A Study of Circumstellar Silicon Monoxide Masers

A Thesis
submitted for the Degree of Doctor of Philosophy
in the Faculty of Science

By

Nimesh A. Patel

Department of Physics
Indian Institute of Science
Bangalore 560012, India
December 1990
To my parents

Kalavati and Amritlal
“... in the end, in the end, I f...”

—R. D. F.
Declaration

I hereby declare that the work presented in this thesis is entirely original, and has been carried out by me at the Raman Research Institute under the auspices of the Department of Physics, Indian Institute of Science. I further declare that this has not formed the basis for the award of any degree, diploma, membership, associateship or similar title of any University or Institution.

Nimesh A. Patel
December 10, 1990

Department of Physics
Indian Institute of Science
Bangalore 560012
India
Acknowledgements

There are a lot people I wish to thank but I would not like to make a compromise. I am deeply indebted to Prof V. Radhakrishnan for introducing me to the methods of scientific research, for teaching me radio astronomy and for his patience with my ignorance. His splendid navigational skills have always helped me avoid pitfalls of hasty conclusions during the course of my work. His sharpness of observation and simplicity of thought towards solving any problem, have set a standard for me.

I would not have been able to bring the thesis in this form without the guidance and friendship of Dr Chandrakant Shukre. He has always shown a keen interest in detailed discussions regarding interpretations of our observations. I am grateful to him for insisting on checking every idea of ours with an objective thoroughness. He has also spent an enormous effort in improving this thesis in exposition as well as scientific content. Above all, it was great fun working with him.

I am very grateful to Prof N. V. G. Sarma for his guidance in every aspect concerning the 10.4M Telescope operations. His 'keep at it' attitude and experience has been helpful in solving many problems we encountered during the observations. I thank him also for critically reading this thesis and correcting several errors.

At every stage of my work, discussions with Dr Rajaram Nityananda have been a great help towards my thesis, and a great deal of personal education. I am particularly grateful to him, Dr G. Srinivasan, Dr Chanda Jog and Dr Arnab Rai Choudhri for their continuing efforts towards the Joint Astronomy Program which has provided me and so many of my friends an opportunity to pursue scientific research.

I have also learned a lot from discussions with Dr Dipankar Bhattacharya and Dr Avinash Deshpande.

The observations reported in this thesis represent a joint effort of several people whose selfless attitude and enthusiasm has deeply impressed me, and created an atmosphere where I have felt completely at home. I am extremely grateful to Joseph Anthony not only for his expert help in dealing with back-end problems, but also for his enthusiasm in helping me select the Mira variables for SiO observations. Working with him was like being on a good trek. To Sukumar, for his superb contributions to the telescope software along with P. G. A. and I have spent many hours aligning the receiver and his patience and green fingers have been extremely helpful. To Nandakumar, for his efficient and extensive help during the centering and levelling measurements of the primary, and for his advise and expert workmanship on all mechanical matters. I am grateful to Selvamani for implementing and maintaining the beam-switching system, the synchronous detector and the inclinometers, and for his magic-touch which always brought alive the equipments whenever they malfunctioned during observations. I am grateful to Paul for his expert and smiling help at the workshop;
to Manohar and Ateequla for maintaining the telescope's heavier hardware. I am grateful to Jayaprakash for his assistance in encoder-diagnostics during 1987-1988, to Johnson for maintaining all the computing hardware with personal care and concern for all things relevant to the efficient running of the telescope. To G. Rengerajan and Dr D. K. Ravindra for their tremendous involvement in the development and maintainance of the acousto-optical spectrometers, and the M68000 based data-acquisition system. I am grateful to Smiles Mescherhanas for his efforts in designing and implementing the quasi-optical components at the telescope and for several interesting discussions on spherical trigonometry problems. To K. Chandrasekhara for the maintainance and trouble-shooting of the telescope's control-system, even at odd hours. To Chanthrasekharan for maintaining the clock and the frequency synthesizer interface. I thank the electricians, Damodaran and Sridhar for not letting us down whenever the K.E.B tried to, with their frequent power-fails.

I am grateful to T. K. Sridharan and B. Ramesh for their help in pointing calibration during the 1990 season.

