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A. INTRODUCTION

Tue importance of the knowledge of the different modes of atomic vibrations
of a crystal, which constitutes the core of any theory on the thermal and
optical behaviour of solids, needs hardly to be stressed. The first great
step towards a proper theory on the thermal energy of solids was undertaken
by Einstein who evaluated the specific heat of crystals on the assumption
that the different atoms of the crystals are independent oscillators, each
contributing the same amount to its thermal energy. The later theory of
Debye rests on the assumption that the proper vibrations of the atoms of
the crystal can be identified with the different modes of vibrations of an
elastic body and as such seeks to replace their thermal energy with the
energy content of elastic bodies. While the Debye theory clearly ignores
the lattice structure of crystals and the atomic constitution of matter, these
were taken into account in the theory of Born-Karman! which was pro-
posed almost simultaneously (1913). The Born lattice dynamics sought to
enumerate the different normal modes of vibrations of a crystal composed
of N atoms and postulated the existence of a total number of (3N—3)
frequencies, forming a continuous spectrum spread over a wide range of
frequencies. On this basis, each degree of freedom of the system corresponds
to a wave whose wavelength is determined by the cyclic boundary condi-
tions. An attempt to apply the Born-Karman theory to some simple cases
of cubic crystals was made by Blackman? who reported the presence of
several maxima in the frequency spectrum; but still no qualitative descrip-
tion on the nature of the frequency spectrum of a general crystal is-available
in the literature. On the other hand, the application of the theory to any
physical problem involving quantitative calculations is severely complicated
so that the attempts to make progress in this direction have not been success-
ful, even with several simplifying assumptions regarding the nature of the
inter-atomic forces.
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An entirely different approach to the problem, considering the move-
ments of the individual atoms as distinct from a wave that progresses through
it, was made by Sir C. V. Raman (1943).3* This theoretical procedure pre-
dicts, for a crystal with p atoms in each of its unit cells, the presence of a
discrete set of (24 p—3) monochromatic frequencies, which are observable as
sharply defined lines either in the first-order or the second-order Raman
spectrum. In addition, the high frequency spectrum of these normal vibra-
tions representing the internal oscillations of its unit cells, should be supple-
mented by an elastic spectrum, continuous in nature and which is a conse-
quence of the translatory movements of its lattice cells.

Assuming the existence of waves that travel through the same type of
atoms in the lattice arrangement of the crystal and with no special restrictive
assumptions either on the nature of the interacting forces or on the struc-
ture of the lattice cells, it is shown in this paper that the group velocity of
these waves vanishes for (24 p-3) frequencies, which are characteristic of
the crystal structure. In Part II of this paper, it is proved that the state of
disturbance in the crystal arising out of an initial disturbance confined to
~ a small region of it tends asymptotically to a superposition of these (24 p-3)
characteristic vibrations. These results clearly show that even a picture of
an infinity of waves through the crystal and consequently of frequencies
associated with them leads, naturally to the conclusion that only a discrete
set of (24 p-3) normal vibrations, as conceived by Sir C. V. Raman, are
physically significant; the effect of the elastic waves which (at ordinary
temperatures) contribute in much lesser a measure to the vibrational energy
of the crystal can be accounted for by an elastic spectrum of the Debye type,
but with a greatly reduced proportion of the degrees of freedom associated

with it.
1. THE EQUATIONS OF MOTION

We consider a crystal consisting of p atoms in each of its unit cells and
denote the displacements of any atom parallel to the three mutually orthogonal
co-ordinate axes x° by g, 1 =1,2,3). Throughout this paper, we use
the letters r and p exclusively to represent the index number of a particular
atom among the p atoms in any cell, while ¢ and s will be used to indicate
the cell number of the crystal.

