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INTRODUCTION

THE earliest attempt to formulate the theory of elasticity on the basis of the
discrete atomic structure of matter was due to Cauchy who, assuming central
interactions between pairs of atoms of a homogeneous body, deduced his
well-known relations among the elastic constants. Recent developments,
however, have shown that a central force-scheme is inadequate to describe
correctly the interatomic interactions in solids and that the Cauchy
relations! are violated by many crystals. The later theory of Green has
the merit of resulting directly in all the 21 independent elastic constants
which have since then been found to be innately essential for an adequate
description of the elastic behaviour of crystals in general.

There are two principal methods for determining the values of the elastic
constants experimentally for crystals. The first is the static procedure in
which the solid is subjected to external stress and the resulting deformation
is measured. When the deformation is homogeneous, the elastic constants
can be calculated from the stress-strain relations implied in Hooke's law.
In the second one, which is the dynamic method, the velocities of propaga-
tion of specific types of waves are observed and the elastic constants are
evaluated therefrom. It is essential in the latter procedure to restrict atten-
tion to waves of large wavelengths and low frequencies. For, waves inside
crystals are dispersive and are of a much more general character than the
ordinary elastic waves. The validity? of the elasticity theory will thus break
down for stationary vibrations of high frequencies and it can be sustained
only over those regions of the frequency spectrum wherein the frequencies
of the waves vary inversely as their wavelengths. Conversely, as the long
waves of the three acoustic branches satisfy this criterion, the elastic
behaviour of crystals could be expected to be determined by these low fre-
quency vibrations involving mass movements of their lattice cells. This
enables one to write quantitative identities between the elastic constants
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and the force constants of the atomistic theory. In the process of com-
paring the two theories, however, it is essential beforechand to reduce the
mathematical framework of both the formulations to identical forms. Thus,
it is necessary to set up as many equations in lattice theory as in the con-
tinuum theory, with their variables possessing identical significance and
further to ensure that these two sets of equations are of the same form.
When this condition is complied with, the scope and physical implications of
both the formulations become identical and one can compare the two sets
of equations to derive relations between the parameters involved in them.

It was shown by Born® that the macroscopic elastic properties of crys-
tals could be deduced from an atomistic lattice theory in terms of a few
parameters which are the force constants of the potential energy expression
and the lattice constants. As this theory is based on the assumption of
central forces, the problem was reconsidered again by Begbie* and Born,*
using a general force scheme. By comparing the lattice equations of the
long acoustic waves with the elastic wave equations, they obtained expres-
sions for the elastic constants in terms of the force-constants. But, in spite
of the use of a general force-scheme, these expressions still continue to hold
good for central force systems only, as the validity of a symmetry relation
used by them could be realised only for central interactions among the atoms.
A second set of relations for the elastic constants were later given by Kun
Huang.? Again, his theory also restricts the generality of the force-scheme
by introducing new compatibility conditions among the force constants.
Since the validity of these relations can be realised strictly for central
force systems only, the results of Kun Huang also are not in general
reliable.

It is shown in this paper that it is possible to derive an expression for

-the strain-energy function characterising the deformation of the lattice, from
general dynamical considerations. This function is a quadratic in all the

nine strain components, unlike the classical theory in which the deformation

energy is a quadratic in the six strain components only. From the Lagrangian

obtained in this way, the variational equations describing the nature of waves

traversing the crystal can be written down and these are identical with the

“equations of Born and Begbie. But since these equations are not in the same
mathematical form as the wave-equations of the elasticity theory, it is clearly

not justifiable to identify these two sets of equations to obtain identities between

the constants involved in them. Expressions for the elastic constants can

nevertheless be derived by comparison, as the two strain energy functions

assume the same form for irrotational strains or for homogeneous deforma-

tions. It is shown that the numerical values of the elastic constants calculated
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from the expressions obtained in this way agree well with the experimental
values for the case of diamond, whereas significant deviations from the
experimental results arise from the relations derived by comparing directly

the elastic wave equations with the lattice wave-equations of Begbie and
Born. '