I am extremely grateful to all the telescope operators: Barnidharan, Rarneshkumar, Chitra, Narayanan and Ramachandran for efficiently and enthusiastically carrying out the observations and also for taking keen interest in learning things about the telescope as well as astronomy. To L. P. Usha for help in managing the data-base of all observations. I am grateful to Rajasekhar for helping me with the laser-printer even after office hours.

At the library, I have received a lot of help from Ratnakar, Girija, Shobha, Alina, Vrinda and Geetha. Special thanks to Geetha for helping me with the literature survey on astronomical masers. I am very grateful to Hanumappa for undertaking the painstaking task of making xerox copies with a lot of care and attention, not only of this thesis, but of several published articles relevant to my study.

I am grateful to Krishnamaraju for helping me with correspondence, particularly those related to the official formalities at the Physics Dept, IISc.

I am very grateful to Moksha not only for a lot of help with correspondence, but also for organizing several bicycle trips, for sharing her lunch with me, and for always encouraging me during moments of despair.

At IISc, life would have been quite miserable without my dear friends— Mayank, Sridhar, Yashodhan and Subhash. They have been patient with my musical atrocities while being liberal with their own. Apart from this noise, we have shared each other's fears and excitement of research, and also some moments of joy. At IISc, I am also very grateful to the staff of "A" mess for consistently serving excellent food.

Finally, I am deeply grateful to my parents, brother and sister, and to Sonal, for their love, patience and support.
Contents

List of Tables iii
List of Figures iv
Abstract viii

Chapter 1: Introduction and Overview
1.1 Introduction ... 1
1.2 SiO Molecular Parameters 5
1.3 Mira variables: A Brief Description 8
1.4 Observational Characteristics of SiO maser Emission 12
 References .. 20

Chapter 2: Pointing and Gain Calibration of the 10.4m Telescope
2.1 A Brief Description of the Telescope System 23
2.2 Beam Switching .. 30
2.3 Pointing Correction 36
2.4 Measurements of Aperture Efficiency 46
2.5 Measurement of Beam Efficiency 50
 References .. 61

Chapter 3: Calibration Errors
3.1 Causes of Error in Gain Calibration 62
3.2 Check runs on Orion 64
3.3 Jupiter Scans ... 74
3.4 Check runs on R Cas 84
 References .. 89

Chapter 4: Observations
4.1 Method of Observation 90
4.2 Selection of Sources 92
List of Tables

1.1 Astronomical Masers .. 3
1.2 SiO molecular parameters .. 7
1.3 Mira variable description .. 8
2.1 Spectrometers ... 24
2.2 System Temperatures ... 27
2.3 Beam Switching Modes .. 33
3.1 Orion spectra ... 66
3.2 Aperture efficiency measurements 77
4.1 Mirror-Chopper Codes .. 91
4.2 Catalogue of observed Sources 99
4.3 Corrections to the observed fluxes 104
4.4 Results of observations ... 109
5.1 Distances to Mira variables using various methods 118
5.2 Distances and luminosities 136
6.1 Effective temperatures and spectral-types 144
6.2 Non-detections later than M6 149
7.1 Non-detections later than M6, with other parameters 165
7.2 Pump rates ... 197
7.3 Maser luminosity and optical depth of dust 201
List of Figures

1.1 Energy-levels of SiO ... 6
1.2 Schematic H-R diagram for Mira variables 13
1.3 Schematic diagram of the atmosphere of a Mira variable 14
1.4 Agreement between CO velocity and SiO (v-0) velocity 16
1.5 SiO maser velocity vs. stellar velocity 16
2.1 Schematic of the 10.4M Telescope Optics 25
2.2 Ray diagram for the beam-switching system 25
2.3 Block diagram of the receiver system 26
2.4 Atmosphere's optical depth as a function of air mass 28
2.5 Cancellation of sky-variation on switching 29
2.6 Virtual image of the receiver due to tertiary 34
2.7 Beam switching mechanism 34
2.8 Beam-switched antenna response and method to obtain pointing corrections ... 39
2.9 Pointing errors due to elevation axis tilt 39
2.10 Pointing errors due to collimation error 40
2.11 Pointing errors due to azimuth axis tilt 40
2.12 Residual pointing errors on using a model (el. vs az. offsets) 47
2.13 Azimuth residual offsets as a function of elevation 47
2.14 Elevation residual offsets as a function of elevation 49
2.15 Gaussian main-beam and a planet's disc 49
2.16 Beam-switched scans on Jupiter with fitted curves 51
2.18 Elevation scan on Jupiter 52
2.17 Decrease in aperture efficiency due to surface errors 52
2.19 Elevation scan on Sun. to obtain beam-efficiency 54
2.20 Half-power points giving the diameter of Sun 54
2.21 Error pattern entering the disc of the Sun 56
2.22 Main-lobe entering the disc of the Sun 56
2.23 Case 1 for calculating the overlap area (when error disc is comparable to Sun's disc) 58
2.24 Case 2 for calculating the overlap area (when error disc is smaller than Sun's disc) .. 58

