C H A P T E R V

DIELECTRIC STUDIES ON MATERIALS EXHIBITING SMECTIC A-SMECTIC A TRANSITIONS

5.1 INTRODUCTION

It is now well known that materials with strongly polar cyano or nitro end groups exhibit the reentrant nematic phase as well as smectic A polymorphism.¹⁻⁴ The first smectic A-smectic A (A-A) transition was observed by Sigaud et al.⁵ Since then a number of experimental studies^{4,6-9} have been conducted which have led to the observation of the following types of A phases, viz., monolayer (A₁) phase, the bilayer (A₂) phase, the partially bilayer (A_d) phase, the antiphase (\widetilde{A}), the crenellated phase (A_{cre}) and the incommensurate (A_{ic}) phase. These different A phases have been unambiguously characterised on the basis of Xray diffraction patterns exhibited by monodomain samples (Fig.5.1).

It is seen that for the polar A_I there is a diffraction spot (shown as full circle in Fig.5.1) at a wavevector corresponding to $2q_0 = 2\pi/k$, where k is the length of the molecule. In addition to this monolayer periodicity generally a diffuse scattering centred around wavevector q'_0 (= $2\pi/k'$, where k < k' < 2R) is also seen. The characteristic pattern of the A_2 phase is the existence of two condensed spots at q_0 and $2q_0$ corresponding to 2k and R respec-

Figure 5.1

Xray diffraction pattern in different smectic A phases. The full circle denotes a condensed spot while the dashed one indicates a diffuse spot (see text). tively. The partially bilayer A_d phase exhibits two condensed reflections at q'_0 and $2q'_0$ and in addition a diffuse monolayer modulation $(2q_0)$. It may also be mentioned that the intensity of second harmonic in relation to the intensity of the main reflection is much smaller in the case of A_d phase than in A_2 phase. A phase has a condensed spot at $2q_0$ in addition to two diffraction spots which are split cut of the Z axis in a direction perpendicular to it. These spots are symmetrically situated about the q_0 position. A_{cre} shows an essentially a similar diffraction pattern except that it has different symmetry. Further it shows an additional condensed spot at q_0 , q'_0 and $2q_0$.

Before discussing the results of our dielectric studies, we shall briefly summarise the state of art concerning the order of the transition between two polymorphic A phases. The smectic A polymorphism has been successfully explained in terms of a phenomenological model introduced by Prost.¹⁰⁻¹³ The nature of the A_d phase and its relation to A_1 and A_2 phases was addressed to theoretically by Barois et al.¹⁴ Since A_d and A_2 phases have the same macroscopic symmetry, there cannot be a second order transition between these phases. Barois et al. have predicted that under certain conditions, the first order A_d -A₂ transition can terminate at a critical point (CP) of the gas-liquid type. Indeed such a CP

was recently observed experimentally in the T-X diagram of a binary system.¹⁵

Essentially the same arguments can be applied to $A_d^{-A_1}$ transition also. The situation concerning the $A_d^{-A_1}$ transition has been recently addressed theoretically by Prost and Toner¹⁶ using the dislocation-loop approach. According to them the $A_d^{-A_1}$ transition boundary can, as in the case of $A_d^{-A_2}$ transition, terminate at a critical point of gas-liquid type. However when the effect of fluctuations is considered, the theory predicts a nematic island existing at the terminus of the $A_d^{-A_1}$ transition boundary. So far, experimentally,¹⁷ the nematic island has indeed been seen but not the $A_d^{-A_1}$ critical point.

In the case of $A_1 - A_2$ transition, the transition can be first order or even second order¹⁸ because of the exact doubling of lattice periodicity.¹⁹ High resolution experimental study¹⁸ on 4-nhexylphenyl-4'-cyanobenzoyloxy benzoate (DB6CN)/terephthal-bis-4-nbutylaniline (TBBA) systems has shown that this is in fact the case, there being a tricritical point for the $A_1 - A_2$ transition. [Since it is now well known that the smectic A antiphase (\tilde{A}) and crenellated smectic A (A_{cre}) phase are biaxial, we have not considered the transitions involving these phases.]

Hence, it is clear that there can be a phase transition bet-

ween $A_d & A_1$ and $A_d & A_2$ phases or there can be a continuous evolution from A_d to A_1 or A_d to A_2 . Also, there can be a first or second order phase transition between the A_1 and A_2 phases. A variety of interesting possibilities thus exist concerning A-A transitions. It is of interest to see how the dielectric properties behave near these different kinds of A-A transition. The results of our studies undertaken with this in view are presented in the foilowing sections.