The paper is divided into two parts. In Part I, the static method of
finding the strain energy function for a general deformation is developed
and expressions for the elastic constants are given in terms of the force
constants. Part II deals with the propagation of acoustic waves inside
crystals. '

PArT I. THE STATIC METHOD
1. The Deformation energy

We choose the state in which all the atoms of the crystal (assumed to -
be very large compared to the dimensions of its unit cell, but still finite) are
at their lattice sites, as the zero configuration for the potential energy of the
lattice. The total potential energy of the crystal for small nuclear displace-
ments is then given by ,

V=3 X Kk qxrs Qype ¢))
ars ypo
where g.rs denotes the displacement of the atom (r,s) from its equilibrium
position. The equations of motion of the atoms of the cell (s) of the crystal
are given by

— My Gorg = %’ kube 9yps _ (2)
yPo

The force constants satisfy the following relations, which express the
nvariance conditipns of the potential energy under pure translations.

Skipr=0 (X, y=x,,2) 3)
po

With the belp of (3), we can rewrite (2) as
— My Gxrs= %‘ k0% (qyps — Qyrs) “
vpPo

The total force on the atom (7, s) in the x-direction is therefore a linear
sum of the forces due to the displacements of its neighbours, the force exerted
by the atom (p, o) on (7, s) being equal to X k%59 (qyp; — qyrs)- The force

vy
constant k¥#¢ denotes the force on (r,s) in the x-direction due to (p, &) per

xrs

unit relative displacement of these two atoms parallel to the y-direction
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The work done by (p, o) on (r, s) is given by
5 kese (Qypa - ers) 9xrs Sa

Similarly the work done by (7, s) on (p, 0) is given by
Z k22 (qyrs— Qyro) dxpo : _ (5b)

The sum of (5a) and (5b) gives twice the contribution of the atoms

(r, s) and (p, ©) to the total intrinsic energy of the crystal in a potential field

caused by the vibrations of the remaining atoms; it is equivalent to twice

the mutual potential energy V#¢ of this pair of atoms. Hence if A is the

volume of the unit cell, the energy of deformation (U) stored in the cell (s)
is given by

AU=} 3 3 Vi (6)

r Po
or
AANU= 3 3" {kvf9 (qypa—“]yrs) qerstk2hd (Qy’rs“‘Qypa) pra} (6 a)

ar ypo

the accent indicating that the term (r, s)=(p, 0) is omitted in the sum-
mation of the above term. _

If-
’ kefe = kg8 )]
then (6) can be rewritten as
—4AU= f,ﬁ kvbe (Qypa - ers) (q:L'pa — qzxrs) ®)

It can easily be verified that the sum of (6) for all values of the cell index
s is identical with the expression (1) for the total potential energy of the
crystal. The relation (7) will hold good for any atomic system under the
assumptions (@) that the total potential energy of the system can be expressed
as the sum of the mutual energies between pairs of atoms and (b) the mutual
energy between any two atoms can be expanded as a quadratic in their rela-
tive displacements. In this case, (7) will easily follow because of the com-
mutative property of the Taylor coefficients.

Now each lattice point of the crystal should be in equilibrium in the
deformed state also and hence the resultant force acting on any atom vanishes.
This leads to

2 k¥ dye=0 ©)

ypo

The first term in (6 a) now drops out in view of the relation (9). Also,

2 2 kS Qyrs dape= — 2 Z K3 Qers Qyrs
oy r :

ar vPo
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Hence, the deformation energy (U) of the cell (s) is given by
—4AU=Y Z'k”,ef Qxps Qypo ‘ (]0)

ar yYpo
II. The strain energy function

The displacement components gzrs, Gyrss gzrs of the atom (#, s) under
a general deformation are given by -

Grrs=Kxr + X Uzz Xrs §3))

where xpg, Jrs, Zrs are the co-ordinates of the atom (7, s) in the undeformed
state and Kp=(kyr, kyr, kzr) (r=1,2, ... p) are the inner displacements
of the p interpenetrating Bravais lattices. uzz .. 'etc., are the components
of the strain which is assumed to be linear, as the applied external stresses
to determine experimentally the elastic behaviour of a crystal generally lie
within its elastic limits.