The general equations of motion for the atoms of the lattice and the
relationship between the force constants occurring in the most general form
of the potential energy expression, were given by Raman and Born. For
the sake of completeness, these results are quoted here. If m, denotes the
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~

mass of the rth atom in any cell, the expressions for the kinetic and potential
energies are given by

2T = 2 m, Qir;r2 (1)
2V = 2 %; kff,‘ Qirs q/pa’

If d,, d,, d; be the three primitive translational vectors of the crystal
lattice, then the position of any cell of the crystal is specified by the vector
s = (5, S, S3) O 8§ = 5,d, + s5,d, + s53d;. Two cells o; and o, will hereafter
be called conjugate with respect to the cell s if

. 0, —S$=8—o0; 2
The group property implied in the translational symmetry of the crystal

yields now the following relations between the force constants involved in
the expression (1).

(a) kife = k};fo'

irg

) kin — [fire

irs irs’
(o) kify =kt 3)
where (s, s') and (o, ¢’) denote two pairs of cells given by s —s'=¢ — 0.
Since the interatomic forces are quite short-ranged, the force constants
diminish rapidly with distance and we restrict the interaction of any atom
in the cell s to all the atoms in the 2N ++ 1 = IT (2/,4-1) surrounding cells

. Ar=1.2.3
given by o =s + k; k = (ky, k,, kg) where k;, k,, k3 assume all integral
values in the intervals + /;; -+ l,; and 4 /; respectively.

The equations of motion of the particles in the rth cell can now be
written as

—m, Qz'rs = X k.jff 9ipos (4)

i P @
(i =123 )
r=12....p
We shall assume wave solutions for the above equations of the form
qi,'s — Arz' e,t(@”ﬂ.s) (5)

‘where a, considered to be a vector of the recjprocal lattice, denotes the wave
vector. If by, b,, b; denote the three fundamental vectors of the reciprocal -
lattice, then we can write

a = 0;b, + 6,b, + 0;b; so that we have

as= E’s,ﬂ,. since b d; = 5. ©)
i=1



The Characteristic Vibrations of Crystal Lattices—I 427
Substituting (5) in (4) we get the following 3p equations linear in the A’s
A (kip 4 X ki =) — m,w?)
g

+ 3" AJ (ki -+ X kipe 0=y = () (7
P T

the accent indicating that the term p = r; j = 7 is omitted in the summation
of the second term and the summation for o covers the 2N surrounding
cells of s.

We shall now arrange the 3p terms in each of the above 3p equations
into p groups in lexical order with respect to the letter p, the three terms in
each group involving the quantities A, (i =1, 2, 3) themselves being
arranged in increasing order with respect to the index i. Then if,

s'=3(r—1)—§—i}.. 1
s = ’2a3
r=30p—D+jf"

and a,,= kifs + X kife €=, we get on eliminating the A’s from (7)
the following equation, due to Born.
|A — Mw?| =0, (8)

where A denotes the matrix (a,,) and M, the diagonal matrix defined by
my, = m,.
2. Tue GROUP VELOCITY OF THE WAVES

We can now easily see that the matrix (A) is hermitian. For, if o, and
o, denote any two cells conjugate to the cell s, then from (3) we get

kipow = kifs = ki and so

irGa

k iirﬁul ez’a.(a-x-s) — k};,‘;’ ez’a.(:_gg)
. j ‘a.(g—5)
agy = kify + Jkif7 &
[
i b ia.(S—g) __. =
= ki’;s + 2 ki;li e'tto) — aypy (9)
4

a

for the 2N cells over which the summation for o extends, can be split up into
N pairs of conjugate cells.

Letting z = w?, we rewrite (8) as

502% 4 51287 4 - A 52 4 Sgpaz 83, =0 (10)
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If my=m, (': — ?; (; ; b+ l) then the coefficients s,. . . .S535 are given

by the following scheme.

So = (— D¥ (mum,. ...my)>%

51 = (— D)% (mymy. ... my)>* % %sg.
: G r >
s = (= D) Zmy,mg,....my, B (11 @)

where B is a principal minor of order ¢, which is the complementary minor
of the determinant formed from the elements of the rows s, s),....s;
(k = 3p — 1) of the determinant A and the summation extends over the (3°C,)
principal minors of order 7 of |A|. In virtue of the hermitian property of
(A), the principal minors of (A) are themselves hermitian and their determi-
nants are therefore real. In particular, we have s, = | A |, the determinant
of the matrix (A). While the reality of the roots of (9) follows immediately
from the hermitian form of A, they should in addition be positive because
of the positive nature of the potential energy expression.