5.2 THE A_d - A_2 TRANSITION

Before discussing the results of our dielectric studies we shall briefly discuss here the results of Xray studies reported on materials which are supposed to exhibit the $A_d - A_2$ transitions. The first report on the existence of the $A_d - A_2$ transition in a single component system was by Hardouin et al.²⁰ They observed that the Xray diffraction pattern in the high temperature A phase was characterised by condensed spot at $q'=2\pi/R'$, where $\ell < \ell' < 2\ell$, ℓ being the molecular length. The low temperature A phase showed two different periodicities at wavevectors $2\pi/\ell$ and $2\pi/2\ell$. The former was characterised as partially bilayer smectic A phase (A_d) and latter as the bilayer phase (A_2). However a detailed study of the layer spacing variation across the $A_d - A_2$ transition in this material was not carried out. Recently Hardouin et al.²¹ reported Xray studies on the eleventh and twelfth members of homologous series 4-n-alkoxyphenyl-4'-(4"-cyanobenzyloxy)benzoate (nOPCBOB). In another study²² they reported results of Xray and differential scanning calorimetric (DSC) studies of the n=7 to 13 members of 4-nalkoxyphenyl-4'-(4"-cyanobenzoyloxy)benzoate (DBnOCN). The structural formulae of these materials are shown in Fig. 5.2. Apparently they observed from the Xray studies a jump in the layer spacing at the $A_d - A_2$ transition for DB7OCN. But for higher homologs no such jump in the layer spacing was observed.Exactly similar results were seen for nOPCBOB, there being a jump in layer spacing for 110PCBOB, while no such jump was seen for 120PCBOB. Hardouin et al. concluded from these results the existence of a critical or tricritical behaviour of the $A_d - A_2$ transition in the temperaturechain length phase diagram.

However more recently Krishna Prasad et al.²³ carried out high resolution Xray studies on DB7OCN and 11OPCBOB. Their experiments were conducted with a very high precision, care being taken to collect data at small intervals of temperature (-100 mK) in the neighbourhood of the expected A_d - A_2 transition. These studies clearly showed that there was **no jump** in the layer spacing at the expected A_d - A_2 transition of either of these materials. It is therefore now clear that neither DB7OCN nor 110PCBOB exhibits an A_d - A_2 transition, but instead the A_d phase **evolves continuously** into A_2 phase. The most convincing evidence concerning the exis-

DBnOCN Series

4 - n - alkoxyphenyl - 4'- (4" - cyanobenzoyloxy) benzoate(n = 7 to 13)

nOPCBOB Series

4 - n - alkoxyphenyl - 4' - (4'' - cyanobenzyloxy) benzoate(n = 11 and 12)

Figure 5.2

Structural formulae of the DBnOCN and nOPCBOB series.

tence of $A_d - A_2$ transition comes from the Xray results of Somasekhara²⁴ on the binary system of 4-n-pentylphenyl-4'-cyanobenzoyloxy benzoate (DB5CN) and 4-n-nonyloxybiphenyl-4'-cyanobenzoate (9OBCB). These studies showed a jump in layer spacing of ~ 2.6 Å at the $A_d - A_2$ transition.

Thus it is now clear that materials are known to exhibit a continuous evolution of A_2 from A_d as well as a direct first order $A_d - A_2$ transition. We have chosen for our study **one system** of each kind.

The materials studied are (i) DB7CN which shows continuous evolution from A_d to A_2 according to Xray results of Raja²⁵ and (ii) a 65.6 mol % DB5CN/9OBCB which exhibits the A_d - A_2 transition.²⁴ The structural formulae and the sequences and temperatures of transitions are given in Fig.5.3 and Table 5.1 respectively.

5.3 STATIC STUDIES NEAR A-A TRANSITIONS

5.3.1 The A_d - A_2 Transition: (a) DB7CN

We shall first discuss the results on DB7CN. The variations of the static dielectric constants in the nematic, smectic A_d and A_2 phases are shown in Fig.5.4 along with the dielectric anisotropy $\Delta \varepsilon$ It is seen that in the nematic phase, ε_{\parallel} as well as ε_{\perp} show a slight decrease with decrease of temperature. At the nematicsmectic A_d (N- A_d) transition, ε_{\parallel} shows a steep decrease which

1.
$$C_nH_{2n+1} \longrightarrow 00C \longrightarrow 00C \longrightarrow CN$$

4-n-Alkylphenyl-4-cyanobenzoyloxybenzoate (DBnCN) n=5 & 7

4-n-nonyloxybiphenyl-4^I cyanobenzoate (90BCB)

terephthal-bis-4-n-butylaniline (TBBA)

4-Alkoyloxyphenyl-4'-nitrobenzoyloxy benzoate (DBnONO₂) n=8 & 10

Figure 5.3

Structural formulae and the abbreviations used for the compounds studied.

TABLE 5.1

The sequences and the temperatures of transitions of the systems studied (Transition temperatures in °C)

Ι	DB7CN
	$I \xrightarrow{234.8} N \xrightarrow{169.4} A_d \xrightarrow{162} A_2$
II	65.6 mol % mixture of DB5CN/9OBCB
	$I \xrightarrow{235} N \xrightarrow{153.6} A_d \xrightarrow{146.6} A_2$
III	10.5 mol % mixture of TBBA/DB5CN
	$I \xrightarrow{253.5} N \xrightarrow{128.3} A_1 \xrightarrow{126.9} A_2$
IV	43 mol % mixture of DB8ONO ₂ /DB10ONO ₂
	$I \xrightarrow{224} N \xrightarrow{193.7} A_d \xrightarrow{123.7} A_1 \xrightarrow{119.8} \widetilde{C} \xrightarrow{100} A_2 \xrightarrow{98} C_2$

Figure 5.4

Temperature variation of $\epsilon_{||}$, $\epsilon_{|}$ and of $\Delta\epsilon$ of DB7CN in the nematic, smectic ${\rm A}_d$ and ${\rm A}_2$ phases.