Substituting (11) in (10), we get
—AAU=2X Z ke (kop + Zupz %po) (Kyo +Z tyg 5:,,,,) (12)

or yPo
or . .
. , _ o _
—2U=s5{ tkauy+ 2 Z [x%, 7] s i 13)
where
P = }7 yPo 3 .
{oph = a £ P
(5,09 =y 5 EM FroTpei and a9

’

l#’;g_—_ % (kuPc! + ktPO'

zrs yrs

The term involving the product of &y, ky, in (12) vanishes in view of
he relations (3).

The inner displacements can be eliminated from (13) and the deforma-
tion energy can be expressed as a function of the strain components only.
The equations determining them are obtained by substituting (11) in (9).
They are:

3 s kyp = — Sy (X 082 5,0) (15a)
uPo vy po
or
‘Z',‘ (@°st) ky=By (15)
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where
gy =3 k¥00
g

By denotes the quantity on the right-hand side of (154). By setting up a

correspondence between the number-pairs yp (y=x,y,z; p=12,....p)

and the numbers #' (' =1,2, ... 3p) wheret’=3(p —1D+y [s=3(@—-1)
+ x] we could reduce (15a) to the form (15).

The matrix (a%y) is now singular and is of rank (3p — 3). We shall
assume that the above equations are consistent and solvable. Then a
solution of (15) is given by

k=IB+ B’ (16 @)

where k is the column matrix {ky} and B’ denotes the solution of the homo-
geneous equations of (15). As only the relative inner displacements of the
p lattices are of physical significance, we can assume without loss of generality
that the inner displacement of one of the atoms (say k,) is zero. In this
case {B'}={0}.

Further, if we partition (a%) in the form (C1 g”) where C, is a matrix

containing (3p — 3) rows and columns, then? I' is the matrix (C1 0)

\

Hence, the inner displacements are given by

km,rz — g.gg’ux, v I'ﬂp kc;%;ar y'p"’" (16)
Substituting (16) in (13), we get
U= Fdyz, yj bz tyy (17)
&3 le
where | ‘
dzz, yi= — X%, y9] + (xX, yp) ‘ (18)
and
O | o : ”
Gx,99) =5 T X X X 1T §ps TG kil X0, (19)

o’p 10 Y’ P P10y

Both the bracket expressions are symmetric in the pairs x%, yy. The
symmetry (x%, yy) follows directly from the invariance conditions of the.
potential energy of the lattice under rigid rotations.®

The bracket expressions [%x, yy] and (%x, y7) are defined in the papers
of Born and Kun Huang in terms of relative displacement co-ordinates.
When the relation (7) is sausﬁed, one can easﬂy venfy that both the forms
are identical, .
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III. The ela;tic constants

If we write e,3= (43 + uzy) for X ==x and ey, =,y then the de-
formation energy obtained from the elasticity theory is a general quadratic
in the six strain components e,.,, ey, €z, €yz, €zx and ey,. Using Voigt’s
notation in which the indices (1, 2, 3, 4, 5, 6) replace respectively the symbols
(xx, yy, zz, yz, zx, xy), the energy density could be written in elther of these
two forms.®

U, =3 Y crseres

= X2 X Czxi,yfy €xZ Cyj (20)
z; Yy
where the summation in the second expression is over the six different pairs
given above for the indices xx. The elastic constants satisfy the following
symmetry relations

Cxi, y§ = CxZ, y = CZz, y¥ = Cyf, 2T @n

The expression (17) can be written in the form (20), if the coefficients dxz yz
also satisfy the symmetry conditions (21) (i.e.) if

dxz, y5 = dxz, iy = dzx, yj =dy7, x% (22)