If a denotes the absolute magnitude of the wave vector a so that a = eaq,
e being a directional unit vector, then the group velocity of the waves is given

by Z—Z’- Equation (10) is of degree 3p in z and if its roots are denoted by
zp= w,® (k=1,2....3p), we get on differentiating (10) with respect to a,

doy, (391 8 ds '
Do, 24 3p — f 321\ — __ 3p_t 45; 11
2 (B Gz ) == (Fa ) (1
Denoting the cofactor of a,, in | A | by A,, we have now
dS3p da ot
da 32, da Age
da,,x da,, day,
= 25 At 2, (0 e+ G
8 <y’
da‘r g da S
= 2 G A+ 2 2 R (G A) (12
since A, and A, are also complex conjugates. ' -
Now %es — _ o S kigie(o;— 9 sina- (o, — 5)

the summation here being over a set of N non-conjugate cells.
i
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If o,=s+k; where k, = (k, k%, k7), then a-(o; — s) = Ekfo.and

sin a-(o; — s) will be equal to zero whenever 6, 6, and 8, each assumes any

dag.,

one of the values 0 or =. Hence dax vanishes for the set of points (0, 0, 0);

(09 7, 0)’ (0: 09 7‘_); (775 0’ 0)9 (0’ , 77); (779 09 77); (773 8 0) and (77’ m, 77) in

the 6-space. (13)
If dfz;‘a" = x + iy and A_, = x" 4+ iy’, then R (d L AJ,,) (xx"—yy".

Now, each term in the expression for y’ contains at least one factor of
the type X kif’ stn a-(o¢ — s) and A, is real if each one of the quantities
ag

irg
6,, 0, and 0, takes the values 0 or ». Further,
X = — Z’k;’f;" e(c—s) sin a-(c —s).

Hence R (da"" o ) and consequently %%‘? which is a function of the
#’s vanishes at the set of eight points given in (13).

Since the principal minors of order ¢ of A are themselves hermitian, a
similar argument applies to each determinant | B | in (11 @) and we get

‘ ds,

da

if,=0o0rn; 6b=0o0r=; 6;=0ormx

=0 (t=1,2....3) (14)

It follows therefore from (11) that the group velocity of the waves
associated with each of the eight points of (13) or with the 24 p frequencies
corresponding to them should be equal to zero.

The force constants k’s are not all entirely independent. For a small
translation of the entire crystal specified by w = (u, u,, 4;), we get from (4)
that ¥ w;kifr =0(c =1, to 2N 4 1).

i P o

Since this relation is true for any arbitrary vector u, we get
2 ki = 2 kit = 2 k#? = 0. (15)
We shall now cons1der in greater detail the behaviour of %3 at the point
0, = 0, = 6; = 0. By adding the elements of the columns 3s +i(i =1, 2, 3;
s=1,2....p) respectively to the corresponding elements of the first, second

and third columns, we can easily see with the aid of the relations (15) that «®
is a factor of | A — Mow? |.
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Three of the frequencies corresponding to zero values of 6,, 6, and
0, are zero and also the expression %’ = U (a) tends to a definite value

((— 83,"9/253, ,'") for these three frequency branches. Hence subtract-
ing these three modes which correspond to a translation of the entire crystal,
one can see that the group velocity of the waves associated with each of the
(24 p-3) characteristic frequencies is equal to zero.

3. THE EFFECT OF AN INITIAL DISTURBANCE

We consider here the nature of the propagation of an initial disturbance
confined to a small region into the entire crystal and the state of movements
of the atoms about their equilibrium positions at a later intant. Any such
disturbance will set out a train of progressive waves in the medium and
physically it is easy to see that wave clusters having zero group velocity alone
could have any significant influence over the vibrations of the atoms near
the source of disturbance at a subsequent instant. In this section, it is shown
that there is such a tendency on the part of the disturbance agitating the
atoms to resolve itself gradually into a set of harmonic vibrations, with
exactly the same frequencies as of these wave clusters and that the contri-
butions to the vibrational energy of the atoms due to all other frequencies
are insignificant, being second-order quantities. Next, the dependence of
the amplitudes of vibrations of the atoms on the factor /%2 is interesting
and suggests a correlation with thermal conductivity.