(Note: The dashed arrow mark corresponds to the expected ${\tt A}_d {\tt -A}_2$ transition from DSC runs.)

continues right through the A_2 phase. ε_1 on the other hand shows a small increase on going from the A_d to the A_2 phase. It gets more or less saturated at lower temperatures in the A₂ phase. The steep decrease in ε_{\parallel} which begins at the N-A_d transition is due to an increase in the cancellation of longitudinal component of dipole moments caused by a head-to-head formation of dipoles. It is interesting that the strong decrease in ε_{\parallel} occurs in the temperature range in which the layer spacing shows a large expansion on approaching the A₂ phase (see Fig. 5.5). These studies therefore suggest that the structural changes that accompany the formation of the dipolar pairs leading ultimately to the A_2 phase are correlated to the dielectric behaviour. It is also interesting to note that $\boldsymbol{\varepsilon}_{\parallel}$ does not show any abrupt change at a temperature at which an $A_d - A_2$ transition is expected from DSC studies. This can be correlated with the fact that no jump in layer spacing was seen at the expected A_d-A₂ transition. It is also seen from the Fig.5.4 that $\Delta \varepsilon$ decreases strongly with decrease in temperature and reaches a value of almost zero at the lowest temperature in A_2 phase indicating thereby a perfect head-to-head arrangement of dipoles in the A₂ phase at the lowest temperatures. In fact a similar decrease in $\Delta \varepsilon$ has been observed in other systems. Njeumo et al.²⁶ have reported the variation of dielectric constants in A_d and A_2 phases of four materials, viz., DB7OCN, DB10OCN, 110PCBOB and 4-n-

Figure 5.5

Temperature variation of the layer spacing in the $\rm A_d$ and $\rm A_2$ phases of DB7CN.

[Note: The dashed arrow mark corresponds to the expected $A_d - A_2$ transition from DSC runs (Ref. 25)].

decyloxyphenyl-4'-(2-chlorobenzoyloxy)-4"-nitrobenzoate (DB10OCINO₂). All these materials were initially considered to exhibit an A_d - A_2 transition. However, as mentioned earlier accurate Xray investigations²³ have now established that in two of these materials, viz., DB7OCN and 11OPCBOB, there is a continuous evolution of A_2 from A_d as the temperature is decreased. No such Xray data Is available for the other two compounds. I is therefore not certain if an A_d - A_2 transition really exists in these cases.

Njeumo et al.²⁶ found essentially similar behaviour for both 11OPCBOB and DB100CINO₂. ϵ_{\parallel} showed a steep decrease with decrease in temperature, the decrease starting from N-A_d transition itself. The decreasing trend continues into the A₂ phase. On the other hand ϵ_{\perp} shows continuously increasing trend throughout A_d and A₂ phases. This increase in ϵ_{\perp} with decrease of temperature could be due to either an increase in hindrance to the molecular reorientation about the long axis or due to an increase in the longitudinal component of transverse dipole moment. It is not possible to conclude which of these is the contributing factor. These variations lead to a change in sign of $\Delta \epsilon$ — this change seems to occur close to A_d-A₂ transition in both the cases. The results of Njeumo et al. for DB7OCN andDB10OCN are somewhat similar to our results on DB7CN. In this case, $A \epsilon$ decreases with decrease in temperature, but does not reverse sign at the A_d-A₂ transition. Instead it seems to show a continuous decrease approaching zero only on extrapolating to very low temperatures in the A_2 phase. There have also been some other instances wherein a somewhat large expansion of the layer spacing is accompanied by a reversal in the sign of the dielectric anisotropy.^{27,28} Thus on the whole it appears that in materials wherein A_2 continuously evolves from A_d , there is generally a drastic reduction of ε_{\parallel} as the A_2 phase is approached accompanied by an increase of ε_{\perp} (the rate of increase of ε_{\perp} seems to depend strongly on the material). Consequently, in some cases $\Delta \varepsilon$ goes to zero at the lowest temperatures in the A_2 transition temperature.

65.6 mol % DB5CN/9OBCB mixture

We shall now discuss the results on the mixture which clearly shows the $A_d - A_2$ transition. Xray data of Somasekhara²⁴ is produced in Fig.5.6. It is clear that there is a pronounced jump in layer spacing by about 2.6 Å at the $A_d - A_2$ transition. Fig.5.7 shows the temperature variation of the static dielectric constants of the mixture. These data have been collected using more precise data acquisition system mentioned in Chapter II. A computer (HP86B) was used to vary the temperature at a constant rate (1-2°C/hr) as well as to collect the data of ϵ_{\parallel} and ϵ_{\perp} at temperature interval of about 3 or 4 mK. Since the interest in this material was essen-

Temperature variation of layer spacing corresponding to (001) reflexions in the A_d and A_2 phases of 65.6 mol % DB5CN/90BCB mixture. The region between the vertical lines shows the coexistence of A_d and A_2 phases (Ref. 24).

Figure 5.7

Temperature variation of dielectric constants ε_{\parallel} , ε_{\perp} and of AE of 65.6 mol % DB5CN/90BCB mixture

tially to see the behaviour of dielectric constants close to $A_d - A_2$ transition, we have collected data only in the immediate vicinity of the $A_d - A_2$ transition covering a total temperature range of about 8°C. The feature of the result is a sharp drop observed at the $A_d - A_2$ transition. The value of $\varepsilon \parallel$ jumps from about - 5.6-5.1 at the transition. This is also accompanied by an increase of $\varepsilon \parallel$ though the increase is of less magnitude than the decrease of $\varepsilon \parallel$ ($\varepsilon \perp$ changes from -3.7 to -3.6). These studies, which constitute the first investigation of a material exhibiting a true $A_d - A_2$ transition, show that there is a very sharp reduction in $\Delta \varepsilon$ at the $A_d - A_2$ transition.

