig. 4.6)
beyond which the structure of the drop changes (see Figs.
4.7a & 4.7b) and the rotational velocity becomes a non-linear

function of the applied voltage.

c) Though the angular velocity is roughly similar in all drops,
some drops which touch either a glass plate or a dust parti-

cle rotate with a lower velocity.

d) The extrapolated angular velocity tends to zero for v=1.9
volts (see Fig. 4.6). The last point indicates that the
DC field is totally screened up to *1.9 volts and the redox

potential of at least one of the components in the mixture

is~1.9 volts.

For a defect free sample, the solution corresponding to

the Lehmann rotation is

a9 _ VE”
dt"y1

where VE is the electromechanical coefficient and E is the elect-~

ric field, Y, is the rotational viscosity coefficient and ¢ is

. > .
the azimuthal angle of n. However before we use the experimental

data to determine v e have to note that the line defect which

E’
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Plot of the rotational velocity of the structure as a function of
applied voltage. Different synbols correspond to different drops.
The slope of the straight Iine which corresponds to the drops with
the fastest angular velocity is used in the calculations in the
text. Between 3.5 volts and 5 volts there is a visible disturbance
in the structure of the drops and measurenents were not possible.
A 5 volts and above the drop again has a uniformtexture.
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Figure 4.7a.Photograph of cholesteric droplets of the
left handed syatem when E= -2 velts (x666). Analyser

rotated by ~20° from the crossed position in relation
to the polariser.

Figure 4.7b. Photograph < the same region of the sample
as in Fig. 4.7a, when a 7ieid E= -5 volts is applied.
(Hote that the struecturs within the droplet has changed.)



is confined to the periphery of the drop also rotates with the
structure. The deformation of the director field is extremely
large near the X line and the reorientation implied by the motion
of the defect requires considerable energy. On the other hand,
the coupling which drives the rotation of the director is confined
to the ‘'planart oriented flat part of the drop. The effective
friction coefficient ¢ (per unit length) for a slow motion of a
nematic line singularity with a core has been, estimated by Imura
and Okano (1973) and de Gennes (1976). They have shown that

cocsz,where s is the strength of the defect line. It is likely
that the x line of strength 2 would be coreless because of the
collapse of the director in the third dimension (de Gennes 1975).
It is easy to extend the formalism of Imura and Okano (1973) to

this case.

Consider a straight disclination of integral strength in
which the director has collapsed in the third dimension along
the disclination. Let the disclination which lies along the z-axis
move along the x-axis with a constant velocity u. The moving discli-
nation disturbs the equilibrium director field around it. The
direction of the director changes at each point with time and
a viscous torque due to the surrounding medium results. Assuming
that the motion of the disclination does not give rise to fluid
flow the entropy production associated with the reorientation

process is given by
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1§ oSSy, 4% dx dy (4.22)

This entropy production is observed as a friction on the moving
disclination. The effective friction coefficient ¢ for the motion

of the disclination can be obtained from TS = Zu.

The solution for the disclination isS given by ¢ = sa t+ c,

where a = tan-" (y/x) and for a director making an angle 6 with

the z-axis

T = [cosassing, sinassin®, cos6l
— P 5
e = [5_t (cos as Sine)]2+ [%(sinas sin 8)]
d 2

+ [—BE cos 0]
—_—
2 i 242 ,00,2 ac,2 ‘
n“ = sin“gs (5-,,(-) ) (é—E) (4.23)

Therefore

TS - y1ff[sin2632(g—%)2 + (%%)2|dx dy (4.24)

The solution for the tilt of the director around a defect with
the director field collapsed in the third dimension is8 = 2tan” ' (r/R)l S|

2 2, 2

where r= = x“+y~ and R is the range over which the 'collapse'

has occurred (Meyer 1973). For a defect moving very slowly along

the x-axis with veloeity u,
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a = tan-"' (y/x - ut)
6 = 2t'ar1’1[[ (X-utF){2 + y2]1/2]':s ' (L.25)
i.e.,
tand - [(X'UUZ“YEJS/Z (4.26)
R2