3.1 SiO maser emission from Orion 66
3.2 Variation of antenna temperature from Orion 69
3.3 Variation of velocity (Orion) 70
3.4 Variation of line-width (Orion) 71
3.5 Variation of Integrated flux (Orion) 72
3.6 Lack of correlation between the peak values of two features (Orion) 73
3.7 Variation of ratio of peaks (Orion) 73
3.8 Integrated flux from Orion in different years, as a function of elevation .. 75
3.9 Same as above. as a function of time (IST) 75
3.10 Same as above. as a function of Polarization parallactic angle . 77
3.11 Aperture efficiency as a function of elevation during 1988 78
3.12 Aperture efficiency as a function of time (IST) (1988) 80
3.13 Elevation of Jupiter as a function of time 80
3.14 Same as 3.11, for 1989 ... 81
3.15 Same as 3.12, for 1989 ... 81
3.16 Same as 3.13, for 1989 ... 82
3.17 Same as 3.11, for 1990 ... 82
3.18 Same as 3.12, for 1990 ... 83
3.19 Same as 3.13, for 1990 ... 83
3.20 Aperture efficiency as a function of elevation (1990) 85
3.21 Variation of Integrated flux and antenna temperature of R Cas 85
3.22 Antenna temperature as a function of polarization parallactic angle (R Cas) .. 87
3.23 Variation of the ratio of antenna temperature of the two features in R Cas’ profile ... 87
3.24 Same as 3.23 as a function of polarization parallactic angle ... 88
3.25 Lack of correlation between the peak values of the two features (R Cas) .. 88
4.1 Subtraction of two beam-switched spectra to remove baseline ripple 93
4.2 Histogram of pulsational periods for the observed sources 95
4.3 Histogram of mean spectral-type for the observed sources 95
4.4 Histogram of maximum spectral-type for the observed sources 96
4.6 Fitting of a gaussian to an observed line-profile 96
4.5 SiO maser detection from T Cnc 97
5.1 Summary of methods to obtain the distances to Mira variables 116
5.2 Comparison of visual and IR distances with 'calibrator' distances 132
5.3 Comparison of visual distance with IR distance 132
5.4 Checking for correlation between distance and amplitude 134
5.5 Same as 5.4 for mean spectral-type 134
5.6 Same as 5.4 for period 135
5.7 Same as 5.4 for bolometric magnitude 135
6.1 Obtaining effective temperature from spectral-type 146
6.2 H–R diagram for the masing and non-masing Mira variables 146
6.3 SiO maser flux and luminosity as a function of distance 148
6.4 SiO maser luminosity and the mean spectral-type 150
6.5 Same as 6.4, for spectral-type at maximum light 151
6.6 Same as 6.4, for spectral-type corrected for pulsational-phase 152
6.7 Same as 6.4, for effective temperature 153
6.8 Same as 6.5, for effective temperature 154
6.9 Same as 6.6, for effective temperature 155
6.10 Histogram of pulsational phases of the non-detections 156
6.11 Correlation of maser luminosity with bolometric magnitude 157
6.12 Relation between the maser luminosity and amplitude of pulsation 159
6.13 Anticorrelation between the ratio of maser to thermal SiO flux as a function of amplitude 159
6.15 Same as 6.13, for IR amplitude 161
6.14 Lack of correlation between intrinsic properties 162
7.1 Dependence of SiO abundance on effective temperature 169
7.2 Amplitude as a function of wavelength for a varying black-body 169
7.3 Checking for correlation of maser luminosity with amplitude of change in temperature .. 170
7.4 Correlation between the expansion velocity and the amplitude ... 170
7.5 Variation of spatial location of masing spots in R Cas, over a period of 7 years (VLBI) ... 173
7.6 Variation of SiO, visual and IR fluxes and temperature ... 177
7.7 Light-curves of Mira variables at different wavelengths .. 182
7.8 Constant phase for wavelengths > 1μ ... 183
7.9 Long term variations in Orion .. 186
7.10 Short term time/polarization variations in R Leo ... 186
7.11 Differences in polarization of the two features in R Leo ... 188
7.12 Long term velocity variation in R Leo ... 188
7.13 A dynamic model atmosphere of a Mira variable ... 194
7.14 Relative contribution of IR from the star and dust shell ... 200
7.15 Summary .. 304
A Study of Circumstellar Silicon Monoxide Masers