The coefficient dyz, 3 is no doubt invariant under an interchange of the
pairs (xx) and (yp), but its value is definitely altered under any interchange
of either x and X or y and y. Further, any assumption of the symmetry
conditions (22) would introduce new relations among the force constants,
which will lead directly to a central force-scheme, thereby spoiling the gene-
rality of the force system with which we have started. Hence, when all the
nine strain components are linearly independent functions of x, y and z
as in the case of heterogeneous deformations, the deformation energy is a
general quadratic in all the nine strain components uyz(x, X=x, y,z) and
not in the six components exz....only.

For a homogeneous deformation, the strain components u,3z, etc., are
independent of the space co-ordinates x, y, z of any point and are constants
throughout the volume of the crystal. In this case, the strain can be ana-
lysed into a pure strain, followed by a rotation about an axis. By a suitable
choice of the co-ordinate axes, it is possible to make the rotational part of
the deformation vanish and the strain matrix will consequently become sym-
metric. The relations! u 3 =1uz, (x, X=X, y, z) are satisfied for all homo-
geneous deformations and irrotational strains. In both these cases, the
expression (17) reduces to the form of the strain energy function of the
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elasticity theory and one can therefore compare the coefficients of ez, eyy
in both these expressions to obtain relations between the elastic and force
constants of the crystal. The expressions for the elastic constants are there-
fore given by

Cxx, yi =% [dx.i-, Yy + d.i‘x, Yy + d.i‘x, Ty + dxi:, @y] (23)
IV. Symmetry '

The displacement components g, ¢y, g of a vector r=(x,y, z) under
any small deformation are given by

Ge= X uzz % or q=Ur (24)
where U is the matrix (u,z) of the strain components and x, y, z are the
components of r in the unstrained state.

Let the co-ordinate axes be changed to a new set of axes according to
the transformation law

r'=Sr 25
Then the deformation in the new frame of reference is represented by
q'=U0r" where U'=SU0S* - (26)

Let S now be a symmetry operation of the crystal transforming any
configuration of the crystal into another one observationally indistinguishable
from it. The potential energy should be covariant undeér all the operations
of the symmetry group of the crystal. Hence,

2U=3 2 d:ca‘c, yi Ux Uyy

oz Yy

’
=3 Xd iz, yy Waz Wyp

e vy

=X 3 3 3 dzz, yi Szi Sy Siz Sw Ui Uy 27)

ef yy 1§ &kl
where we write S=S-1,
From the above, it follows
2 =22 dxz, y7 {Sxi Sy Sjz §ly + Sxke Syi ~S'z.z- §jy} (28)
oF ¥y

These relations reduce the number of independent constants in (17)
considerably,
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PART 2. THE DyNaMIiC METHOD

1. The velocity of the long acoustic waves

Long waves associated with the three acoustic branches are propagated
without any damping or dispersion inside the crystal. It was shown in an
earlier paper® that the frequencies (say w,, w,, wj) corresponding to long
waves of these three branches tend to zero and that their wave and group

velocities become identical in the limit. But the expression for Z—Z’ for these

three roots given there as (— s"©/2s%%_)t is an error. We here derive
a cubic equation whose roots give the values of the limiting velocities of the
acoustic waves travelling in any direction of the crystal.

Differentiating the equation (10, I)
Ssizpt =0 | @)
=0

six times with respect to a, one obtains By Leibnitz’s theorem

23 (7) s D* @y =0 (30)
=0 8=0 .
where we write m=6. With the help of equation (1) of Appendix I the
above equation becomes

3p

223 () O35 ay, - (6p — 20), P2 =0 €y

t 8 =0

where (n),=n(n—1)... n—r+1) and®)yp,=0 if m > n.