5.3.2. The $A_1 - A_2$ Transition

The system chosen for the study of A_1-A_2 transition is 10.5 mol % mixture of TBBA in DB5CN. This mixture has a narrow range of A_1 phase intervening between N and A_2 phases. The structural formulae of the materials are shown in Fig.5.3 while the sequences and the temperatures of transitions are given in Table 5.1.

The variation of the static dielectric constants ε_{\parallel} , ε_{\perp} and also of $\Delta \varepsilon$ in the N, A_1 and A_2 phases are shown in the Fig.5.8. ε_{\parallel} is more or less independent of temperature in N phase while ε_{\parallel} shows a very small but linear increase with the decrease in

Figure 5.8

The temperature variation of dielectric constants ε_{\parallel} , ε_{\perp} and of $\Delta \varepsilon$ in the nematic, smectic A_{\perp} and A_{2} phases of 10.5 mol % TBBA/DB5CN mixture.

temperature. These trends in ε_{\parallel} and ε_{\parallel} continue right through the N-A1 transition there being no change at all to signify the existence of the N-A₁ transition. On the formation of the A_2 phase, $\boldsymbol{\varepsilon}_{||}$ shows a steep decrease whilst $\boldsymbol{\varepsilon}_{|}$ seems to be unaffected through $A_1 - A_2$ transition also. $\varepsilon \parallel$ has a value of -4.1 in the A_1 phase near the transition and becomes -3.8 at the lowest temperature in A₂ phase. This variation which is quite pronounced indicating that there is again an increase in the dipole-dipole correlation in the longitudinal direction due to the formation of dipolar pairs which constitute bilayer structure. To this extent, the behaviour of ε_{\parallel} near $A_1 - A_2$ transition is similar to that seen at $A_d - A_2$ transition. The absence of any change in $\boldsymbol{\varepsilon}_{||}$ on going from N to \boldsymbol{A}_{I} phase (the decrease in ε_{\parallel} commences at $A_1 - A_2$ transition) indicates that there is no dipolar change on going from N to monolayer A_1 phase. This supports the general idea concerning the polar A₁ phase wherein the dipolar distribution within the layer is, statistically speaking, random, i.e., there is no net correlation between dipoles of two layers. Due to the pronounced decrease in ε_{\parallel} , $\Delta \varepsilon$ again shows continuous decrease in A_2 phase.

The only static dielectric studies reported earlier on $A_1 - A_2$ transition appears to be due to Benguigui et al.²⁹ They have investigated the variation of ε_{\parallel} and ε_{\perp} in 18 mol % mixture of TBBA in DB6CN. They also did not see any pronounced change in ε_{\parallel} at the A_1-A_2 transition while ε_{\parallel} showed a somewhat pronounced decrease. They concluded from this that there should be a strong antiferroelectric ordering of dipoles in the A_2 phase. Our results are therefore essentially in agreement with those of Benguigui et al.

It may be pointed out that Xray studies of Chan et al.¹⁸ showed clearly that the A1-A2 transition in the TBBA/DB6CN mixture is first order when the range of A_1 phase is very small but second order when this range is somewhat larger. However no detailed Xray data exist on the TBBA/DB5CN system. It may be recalled here that the first observation of A1-A2 transition was in fact in TBBA/DB5CN mixtures. These investigations have been restricted to calorimetric studies. There was also an Xray $study^{30}$ of this binary system but this was essentially carried out to characterise Xray diffraction patterns of the A₁ and A₂ phases. No detailed studies of the Xray correlation length were carried out and consequently it was not possible to see the range of concentration over which A1-A2 transition is first order in the case of TBBA/ DB5CN mixture. Density studies²⁵ conducted on 10.5 mol % TBBA/ DB5CN mixture (whose dielectric studies have been described earlier) indicated the absence of any clear jump at A_1 - A_2 transition. However these studies were not precise enough to say unequivocally whether this transition is second order or not. It would be of considerable interest to study the dielectric properties of systems exhibiting a tricritical point for the A_1-A_2 transition.

5.3.3. The $A_d - A_1$ Transition

The system chosen to study the A_d - A_1 transition is the binary mixture of 43 mol % of 4-octyloxyphenyl-4'-nitrobenzoyloxybenzoate (DB8ONO₂) in 4-decyloxyphenyl-4'-nitrobenzoyloxy benzoate (DBIOONO₂) whose structural formulae as well as the sequences and temperatures of transitions are given in Fig.5.3 and Table 5.1 respectively. It may be recalled here that the ninth member of the same homologous series (DB9ONO₂) is the well known triply reentrant mesogen. The binary system studied exhibits N, A_d , A_1 , \tilde{C} , A_2 and C_2 phases. However we have studied the dielectric properties only in the A_d and A_1 phases – this is because of the high A_d -N transition temperature which made measurement in the N phase very difficult and the misalignment of the sample which occurs on going over to the \tilde{C} phase (this precludes any measurements below the A_1 phase).

