THE INFRA-RED ABSORPTION SPECTRUM OF POTASSIUM CHLORATE CRYSTALS—Part II

By A. K. Ramdas
(From the Raman Research Institute, Bangalore)
Received June 10, 1952
(Communicated by Sir C. V. Raman, f.R.S., N.L.)

1. Introduction

In Part I, the author published the results of a study on the infra-red absorption by a single crystal of potassium chlorate in the range 1μ to 15μ, by means of a Beckmann infra-red spectrophotometer (model IR2). In the present investigation the work has been extended upto 22μ using thinner crystals than formerly. The instrument itself had meanwhile been overhauled and its sensitiveness improved. The results now reported are therefore superior to those presented in Part I.

The crystals were studied, as before, with the flat face (001) perpendicular to the infra-red radiation, percentage transmission being read off directly with the instrument. Readings were taken at $0 \cdot 1 \mu$ intervals and at still closer intervals near absorption maxima. The percentage cut-off curves of two of them which show the absorption maxima most clearly have been reproduced in Fig. 1. Curve III represents the \% cut-off of the specimen of thickness 0.15 mm . and Curve I of specimen of thickness 0.06 mm .

The following features are shown by the curves:
I. A sharply defined, strong absorption band with its maximum at $5 \cdot 3 \mu\left(1887 \mathrm{~cm} .^{-1}\right)$.
II. Two well-defined absorption maxima at $6.3 \mu\left(1587 \mathrm{~cm} .^{-1}\right)$ and $6.9 \mu\left(1449 \mathrm{~cm} .^{-1}\right)$ which are weak in comparison with the $5 \cdot 3 \mu$ band. In Part I of the paper, this doublet was not resolved and a rather broad band with its maximum at 6.7μ was recorded. Coblentz (1906) to whom no reference was made in the previous paper through oversight had noticed these bands as also the one at $5 \cdot 3 \mu$.
III. A very strong absorption band with a flat top, extending from 10μ to $10 \cdot 8 \mu\left(1000 \mathrm{~cm} .^{-1}\right.$ to $\left.926 \mathrm{~cm} .^{-1}\right)$.
IV. A medium strong absorption band at $13 \cdot 5 \mu\left(741 \mathrm{~cm} .^{-1}\right)$.
V. A strong and sharply defined absorption maximum at $16 \cdot 2 \mu$ ($617 \mathrm{~cm} .^{-1}$).
VI. In the slope of the absorption maximum at $16 \cdot 2 \mu$, we notice inflexions at $17 \cdot 25 \mu\left(580 \mathrm{~cm} .^{-1}\right), 18 \mu\left(556 \mathrm{~cm} .^{-1}\right)$, and $18 \cdot 75 \mu\left(533 \mathrm{~cm} .^{-1}\right)$.
VII. A strong and sharply defined absorption maximum at $20 \cdot 3 \mu$ ($493 \mathrm{~cm} .^{-1}$). This band shows indications of structure.

Schæfer and Schubert (1921) in their reststrahlen studies with pressed powder of KClO_{3} found reflexion maxima at $10 \cdot 12 \mu$ and $16 \cdot 12 \mu$ which evidently are related to the absorptions referred to in III and V above.

Fig. 1. Infra-red absorption spectra of single crystals of potassium chlorate.

2. Infra-Red Active Fundamentals

In Part I, the absorption maxima in the infra-red were explained in a general way in terms of the characteristic frequencies of the chlorate ion the free state, viz., $\nu_{1}\left(930 \mathrm{~cm} .^{-1}\right)$ and $\nu_{3}\left(620 \mathrm{~cm} .^{-1}\right)$ belonging to the totally
symmetric class $\mathrm{A}_{1} ; \nu_{2}\left(975 \mathrm{~cm} .^{-1}\right)$ and $\nu_{4}\left(486 \mathrm{~cm} .^{-1}\right)$ belonging to the doubly degenerate class E . But in the transformation from a free ion to a crystal, the number of internal vibrations increases because there are two molecules in each unit cell and the symmetry of the crystal structure $\left(\mathrm{C}_{2 / 2}{ }^{2}\right)$ removes the degeneracy of modes of the E class. The group analysis gives the number of internal vibrations and the selection rules as shown, in Table I.