Now $3p, S3p_1, S3p_g are equal to the sums of products of the roots of
(29) taken respectively 3p, (3p — 1), (3p — 2) times and therefore are zero
for a=0. By direct differentiation of these expressions, it can be verified
-that the first non-vanishing derivatives of these three coefficients for a=0
are 59 o, s, o and sj,_, o respectively, as the derivatives of lesser orders
of S3p, Sgpy, and S3p_, are expressible as sums of terms, each containing
at least one factor wy (k=1, 2, 3) or products and squares of them. Again,
as the terms in the left-hand side of (31) are continuous functions of the
variable ‘@, the limit for a=0 could be obtained by writing w;=0;
Sy 0 =00 =0,1,2....5); s§_, @ =03 =0, 1, 2,3)and s@_, 0 =0
for i=0, 1. In proceeding to the limit, we note that all terms excepting
those for which r=s=(6p —21) 3p — t=0, 1, 2, 3) on the LHS. of
(31) contain either powers of wy; or (n)y, With m > 7 or derivatives of ssp,
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Sapy and Szp_o with respect to a of order less than 6, 4 and 2 respectively.
Equating the sum of these four terms to zero, we obtain

720 ag y® + 360 a,y2 + 30 gy + a;=0 . (32)
where ‘
Ay=15,0; ay=5",12; az=s%_, @; az=s%m; and
_ (doy?
r=(@)-

If a=ea, then y denotes the square of the limiting group velocity of
the acoustic waves in the direction of the vector e. g, is independent of e
and is the same for all directions, but a,, @, and a, are clearly functions of
the vector e. The roots of (32) therefore give the three possible velocities
of sound waves of thermal origin travelling in the direction e of the crystal.

For the actual numerical evaluation of the coefficients of the various
powers of y in (32), we observe that the elements of the matrix® A= (ag)

can be expanded as a power series in @ as they involve only sine and cosine
. a® a as .
terms. Hence a,, a,, a5 are equal to the coefficients of 5P 41 and g in the

Maclaurin expansion of S3p_p, S3p_; and Sy, respectively.

II. Wave propagation in crystals

The equations determining the velocities and direction of vibration of
the elastic waves in terms of their direction of propagation can be obtained
from the variational equations derived from Hamilton’s principle. The total
kinetic energy of the body is given by

2T=[p (i + U+ i) dV (33)

and the work done by the external forces for a small displacement is
expressed by :

Wy =3 [p(T, du,)dV + X [ (Ty, duy) dS €5
Here T,, Ty, T, are the body forces per unit volume acting on the clexﬁent

dV and Tz, =(Tzx, Tzy Tz) (X =x, y, z) are the surface tractions
acting on the surface element dS. We shall assume that all the nine strain

u. - . ) C,
components uzz = %’:: (x, X =x, y,z) are linearly independent functions
[*8

of the space co-ordinates x, y, z and further take the relation (7) to be true.
The potential energy of deformation is given by (17) so that we have,
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5 [Vat =5 [di[Uav
to to

i1

=[ U‘g i‘lsuxi)dv}dt (35)

to
We have now from Hamilton's principle
3[(T—V)dt+ [ W.dt=0 (36)

The Euler variational equations can be set up in the usual way and these
are expressed by

2. .
P %fzx =pT, + %;x + DEagy_ 4 Tz -
U
_.PT;c + 2 b wux:’:) (x =x’ y, Z)
together with the equations
Txv =3 \—DH CoS (y, v) (38)
y Uxy

determining the state of motion at the surface of the body. A set of func-
tions (u,, uy, u,) satisfying the equations (37) and (38) represent the possible
components of vibration of the elements of the elastic body.

If we assume plane wave solutions for the above equations of the form

U, = A% elwt-a.r) (39)
then substitution of (39) in (37) leads to [for the case (Tx=T,=T, =0)]
pv2 AT = 2 X duz, yp ez e AY (40)

& Y

Writing A=(A", AY, A%) and Dg,= Z,‘dm vl €zey, We can rewrite

the above equations as (D — pv?) A=0. The matrix D= (D,,) is symme-
tric and hence its eigenvalues are real. If they are distinct, the corres-
ponding eigenvectors are mutually orthogonal. Hence the vibration
directions of the three wavefronts moving in any direction are mutually
perpendicular to each other, but they may be obliquely inclined to their
direction of propagation.