Abstract

Maser emission from circumstellar matter around Mira variables is a well known phenomenon but not yet completely understood. This thesis presents an observational study of about 170 Mira variables, which are pulsating red-giants. Observations were carried out at the frequency of 86.2 GHz which corresponds to the v=1, J=2—1 transition in SiO. The aim was to study the dependence of the maser phenomenon on the intrinsic properties of the Mira variables like — spectral-type, luminosity, evolutionary stage, amplitude of pulsation and infrared spectrum.

The outline of the thesis is as follows.

- Beginning with a historical introduction to the subject of observations of molecules at millimeter wavelengths, Chapter 1 lists some physical parameters of the SiO molecule. The properties of Mira variables are then summarized. Finally, we review the characteristics of SiO maser emission as obtained from the available observations.

- Since the observations reported in this thesis are the first ones made using the Raman Research Institute 10.4 m millimeter-wave telescope, its instrumental characteristics and pointing and gain calibration, some aspects of which are peculiar to this telescope, are presented in detail, in Chapter 2. In the following Chapter, the performance of the telescope is evaluated by observing some standard sources, and the errors in the measurement of absolute fluxes are estimated.
Chapter 4 presents the observations of the Mira variables. The method of observations is described. Tables of results and spectral-lines are given. Among the seven new detections, a surprising result is that of T Cnc, which is a unique carbon star, in showing the SiO maser emission.

To know the relation between the maser phenomenon and any intrinsic property of the Mira variable, one must convert the observed maser flux from a source into luminosity, for which one needs to know the distance to the source. In chapter 5, we review first the known methods for determining distances to the Mira variables. Distances are calculated from a comparison of the apparent infra-red magnitude at 2.2 microns, and the absolute magnitude obtained from a period-luminosity relation. The observed fluxes are then converted to luminosities, after correcting for all telescope losses.

Chapter 6 presents the results which can be summarized as follows.

1. Not all Mira variables show the SiO maser emission. The masing M-giant Mira variables are restricted in the range of mean spectral-types M6—M10.

2. The maser luminosity is also found to be correlated with the bolometric magnitude.

3. In the H-R diagram, it is found that the masing Mira variables are restricted in a region described by the limits: $M_{bol} \leq -4.8$ and $\log T_{eff} \leq 3.48$. This can be interpreted as implying a lower limit of $\sim 300R_\odot$ to the radius of a masing star.

4. There is an indication of an anti-correlation between the SiO photon-
luminosity and the amplitude of pulsation in the visual magnitude.

- In Chapter 7 we discuss these results and suggest some interpretations. The cut-off in the maser luminosity below M6 may be due to a lack of SiO abundance in these stars. The decrease in maser luminosity for stars having large pulsational amplitudes may be due to a shorter coherence length as suggested by a correlation between the expansion velocity of circumstellar matter with the amplitude of pulsation. The correlation of maser luminosity with bolometric magnitude suggests a radiative pump mechanism. We show that the radiative pump mechanism is consistent with several other observations, as well as with a theoretical model atmosphere of a typical Mira variable. Some strong masers for which the radiative pump had failed to produce the observed maser-power, we suggest an additional source of pump photons to be the circumstellar dust shell. This is suggested by the observations of optically thick dust shells around these stars.