Table I

Class	Number	Raman effect	Infra-red
A_{1}	4	Active	Inactive
A_{2}	2	Active	Inactive
B_{1}	2	Inactive	Active
B_{2}	4	Inactive	Active

i.e., there are six Raman active internal vibrations and six infra-red active, the two sets being mutually exclusive because of the presence of a centre of symmetry. We can picture the change in internal frequencies from a free ion to crystal as follows:

Table II

Free ion	Crystal	
Raman active and Infra-red active	Raman active	Infra-red active
$\nu_{1}\left(\mathrm{~A}_{1}\right)$	$\nu_{1}\left(\mathrm{~A}_{1}\right)$	$\omega_{1}\left(\mathrm{~B}_{2}\right)$
$\nu_{3}\left(\mathrm{~A}_{1}\right)$	$\nu_{3}\left(\mathrm{~A}_{1}\right)$	$\omega_{3}\left(\mathrm{~B}_{2}\right)$
$\nu_{2}(\mathrm{E})$	$\nu_{2}\left(\mathrm{~A}_{1}\right), \nu_{2}{ }^{\prime}\left(\mathrm{A}_{2}\right)$	$\omega_{2}\left(\mathrm{~B}_{2}\right), \omega_{2}{ }^{\prime}\left(\mathrm{B}_{1}\right)$
$\nu_{4}(\mathrm{E})$	$\nu_{4}\left(\mathrm{~A}_{1}\right), \nu_{4}{ }^{\prime}\left(\mathrm{A}_{2}\right)$	$\omega_{4}\left(\mathrm{~B}_{2}\right), \omega_{4}{ }^{\prime}\left(\mathrm{B}_{1}\right)$

Thus the infra-red and Raman frequencies would, strictly spreaking, be different.

The Raman effect in the powdered crystals has been studied by Krishnamurthi (1930) and Venkateswaran (1938), and by Shantakumari (1950) in a single crystal. Their results have been given in Table III.

Table III

Krishnamurthi (Powder)	Venkateswaran (Powder)	Shantakumari (Single crystal)	ClO_{3} - ion
	$915(1)$	$920(1)$	
$934 \cdot 8$	$929(10)$	$930(10)$	930
971^{*}	$977(4)$	$975(7)$	975
\ldots	$615(1)$	$620(1)$	615
482	$478(3)$	$486(6)$	480
	$493(0)$		

* With two faint companions.

We notice that the Raman frequencies which have been reported fall into four main groups which approximate respectively to the four fundamental frequencies of the ClO_{3}^{-}ion. The results of the different authors are somewhat divergent, which may in part be ascribable to their having recorded the spectra in different circumstances. For our present purpose, we may ignore the splitting of the fundamental frequencies in the crystal shown in Table II and base our interpretation of the infra-red absorption data on four fundamental frequencies denoted as $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ respectively, for which we assume the values $930,975,620$ and $486 \mathrm{~cm} .^{-1}$, these being the same as those observed in the Raman effect by Shantakumari.

3. Interpretation of Results

On the assumptions made above, the following interpretations of the observed bands are put forward as the most probable (Table IV).

The bands IV and VI have been interpreted as combinations of the internal and lattice frequencies of the crystal. There are actually nine Raman active and six infra-red active lattice frequencies, the two sets being mutually exclusive. The selection rules permit combinations between infrared active internal frequencies and Raman active lattice frequencies and vice versa. The infra-red active lattice oscillations are unknown. Shantakumari has recorded five lattice lines in Raman effect which we may denote

Table IV

Serial No.	Observed Absorption Maxima		Assignment	Calculated	
	$\lambda \mu$	cm. ${ }^{-1}$		$\lambda \mu$	cm. ${ }^{-1}$
I	$5 \cdot 3$	1887	$\omega_{1}+\omega_{2}$	$5 \cdot 25$	1905
II	6.3 6.9	$\begin{aligned} & 1587 \\ & 1449 \end{aligned}$	$\begin{aligned} & \omega_{2}+\omega_{3} \\ & \omega_{2}+\omega_{4} \end{aligned}$	$\begin{aligned} & 6 \cdot 27 \\ & 6 \cdot 84 \end{aligned}$	$\begin{aligned} & 1595 \\ & 1461 \end{aligned}$
III	10-10•8	1000-926	$\begin{aligned} & \omega_{2} \\ & \omega_{1} \end{aligned}$	$\begin{aligned} & 10 \cdot 26 \\ & 10.75 \end{aligned}$	$\begin{aligned} & 975 \\ & 930 \end{aligned}$
IV	$13 \cdot 5$	741	$\omega_{3}+L_{4}$	$13 \cdot 4$	747
V	$16 \cdot 2$	617	ω_{3}	$16 \cdot 13$	620
VI	$\begin{aligned} & 18.0 \\ & 18.75 \end{aligned}$	$\begin{aligned} & 556 \\ & 533 \end{aligned}$	$\begin{aligned} & \omega_{3}-\mathrm{L}_{1} \\ & \omega_{4}+\mathrm{L}_{1} \end{aligned}$	$\begin{aligned} & 17 \cdot 7 \\ & 18 \cdot 5 \end{aligned}$	$\begin{aligned} & 566 \\ & 540 \end{aligned}$
VII	$20 \cdot 3$	493	ω_{4}	$20 \cdot 58$	486