Equations (40) are the Begbie-Born equations for the long acoustic
waves of the crystal. Born and Begbie held the relations (22) to be true,
gven for a general force system and derived the expressions ¢pz, yj = dxz, vy
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for the elastic constants. Clearly, their contention is untenable, as the
Cauchy relations can be shown to be a direct consequence of the relations
(22) for crystals with a centre of symmetry. For such crystals, the round
brackets in (18) vanish® and so dyz, yj= — [xX, yp]. Inview of the inter-
changeability of x and y or X and y in the square brackets, we have now
from (22)

dxx, yy= dyz, 2y =zy, 2y, - -
and

da:x, yz= d«‘ﬂz, yx=dzx, xy

The Cauchy relations are now a matter for mere verification. Hence the
expressions of Begbie and Born for the elastic constants are not valid for a
general force-scheme and are true for central force systems only. A second
attempt to derive expressions for the elastic constants by a comparison of
(40) with the elastic wave equations was made of Kun Huang, but he could
do so only after the explicit introduction of certain additional conditions
like [xx, yy]l= [%x, yy], etc., which he interpreted as the conditions for the
vanishing of the initial stresses in an infinite lattice. That such additional
conditions had to be imposed is not surprising, for equations (40) involve 45
independent constants whereas the equations of the elasticity theory contain
only 21 constants. Further, the equations (40) are derived from a potential
function containing the rotational components of the strain also, while the
equations of the elasticity theory are derived from a potential involving the
six strain components only and hence these two cannot generally be reduced
to the same form. As mentioned earlier, any assumption of new relations—
other than those supplied by the invariance conditions of the potential energy
under translations and rigid rotations—has no .theoretical justification.
So, the expressions given by Kun Huang for the elastic constants are also
not reliable and correct.

The equations (40) fail to hold good for the case uyz = uzy (x, =x, y, 2).
In this case, the deformation energy is a function of the six strain components
only and the equations obtained by the variational method are identical with
the equations of the elasticity theory. The latter can always be used to find
the velocities of any disturbance generated inside the crystal, provided the
stresses produced by the wave-fronts are uniform throughout its volume and
their wavelengths are large compared to the dimensions of the unit cell.
As longitudinal waves are strictly irrotational, their velocities can be deduced
from the elastic wave equations only. The vibration directions and veloci-
ties of quasi-torsional waves, on the other hand, are determined by the
equations (40),
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III. The elastic constants of diamond -

The elastic constants and vibration spectrum of diamond has recently
been a subject of numerous investigations by various authors.® 11t We
here briefly sketch the application of the preceding sections to the evaluation
of the elastic constants of diamond. For the notation used and other details,
the reader is referred to the papers of Krishnamurti and Ramanathan.® 10

The symmetry operations which we use to reduce (17) to its simplest
form are:

(@) S,: a rotation by 2—371 about the line x=y=y_,

(b) S;: a reflection in the plane x=y.

(c) S;: a rotation by ; about a line parallel to the z-axis through the

point ‘Zi’ g, i—i) followed by another rotation through 5 about an axis

through the same point parallel to the x-axis.

The matrix U= (uy3) transforms under these three operations into
Uyy Uyz Uyg
(@ U,’=8,08,1= Upy Uzz Uy

Upy Uzz Uy '

(b) Uy =8,US; 1= Upy Upy Uz 41)
' Uzy Uz uzz)
/ Uyy Uyz —Uyz
(c) Uy =8;U8; 1= Upy Uzz —Ugy
~Uypy —Ugy um)

We have used in the above the matrix forms for S;, S, and S, given in
Smith’s paper.1!