We shall suppose that initially all the atoms in the cell with index zero
(0, 0, 0) of the lattice are displaced by small amounts and that the velocities
of all the atoms are zero. In other words, the initial state of movements of
the atoms is described by

q,,: (0) = ﬂ3 f u! e dv=u'3, (16)
and ‘_.Iim (O) = 0’ (17)
where dV = da,da,da; = cdb,d0,d0,, (a,, a,, a;) being the components of the

wave vector in any three orthogonal directions in the reciprocal lattice and ¢ is
the determinant of the transformation a,= 3% ¢; 6, (i, j=1, 2, 3);

A.denotes the volume enclosed by the parallelopip:ed whose corners are given
by 7 (4= by &= by &= by).

At any subsequent instant, the displacements of the atoms from their
equilibrium positions can be obtained by the superposition of the waves of
the type (5) and we have

39

Qe O = grip 5 S, Alg (€94 + eo4) 4 aV (18)

k=1
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where A"M denotes the amplitude A’, of the rth particle in any cell in the
direction x* corresponding to the frequency branch w, of (10) and we should
further have

5 A=, (19)
k=1

to be in conformity with the initial conditions (16, 17).

A discussion of the variation of the above integral with time is not in
general possible, as it requires a knowledge of the force constants and the
actual expressions for the frequency branches; however the analogy of a linear
lattice shows that no particle can acquire a sensible amplitude until the fastest
group corresponding to the elastic waves reaches that lattice point. We
obtain here an asymptotic approximation of (18), which describes the nature of
the movements of the atoms a long time after the initial disturbance.

We shall denote the eight saddle points (13) at which% =0 by

a® = (4%, a,% a;*) (e =1,2....8) and the corresponding value of w, by
v (k=1,2....3p). For a'= (0,0, 0), threc of the frequencies of (10)
are zero and these frequencies may be denoted by vl = vy = v,! =0.
Further, let A,= |b, | where | b, | is the determinant of order three

320) &
a0, and let the values of A, and

A’,, which are functions of a at the eight saddle points be denoted by A 2
and A}2. Then from the result proved in the Appendix, we get the following
expression for the asymptotic value of g;,(f).

1 3p A1 1 .
Gy () = c @iy 2 2 [Ak 1 cos (vkl t -+ kt Z)

whose elements are given by b, = b, =

1 8 3p A@a .l L
+c_(i2ﬂ.t')3(2 22X [Aalmcos( “f b oas.s o k 4)

a=2 k=1
(=123 r=12....p) (20)
here k¢ is the signature of the matrix of the determinant A 2.

An equation analogous to (20) can be derived by an exactly similar
procedure if initially a group of atoms in any cell have small velocities, but
no displacements. When this is done, the peneral expressions for the
vibrations of the atoms about their mean positions under any initial condi-
tion regarding their velocities and displacements are easily obtained by the
principle of superposition. In any case, the state of movements of the atoms
tends asymptotically 10 a superposition of the (24 p-3) churacteristic vibrations
of the crystal, with amplitudes that vary inversely as t3'2,
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£

These vibrations were first predicted and described by Sir C. V. Raman
The (3 p-3) modes contained in the first summation can be pictured as the
oscillations with respect to each other of the p interpenetrating Bravais
lattices of atom of which the crystal is built up, while since a®-s is an integral
multiple of =, the remaining 21 p modes represent the oscillations of the
alternate layers of equivalent atoms against each other. The number of the
distinct characteristic frequencies might be considerably reduced for crystals
exhibiting a high degree of symmetry. It is worthy of note that the 21 p
modes have the same status as the remaining (3p-3) modes as far as the
dynamical behaviour of the system is concerned, though it is the latter that
are active in the first order Raman effect; their importance arises in the
second order Raman effect in crystals, where they exhibit themselves as
combinations and overtones of the fundamental frequencies.