From eqgns. (4.25) and (4.26) we have

s _ uy (4.27)
at [(x-ut)® + y°]
and
ag_ _ 2us(x - ut) I (4.28)
ot T T ;s 2, ,271-8/2 2 2s
Re°[(x = ut)= +y°] [1+,{(x-ut) LA
2
R
Equation (4.24) now becomes
. [4[(x-ut)2+y2]s sZu?y? 1
=y ] z
1 R2S [(x-ut)2+ y2P [1 (x -ut)2+Y2}_SJ
R2s
2.2 2 +
By<s<(x - ut) 1 }
. ' dx dy
- 2
R<S [(x—ut)2+y2]2 s [1 . {L(x—ut)z + y2}s]
: 25 ‘
Y11&52U2 [(x-ut)2 + Y2 15-1
= ——-———-—J dx dy (4.29)
RZS

 [(x-ut)? + y238
1+

R2s



[f uis very small

R
. uY152u2 ) (F2)S_1
$ - —b j _ e
R2s 55 2 2mr dr
[1 +{P—]]
0 R2s
2.2
_ 87TY1s u RZs
RZS 4s
Therefore
: 2
TS = 2TTY1$u (4.30)

The friction coefficient ¢ is then a linear function of |[s| and

isgiven by 2wy, |s].

4.6 ESTIMATION OF THE ELECTROVECHANI CAL COUPLI NG COEFFI CI ENT

V¢ now make use of the entropy production due to the motion
of the disclination in the energy rate balance equation of a chole-

steric drop with its structure undergoing a ‘'Lehmann rotation’,

2d 2. dd2 L2 dé
2y, sl u™5 +mridy () mrodvg B (4.31)

where the defect is assumed to have a length =d/2, r is the radius

of the drop and u:r‘%ﬂ) is the linear velocity of the defect.

o

Therefore

dé . d¢ _
vilsl g6+ Y1 a¢ = VgE

since s = 2,



doy
37, (82) = v.E

or

E
da¢ _ VET
el 3Y1 (4.32)

in the presence of a line defect rotating with the structure.
a6 VB

In the absence of a line defect we recover the equation &Y
1

The cholesteric drops that we have studied do not have the ideal
defect free planar configuration. The presence of the X line defect
and the associated deformation of the director field helps in

visualising the rotation of the structure.

We have used egn (4.32) in our calculations of the electro-
mechanical coupling coefficient. Using the slope of the linear
part of the d¢/dt vs. V curve, corresponding to the drops with
the fastest angular velocity and Y1:O.7 poise which is the value
for a typical room temperature nematic (see for e.g., de Gennes

1975) we obtain a value of |V_| = 0.28 cgs units.

gl

The sign of the coupling coefficient can be determined by
noting the sense of rotation of the structure in the drops with
respect to the applied field direction. In the system with a left
handed helix there was an anticlockwise rotation when viewed in
a direction opposite to the field. d¢/dt is thus positive, attri-

buting a positive sign to VE' Further as the system has a pitch
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5

~5 um, vp/qa has a negative sign and is about —2x10" cgs units.

4.7  CONCLUSI ON

We have devised a simple technique to reproduce the Lehmann
rotation experiment under the action of an external DC electric
field. We have checked that the phenomenon satisfies all the requi-
red symmetry properties, viz., the rotational velocity linearly

>
depends on E and v the coupling coefficient .changes sign with

o
that of q. The cholesteric drops that we have studied do not have
the ideal defect free planar configuration assumed in deriving
the theoretical results, but the presence of the line defect and
the associated deformation of the director field actually helps
in visualising the rotation of the structure. ‘We have allowed
for the entropy production involved in the motion of the defect
line in an approximate manner and this permits us to estimate
the coupling coefficient Vg In the system studied v
negative sign equal to —2x10"5

E/q has a

cgs units whose magnitude is simi-

lar to that of the estimate made by dimensional arguments.
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