By setting up a correspondence between the symbols (xx, yy, zz, yz,
zy, zx, xz, xy, yx) and the numbers (1, 2, 3, 4, 5,....9), we can con-
veniently write the constants dxz, 4y in the form dj; with two indices only’
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From (41) we obtain with the help of (27) the following relations:
dn=dyp=dy; dp=dp=dy; dy=duz= dss-

dyy=dss=dgg=dpy=dg=d,,. All other constants in (17) are zero. Thus
for cubic crystals of the Oy, class, the number of independent constants in
(17) is four.

The values of the above constants expressed in terms of the force con-
stants are given by

(Q + 8U + 2a + 99)
du=dyy, 0= — d :
dia=dy, yz}= _ R+ 4wd— 68 + v) 42)
s R+4AW-—68+y) , R+28—3y)?
= dyz, oy == a ToQFm Xa
_ 1 (R+28—3y)°
Hence from (23) the expressions for the elastic constants are:
cn=4dy;
Crz=4d}
Caa=13%(dyy + dys); (43)
——‘2171{Q+R+4(S+U+W)+10a+3+'y—-6,3}
4+ R+28— 3
d(Q +32)

which are identical with the expressions of Krishnamurti.

To arrive at an estimate of the discrepancies in the values of the elastic
constants calculated by the two different procedures, we shall next express
the elastic-force constant relations by comparing the lattice wave-equations
(40) with the elastic wave equations. The former are given by

pv2A%¥ = A% {dyI*+dyy (m* + n¥)} +(dyy +dy5) (AVIim +-AZln) 44

and two similar equations obtained by cyclic permutation of the letters x, y, z
and I/, m, n. Comparing (44) with the equation

pV3AT = A% {c;,I%+cy, (M? + 0%} + (cya + €40) (A¥Im + AZln) (45)
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we obtain*
€11 =dy;

C4y=dy; and

Cro=dy +dy— dy, (46)
_(Q+48+4U+10a+8)  2(R+4W — 68+ y)
- d d T

These expressions are different from those of (43). The expression for
¢y 1s the same in both the cases. The numerical values of the force constants
were obtained by Ramanathan from spectroscopic data. If these values
are substituted in (43) and (46), we get the following numerical values for
the elastic constants of diamond, calculated by the two different procedures.

€1 =96 102 (9-6X 1012); ¢pp=3-9x 1012 (1-49x 101%);
Cag= 42X 1012 (5-39 X 1012) dynes/cm. 2

The elastic constants of diamond were determined experimentally by
Bhagavantam and Bhimasenachar who get the following values:

;1 =9-3X10%; ¢,=3-9X10'%; c,y=4-3X10'* dynes/cm.?

While the expressions of Krishnamurti show a very good fit with the
experimental data of Bhagavantam and Bhimasenachar, the values calculated
from (46) show significant divergences from these results.

Finally, the author wishes to express his deep gratitude to Professor
Sir C. V. Raman, F.R.S., N.L,, for his inspiring guidance and valuable
criticisms during the course of this work.

SUMMARY

The static method of obtaining the strain energy function of a crystal
has been developed for the case where the potential energy of the entire
lattice is a general quadratic in the nuclear displacements of the atoms of
the crystal. It is shown that for heterogeneous strains, the deformation
energy of the crystal is a quadratic in all the nine strain components. For
small homogeneous deformations, the strain energy function reduces to the
form of the corresponding function in the elasticity theory. The wave equa-
tions obtained from this energy function by the variational procedure are

* These expressions for diamond based on the dynamic method were obtained by Mr. D.
Krishnamurti and independently by Dr. J. Callaway, R. C. A. Laboratories, Princeton, N.J..
Iam indebted to Mr. D. Krishnamurti for pointing out the discrepancies in the expressions
arising out of these two theoretical procedures and for the general discussions on the subject,
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identical with the wave equations of the elasticity theory. By comparing
either the two forms of the strain energy function or the two sets of wave-
equations, expressions for the elastic constants can be obtained in terms of
the atomic force constants.