I am very much indebted to Professor Sir C. V. Raman, N.L., for his
encouragement and suggestions, during the course of this work.

SUMMARY

It has been shown that the structure of a crystal as a three-dimensional
repetitive pattern of lattice cells of atoms leads automatically to the result
that the group velocity of the waves associated with the (24 p-3) characteristic
frequencies should be equal to zero, and hence that oscillations having these
frequencies are in the nature of stationary normal modes of vibration of
the crystal lattice. It has further been proved that any arbitrary initial dis-
turbance asymptotically settles into a superposition of these (24 p-3)
characteristic vibrations which were first predicted by Raman, and that their
amplitudes of vibration vary inversely as t¥2 and further, that the energies
associated with other frequencies of vibration are of negligible magnitude.

APPENDIX
Consider the integral I = §,, f(x) exp.i[w (x)t — k-x]dV, (1)

where x=(xy, X, X3) and k=(k,, k,, k3) and dV = dx; dx, dx;. We shall
assume that f(x) is integrable in D and that the region of integration con-
tains only one stationary point of  (x)atx = x, = (x4, X390, X30)- When
t is large enough as to make exp. iw (x) ¢ a very rapidly fluctuating function
compared to f(x) exp. ik.x, an approximation to the above integral can be
effected by the application of the principle of stationary phases due to Kelvin.
A fairly good estimate of (1) can be obtained if Mz = 0 (] k |2), where M is
a constant of the dimensions of distance, for in this case « (x) ¢ is a second
order quantity compared to k.x. The principle of Kelvin states that the
maximum contribution to an integral containing a very rapidly fluctuating
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function arises only from the regions in the neighbourhood of points at which
the function is stationary. A rigorous justification of this principle for
integrals involving one variable was given by Watson®; a formal extension
of it to integrals of the type (18) involving three variables is given below.

If we write (x; — x;,) = £, (i =1, 2, 3), for small values of &, &,, &,
we have by Taylor’s theorem

w@)=owx)+3¥ X a,éé @
dw |
Where ars = asr = a Xy b)?;)zmto | |

Hence an approximation for (1) would be I ~ f (x,) eilw (xdt — k- x]

Y ¥t
e dt, d, dé, (3)

Dy
D, being any small region completely enclosing the point x,.
If we transform the variables £,, &, & to a new set of variables 7, 7,, 7,

so that the new co-ordinate axes coincide with the directions of the principal
diameters of the quadric Y a, &, £, = 1 in the £ space, then
.3

Za, €, €= At A+ Agng®—, @)

A, Ay, A; being the eigenvalues of the matrix (a,) = A. Since (a,,) is
symmetric, the roots of | A — AL | = 0 ar® real. Also, we have d¢, d¢, d¢,.
= dny dng dns. Hence (3) becomes

g Ot e A)
I ~f(xg) €1 60 450 [ ¢ dny diiy dny (5)

D;
D, being the region corresponding to D, in the 5 space.

If therefore A, A;, A; are all positive (say) then by writing /At 9, =y,
(r =1, 2, 3), we can take the limits for y;, y,, ¥5 to be — coto + oo as ¢ is
large. Hence (5) becomes

f (x ) o' ¥ (%0 {_f.xo] 400
0! A= {I _.L err® dy, ©

(r=1,2,3), Lt =0

— 2jf 3z f(xo) ei [% (Xo) t-k.ac;o.|_3n,4]
- t I A ll/2

for from (4), A; A, A3 = A, the determinant of the matrix A.

I ~
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In general we have

1=(¥y?%%wmiwomp_k%+sWHU’*“
™

where s is the signature of the matrix (A), i.e., the difference between the
number of positive eigenvalues to the number of negative eigenvalues of
the matrix A.

Similarly the value of the integral
I'=[pf(x) expi(— w(x)t—l—k x)dV, is given by

U= ()" [ e il w )+ kxy— seld) ®)

When the region of integration contains several stationary points, it
can be split up into subregions in each of which the function has only one
stationary point and the final result simply consists of the sums of terms
like (7).
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