The variation of static dielectric constants in the vicinity of the A_d - A_1 transition is given in the Fig.5.9. Several interesting features are seen; ε_{\parallel} and as well as ε_{\perp} show a very small increase with decrease in temperature in A_d phase. At the A_d - A_I transition, ε_{\parallel} shows a small decrease (~ 0.07) while ε_{\perp} shows a

more pronounced and sharp increase (-0.17). Compared to the $A_d^{-A_2}$ or $A_1^{-A_2}$ transition the decrease in ε_{\parallel} seen on going to A_1 phase from A_d phase is much less pronounced. The sharp increase in ε_{\perp} at $A_d^{-A_1}$ transition is indicative of an increase in hindrance to the molecular reorientation about the long axis on the formation of A_1 phase. The value of ε_{\perp} in A_1 phase seems to saturate at lower temperatures. Due to the sudden change in ε_{\perp} and ε_{\parallel} , $\Delta\varepsilon$ shows a pronounced drop at the $A_d^{-A_1}$ transition. These studies which constitute the first measurements on static dielectric constants near an $A_d^{-A_1}$ transition, show that although there is an increase in antiferroelectric near neighbour ordering on going from A_d to A_1 phase, this increase is not as pronounced as that seen on going to the A_2 phase (wherein there is head-to-head formation of dipolar pairs). Therefore it can be deduced that compared to A_2 phase, the dipolar heads are more disordered in the A_1 phase.

5.4 **DISPERSION STUDIES NEAR A-A TRANSITIONS**

5.4.1. The $A_d - A_2$ transition

a <u>DB7CN</u>

We shall first present the results of our dispersion measurements in the N, A_d and A_2 phases of DB7CN in which as already discussed, there is a continuous evolution of A_2 from A_d phase. The typical loss curves for a few temperatures in the N, A_d and

 A_2 phases are shown in Fig.5.10. The striking feature of these curves is the drastic reduction of the maxima of loss curves on going to the A_2 phase. This reflects the behaviour of $\varepsilon \parallel$ which also shows a steep decrease at the A_d - A_2 transition (see Fig.5.4). The representative Cole-Cole plots in the different phases of DB7CN are reproduced in Figs. 5.1 1 and 5.12. The loss curves as well as the Cole-Cole plots show that there is only a single relaxation process in all the three phases. The frequency of relaxation f_R values obtained from loss curves and Cole-Cole semicircles are given in Table 5.2. The plot of f_R vs. 1/T is shown in Fig.5.13 which also shows the activation energy W in the N, A_d and A_2 phases. It is clear that $W_N > W_{A_2} > W_{A_d}$. The extremely narrow range of A_d phase makes the value of W_{A_d} slightly uncertain.

b <u>65.6 Mol % DB5CN/90BCB Mixture</u>

We shall now present the results on 65.6 mol % DB5CN/ 9OBCB system which exhibits clear $A_d - A_2$ transition. The typical loss curves are given in Fig.5.14 while the Cole-Cole plots in Fig. 5.15. The f_R data obtained from loss curves and Cole-Cole plots are given in Table 5.3. The Arrhenius plot (Fig.5.16) shows that $W_{A_2} > W_N > W_{A_d}$. This result is in fact the first study on a material exhibiting the $A_d - A_2$ transition.

Thus on the whole it can be surmised that W_{A_2} is always

Figure 5.11

Representative Cole-Cole plots of DB7CN in the (a) nemtic (\circ 183.8°C, \square 176.4°C) and (b) smectic A_d (\times 167.2°C, A 164.6°C) phases.

Figure 5.12

Representative Cole-Cole plots in the smectic $\rm A_2$ phase ($\rm o$ 161.3°C, A 154.2°C) of DB7CN.

TABLE 5.2

Frequency of relaxation f_R as a function of temperature in the nematic, smectic A_d and A_2 phases of DB7CN

Frequency of relaxation (in MHz)						
5.INO.	(°C)	From loss curve	From Cole-Cole	R R		
<u>Nematic</u>						
1	185.15	3.45	3.436	3.443		
2	181.85	2.9	2.8	2.85		
3	179.1	2.6	2.537	2.569		
4	178.2	2.45	2.37	2.41		
5	177.0	2.4	2.341	2.371		
6	175.55	2.25	2.183	2.217		
7	174.4	2.1	2.097	2.099		
8	172.8	2.0	2.007	2.004		
9	171.5	1.925	1.885	1.905		
10	170.8	1.9	1.86	1.88		
	Smectic A _d					
11	168.5	1.85	1.796	1.823		
12	167.5	1.825	1.772	1.799		
13	165.95	1.8	1.732	1.766		
14	163.45	1.725	1.66	1.693		
		Smectio	c A ₂			
15	160.9	1.625	1.58	1.603		
16	159.25	1.525	1.497	1.511		
17	157.15	1.425	1.387	1.406		
18	155.2	1.275	1.258	1.267		
19	153.25	1.175	1.134	1.155		
20	152.2	1.15	1.113	1.132		
21	151.5	1.1	1.099	1.1		
22	149.1	0.970	0.982	0.976		
23	146.85	0.900	0.887	0.894		
24	144.75	0.820	0.802	0.811		
25	142.85	0.740	0.744	0.742		

 f_R vs. 1/T plot of DB7CN. The activation energies are also given. (Note: The dashed arrow mark corresponds to the expected $A_d - A_2$ transition from DSC runs.)

 Δ ^{148°C}) and smectio A₂ (\Box 45°C, \diamond 133.8°C) ph ses of 65 6 mol % D35CN/903CB mixture.

Figure 5.15

The representative Cole-Sole plots of 65.6 mol % DB5CN/90BCB mixture in (a) nematic (• 163.7°C, A 155°C), (b) smectic A (× 151.63°C, \Box 148°C) and (c) smectic A (• 145°C, A 133.8°C) phases.