Starting from the most general expression for the strain energy function
which is a quadratic in all the nine strain components and by assuming that
the strain components are all linearly independent functions of the position
vector of any point of the solid, the wave equations of Begbie and
Born have been derived by means of Hamilton’s variational principle.
But these equations are not reducible to the symmetric form of the
wave equations of the elasticity theory without further assumption of addi-
tional relations among the force constants. Since there is no justification
for such new relations which restrict the generality of the force scheme used,
the expressions of Begbie-Born and of Kun Huang for the elastic constants
of crystals are not valid in a general force scheme. The expressions for the
elastic constants which follow the different theoretical procedures are detrived
for the case of diamond and are compared with the experimental results.

Finally, a cubic equation whose roots determine the limiting group veloci-
ties of the long acoustic waves travelling in any direction of the crystal, has
been derived; this replaces the expression for the velocities of the long
acoustic waves given in an earlier paper by the author.
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APPENDIX 1

Lemma.—If o is a continuous function of the variable a with continuous
derivatives with respect to a of order upto N in (e; B) and D denotes the

operator ((gz)’ then Dn:é; A, r (a—%)r in (a, B) (< N) 1)
where
= o e G 08O
an, 0= Ono;
n=ar, -+ agrs + ... + agrs and
r=a,+a+ ... +a; the summation in (2) is over all the

partitions of n into r non-zero integral parts.

Proof—D;, D,, ... D, being r mutually commuting operators, we
first define the symbol (D,PD,?: ... D,’) w as equivalent to the scalar
expression (D;Pw) (DyPw) ... (D Pw). With this convention, consider

. . . 1 . 1 n!
the multinomial expansion o (D;+Dy+... +Dp)lw= 712 ALANS.
(D,"w) ... (D;Yw) where Zr ns=n. ap rcan now easily seen to be the
expression obtained by writing D; =D,=........ =D, =D in the sum of all

the terms of the above expansion which arise from a partition of » into r
non-zero integral parts. We have now for n=1 and n=2,

dw d

2
Di=(D%) 2 + (Duy 1,

Evidently D" is of order # in (Ed(;) and hence can be expressed by a series

of the form (1). Again, by differentiating (1) with respect to @ and comparing
the result with

n+1
Dl = 2 Anda,r | dw)
we obtain
d da
am+1 r=am, r1 (d:;) + = m’ ?3)
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If therefore (3) can be proved on the assumption that (2) is valid for
all values of n upto m, then the lemma will easily follow by induction as it is
true for n=1 and n=2.

By definition a4, is the sum of all the terms mvolvmg the products

of all the r operators in the expresswn
(D, +Dy+... + Dr) 1 (D;+Dy+ ... + DYy 6]
if in the final result D is substituted iri the place of all the D;’s. Such terms
arise in two ways. (@) They could for example te obtained by multiplying
D; with the terms containing (r — 1) factors in the expansion of ; (D, + Dy
"+ ...+D;,+Dj;+ ... D.)"w and as i takes r values, the sum of
all such terms reduces to @, r_y ZZ when in the final result we write D;= D.
(b) They can arise by multiplying the first (linear) term in (4) with the terms
involving the‘products of all the D;’s in the expansion of ({é D; mw. Taking

. » '
a typical term & (D,PD,** ... D,?,)w where k= 1%« arising out of this
T

partition of m into r factors, the result of multiplying this term with (
i=1
is evidently k Z(Dlp’w) oo DFHw)...([DPrw) ()
i=1

As the expression obtained by writing D;=D (i=1,2, .... r) in (5) is the
differential coefficient of k (D™w) ... (DP.w), the sum of all the terms
under consideration is clearly da;a,-- This establishes the result (3) and

consequently the lemma by induction.

. dw\"
In particular, we note that a, "=(ZJE) .