TABLE 5.3

Frequency of relaxation f_R as a function of temperature in the nematic, smectic A_d and A₂ phases of 65.6 mol % DB5CN/90BCB mixture

Frequency of relaxation (in MHz)						
5.INO.	(°C)	From loss curve	From Cole-Cole	Mean I _R		
	Nomotic					
1	163.67	1.6	1.59	1.595		
2	162.44	1.5	1.5	1.5		
3	160.89	1.425	1.425	1.425		
4	159.08	1.325	1.309	1.317		
5	157.376	1.225	1.224	1.225		
6	156.02	1.165	1.17	1.168		
7	154.97	1.1	1.095	1.098		
8	154.18	1.075	1.08	1.078		
		Smectic	Α.			
			<u> </u>			
9	153.3	1.055	1.041	1.048		
10	152.69	1.025	1.017	1.021		
11	151.63	1	0.995	0.998		
12	150.71	0.980	0.972	0.976		
13	149.23	0.930	0.921	0.926		
14	148.03	0.890	0.882	0.886		
15	147.54	0.880	0.873	0.877		
16	147.03	0.865	0.858	0.862		
		Srnect i c	A 2			
17	146.48	0.860	0.857	0.859		
18	146.02	0.855	0.851	0.853		
19	145.45	0.840	0.830	0.835		
20	145.03	0.830	0.825	0.828		
21	144.03	0.790	0.783	0.787		
22	143.11	0.755	0.744	0.750		
23	141.53	0.690	0.690	0.690		
24	140.34	0.650	0.642	0.646		
25	137.27	0.550	0.544	0.547		
26	133.78	0.455	0.447	0.451		

 ${\bf f}_R$ vs. 1/T plot in the nematic, smectic ${\rm A}_d$ and ${\rm A}_2$ phases of 65.6 mol % DB5CN/90BCB mixture

very much greater than W_{A_d} showing thereby that the reorientation process of the short axis of the molecule is much more hindered in the A_2 phase than in the A_d phase. Essentially a similar result has been by Njeumo et al.²⁶ for several systems exhibiting the A_d and A_2 phases. Considering that at the A_d - A_2 transition of the binary system DB5CN/9OBCB, there is a pronounced jump in layer spacing it was thought worthwhile to see if there is a jump in f_R , at the transition. With this in view, we collected the data at close intervals near A_d - A_2 transition. However no jump was seen at the transition (Fig.5.16). The higher W in A_2 phase compared to that in A_d phase is perhaps an indication of better packing of molecules is bilayer A_2 phase. A study of the comparison of in-plane sturcture factors of the A_d and A_2 phases has not been carried out so far and would be of considerable interest.

5.4.2 The A₁-A₂ Transition

The representative loss curves and Cole-Cole plots for the 10.5 mol % TBBA/DB5CN system are shown in Figs.5.17-5.19 while the data on f_R obtained from loss curves and Cole-Cole plots is given in Table 5.4. The plot of f_R vs. 1/T (Fig.5.20) shows some unusual features. W_N is found to be the same as in the A_1 phase (0.66 eV) while W in the A_2 phase is found to be much smaller. Secondly, there is a region of temperature in the A_2 phase (close to the A_1 -A₂ transition) in which the data do not fall on the Arrhe-

Figure 5.18

Representative Cole-Cole plots in the (a) nematic (136.1°C) an3 (b) smectic A₁ phase (127.8°C) of 10.5 mol % TBBA/DB5CN mixture.

RSepresentative Cole-Cole plots in the smectic A $_2$ phase (O 125.9°C, Δ 116.6°C) of 10.5 mol % TBBA/DB5CN mixture.

TABLE 5.4

Frequency of relaxation f_R as a function of temperature in the nematic, smectic A_1 and A_2 phases of 10.5 mol % TBBA/DB5CN mixture

S.No.	Temperature (°C)	Frequency of rela From loss curve	xation (in MHz) From Cole-Cole	hlean f _R
		<u>Nematic</u>		
1 2 3 4 5 6 7 8 9 10	139.4 137.5 136.8 135.15 133.5 131.75 130.25 129.4 128.7 128.5	0.341 0.315 0.3 0.280 0.260 0.240 0.223 0.215 0.208 0.205	0.331 0.310 0.299 0.280 0.260 0.238 0.223 0.216 0.206 0.204	0.336 0.313 0.28 0.260 0.239 0.223 0.216 0.207 0.205
		Smectic A	1	
11 12 13 14 15 16	128.25 128.05 127.8 127.5 127.25 126.95	0.203 0.200 0.198 0.193 0.192 0.192	0.201 0.200 0.199 0.196 0.196 0.195	0.202 0.2 0.199 0.194 0.194 0.193
		Srnectic A	<u>2</u>	
17 18 19 20 21 22 23 24 25 26	126.75 126.4 125.4 125.0 123.1 122.5 118.9 118.65 116.6 112.8	0.193 0.198 0.203 0.205 0.205 0.200 0.175 0.172 0.163 0.138	0.194 0.197 0.204 0.205 0.204 0.198 0.177 0.174 0.161 0.137	0.194 0.198 0.204 0.205 0.205 0.199 0.176 0.173 0.162 0.138

Figure 5.20. f_R vs. 1/T plot in the nematic, smectic A $_1$ and A $_2$ phases of 10.5 mol % TBBA/DB5CN mixture

nius plot at all. Thirdly, the extrapolated linear portion of the plot in A_2 phase to A_1 - A_2 transition gives a jump in f_R at A_1 - A_2 transition, the relaxation frequency in A_2 phase **being higher** than that of A_1 phase. [The erratic behaviour of the data immediately on the formation of A_2 phase as well as the higher value of f_R in the beginning of A_2 phase are essentially similar to the behaviour seen near the N- A_2 transition in DB5CN (see Chapter III, Section 3.7.1b)]. This result would imply that the head-to-head pairs of dipoles which lead to the bilayer structure of A_2 phase somehow make the reorientation process of a pair of molecules (presumably a mechanism of relaxation in the A_1 phase.

It is relevant to recall here the only other dielectric study on the system exhibiting the A_1 - A_2 transition- the data of Benguigui and Hardouin²⁹ on the TBBA/DB6CN system (refer to §5.3.2).Although this study does not give any data in the A_1 phase, it appears to show two relaxations in the A_2 phase. As discussed in chapter III, §3.7.1b none of the subsequent studies on the A_2 phase have shown a second relaxation in any of the materials and therefore the result of Benguigui and Hardouin is perhaps attributable to the difference in chemical nature of the constituent molecules in the mixture. The second dispersion predicted theoretically by Benguigui³¹ in A_2 phase is therefore has nor been proved experimentally so far.

5.4.3. $A_d - A_l$ Transition

Finally we shall present our dispersion studies near the $A_d - A_1$ transition in 43 mol % DB8ONO₂/DB10ONO₂ system. The plots of $\varepsilon_{\parallel}^{"}$ versus frequency, Cole-Cole diagrams and the Arrhenius plot are given in Figs. 5.21-5.24 respectively while the data on f_R are given in Table 5.5. W in the A_1 phase is found to be substantially larger than that in the A_d phase. The only previously reported study on the $A_d - A_I$ transition is due to Benguigui et al.³² on the binary mixture of 4-octyloxybenzoyloxy-4'-cyanostilbene (T_o) in 4-pentyloxybenzoyloxy-4'-nitrostilbene (T_5NO_2). 0.75 T₈/T₅NO₂ system was shown to exhibit the continuous evolution of A₁ from A_d phase on the basis of Xray study. The dispersion study of Benguigui et al. seems to show the existence of two relaxations, the strength of one decreasing at the expense of another on going from A_d to A_1 phase. Benguigui et al. concluded from their results that modulation can possess the A phase with only one possible layer two short-range local orders, the strength of one of the orders becoming less on going to another type of A phase. However, our results on the 43 mol % DB8ONO₂/DB10ONO₂ system show that there is only a single relaxation process at all temperatures in both A_1 and A_d phases. It is interesting to note that the constituent molecules of our mixture belong to the same homologous series while the compounds studied by Benguigui et al. have different chemical structures - one of the constituent materials has a cyano

Figure 5.22

Representative Cole-Cole plots in the smectic A_d phase [(a) 134.45°C, (b) 131.35°C and (c) 124.45°C] of 43 mol % DB80N0₂/DB100N0₂ mixture.

Figure 5.23

Representative Cole-Cole plots in the smectic A phase ' [(a) 123.4°C, (b) 122.35°C and (c) 120°C] of 43 mol % DB80N0₂/DB100N0₂ mixture.

Figure 5.24

Relaxation frequency f_R vs. 1/T plot in the smectic A_d and A_1 phases of 43 mol % DB80N0₂/DB100N0₂ mixture.

TABLE 5.5

S.No.	Temperature (°C)	Frequency of relaxation (in MHz) From loss curve From Cole-Cole		Mean f _R
		Srnect i c	Ad	
1	134.45	0.880	0.870	0.875
2	133.35	0.805	0.806	0.806
3	131.35	0.730	0.731	0.731
4	129.45	0.650	0.649	0.650
5	128.65	0.620	0.622	0.621
6	127.3	0.560	0.578	0.579
7	126.25	0.540	0.542	0.541
8	125.95	0.535	0.537	0.536
9	125.5	0.520	0.518	0.519
10	124.9	0.500	0.505	0.503
11	124.45	0.488	0.489	0.489
12	123.95	0.475	0.473	0.474
		Smectic	Ai	
13	123.45	0.460	0.459	0.460
14	122.95	0.435	0.434	0.435
15	122.35	0.403	0.408	0.406
16	121.75	0.380	0.377	0.379
17	121.25	0.365	0.362	0.364
18	120.7	0.345	0.341	0.343
19	120.0	0.323	0.325	0.324

Frequency of relaxation f_R as a function of temperature in the smectic A_d and A_1 phases of 43 mol % DBSONO₂/DB100NO₂ mixture

(CN) end group while the other one has a nitro (NO_2) end group. It is therefore conceivable that the two dispersions seen by them could be due to these different types of molecular species.

5.5 MICROSCOPIC THEORY OF A-A TRANSITION

A theoretical description of the different types of A phases has been given by Longa and de Jeu³³ by considering the different types of intermolecular interactions. In this section, we shall briefly describe the salient features of their theory.

In their approach, Longa and de Jeu considered the influence of breaking the up-down symmetry of mesogenic molecules on the occurrence of smectic A phases. The constituent molecules are represented by spherocylinders with one point polarizability and one dipole moment, situated on the axis but away from the geometrical center. From estimates of the various types of interactions (dispersion, dipole-induced-dipole, and diple-dipole) it is found that the occurrence of a ferroelectric A_f phase consisting of polarized layers is very unlikely. For strongly localized end dipoles an antiferroelectric A_2 phase is favoured, consisting of double layers. A natural consequence of this theoretical description is that once classical (symmetrical) monolayer A_I phase and polar bilayer A_2 phases are established, an antiferroelectric A_1 phase is also found with a single-layer structure periodicity. (Longa and de Jeu therefore clearly distinguished polar A_1 from non-polar A_1 .) However the theory does not make any predictions concerning the dielectric behaviour of the different kinds of A phases.

In summary the studies described in this chapter show that there are interesting differences in the dielectric behaviour near the different types of A-A transitions. A detailed quantitative correlation of these differences with the structural differences as seen by Xray diffraction experiments has not been carried out so far. Such a study would be of considerable interest.

REFERENCES

- P.E.Cladis, Phys. Rev. Lett., 35, 48 (1975); P.E.Cladis, R.K.
 Bogardus, W.B.Daniels, G.N.Taylor, Phys. Rev. Lett., 39, 720 (1977)
- 2 N.V.Madhusudana, B.K.Sadashiva and K.P.L.Moodithaya, Curr. Sci., 48, 613 (1979)
- 3 F.Hardouin, G.Sigaud, M.F.Achard and H. Gasparoux, Phys. Lett., A71, 347 (1979)
- 4 F.Hardouin, A.M.Levelut, M.F.Achard and G.Sigaud, J. Chim. Phys., 80, 53 (1983)
- 5 G.Sigaud, F.Hardouin, M.F.Achard and H.Gasparoux, J. de Phys., 40, C3-356 (1979)
- 6 G.Sigaud, F.Hardouin, M.F.Achard and A.M.Levelut, J. de Phys., 42, 107 (1981)
- 7 A.M.Levelut, J. de Phys. Lett., 45, L-603 (1984)
- 8 G.Sigaud, F.Hardouin, M.F.Achard, Phys. Rev., A31, 547 (1985)
- 9 B.R.Ratna, R.Shashidhar and V.N.Raja, Phys. Rev. Lett., 55, 1476 (1985)
- 10 J. Prost and P. Barois, J.Chim.Phys., 80, 65 (1983)
- 11 J. Prost. J. de Phys., 40, 581 (1979)

J.Prost, in "Liquid Crystals of One- and Two-Dimensional Order", Eds. W.Helfrich and G.Heppke (Springer-Verlag, Berlin, 1980), p. 125

J.Prost. in "Symmetries and Broken Symmetries in Condensed Matter Physics", Ed. N.Boccara (IDSET, Paris, 1981), p.159 P. Barois, J. Prost and T.C.Lubensky, J. de Phys., 46, 391 (1985) R.Shashidhar, B.R.Ratna, S.Krishna Prasad, S.Somasekhara and G.Heppke, Phys. Rev. Lett., 59, 1209 (1987)

- 16 J. Prost and J. Toner (Private Communication).
- 17 P.E.Cladis and H.R.Brand, Phys. Rev. Lett., 52, 2261 (1984)
- K.K.Chan, P.S.Pershan, L.B.Sorensen and F.Hardouin, Phys. Rev. Lett., 54, 1694 (1985); Phys. Rev., A34, 1420 (1986)
 L.D.Landau and E.M.Lifshitz, Statistical Physics, Part I (Pergamon, New York, 1982), p.468

F.Hardouin, A.M.Levelut and G.Sigaud, J. de Phys., 42, 71 (1981)

F.Hardouin, M.F.Achard, C.Destrade and Nguyen Huu Tinh, J. de Phys., 45, 765 (1984)

F.Hardouin, M.F.Achard, Nguyen Huu Tinh and G.Sigaud, J. de Phys. Lett., 46, L-123 (1985)

- S.Krishna Prasad, R.Shashidhar, B.R.Ratna, B.K.Sadashiva,
 G. Heppke and S.Pfeiffer, Liquid Crystals, 2, 111 (1987)
- 24 S. Somasekhara, "Experimental Studies of Phase Diagrams of Liquid Crystals", Ph. D. Thesis, University of Mysore (1988)
- 25 V.N.Raja, "High Pressure and Xray Studies of Liquid Crystals",Ph. D. Thesis, University of Mysore (1988)
- 26 N.R.Njeumo, J.P.Parneix, C.Legrand, N.H.Tinh and C.Destrade,J. de Phys., 47, 903 (1986)
- N.V.Madhusudana, B.S.Srikanta and M.Subramanya Raj Urs,
 Mol. Cryst. Liq. Cryst. Lett., 82, 25 (1982)
- N.V.Madhusudana, B.S.Srikanta and M.Subramanya Raj Urs,
 Mol. Cryst. Liq. Cryst., 97, 49 (1983)
- 29 L.Benguigui and F.Hardouin, J. de Phys. Lett., 42, L-381 (1981)
- 30 F.Hardouin, A.M.Levelut, J.J.Benattar, G.Sigaud, Solid State Commun., 33, 337 (1980)
- 31 L. Benguigui, J. de Phys., 44, 273 (1983)
- 32 L. Benguigui, F. Hardouin and G.Sigaud, Mol.Cryst.Liq.Cryst.,
 116, 35 (1984)
- 33 L.Longa and W.H.de Jeu, Phys. Rev., A28, 2380 (1983).