as $\mathrm{L}_{1}\left(54 \mathrm{~cm} .^{-1}\right), \mathrm{L}_{2}\left(82 \mathrm{~cm} .^{-1}\right), \mathrm{L}_{3}\left(98 \mathrm{~cm} .^{-1}\right), \mathrm{L}_{4}\left(127 \mathrm{~cm} .^{-1}\right)$ and $\mathrm{L}_{5}\left(145 \mathrm{~cm} .^{-1}\right)$. Since the data regarding the lattice oscillations are incomplete, the assignments shown against IV and VI are necessarily somewhat conjectural.

Some interesting features are noticed as regards the relative intensities of the internal vibrations in Raman effect and infra-red. In Raman effect, all the workers have got $620 \mathrm{~cm} .^{-1}$ line very weak. In fact, Krishnamurthi in his study of Raman effect in KClO_{3} crystal powder and Venkateswaran in Raman effect in solution of KClO_{3} failed to observe this line. On the other hand, corresponding to that line we notice a strong and sharp absorption in infra-red. The $486 \mathrm{~cm} .^{-1}$ line which is strong in Raman effect is also strong in infra-red absorption. As regards $930 \mathrm{~cm} .^{-1}$ and $975 \mathrm{~cm} .^{-1}$, the indications are that the latter is more strongly active than the former in absorption, while in Raman effect, $930 \mathrm{~cm} .^{-1}$ is stronger than $975 \mathrm{~cm} .^{-1}$, though it has a comparable intensity.

I am very grateful to Prof. Sir C. V. Raman, F.R.S., N.L., for the encouragement and guidance he gave me during this investigation. My thanks are also due to the Investigator-in-charge C.S.I.R. Radiation Scheme, Poona, for his kind permission to use the infra-red spectrophotometer.

4. Summary

Crystals of potassium chlorate exhibit strong absorption bands in the infra-red at $10 \mu-10 \cdot 8 \mu$, and at $16 \cdot 2 \mu$ and $20 \cdot 3 \mu$. These are identified with the active fundamentals at $\omega_{1}\left(930 \mathrm{~cm} .^{-1}, 10 \cdot 75 \mu\right), \omega_{2}\left(975 \mathrm{~cm}^{-1}, 10 \cdot 26 \mu\right)$, $\omega_{8}\left(620 \mathrm{~cm} .^{-1}, 16 \cdot 13 \mu\right)$ and $\omega_{4}\left(486 \mathrm{~cm} .^{-1}, 20 \cdot 58 \mu\right)$. It is noticed that ω_{3} is quite strong, while the corresponding Raman frequency comes out very weakly. The vibration ω_{1} is more strongly Raman-active than ω_{2}, while the reverse appears to be the case in the infra-red. Absorptions are also observed at $5 \cdot 3 \mu, 6.3 \mu$ and 6.9μ which are interpreted as first-order combinations among these four fundamental frequencies, while other bands at $13 \cdot 5 \mu, 18 \mu$ and 18.75μ appear to be combinations of internal frequencies with low frequency lattice vibrations.

References

1. Coblentz, W. W. .. Investigations of Infra-Red Spectra, Carnegie Institution Publication, 1906.
2. Krishnamurthi, P. ,. Ind. Jour. Phys., 1930, 5, 633.
3. Ramdas, A. K. \quad. Proc. Ind. Acad. Sci., 1952, 35 A, 249.
4. Schæfer and Schubert
.. Z. fur Physik, 1921, 7, 309.
5. Shantakumari, C.
.. Proc. Ind. Acad. Sci., 1950, 32 A, 177.
6. Venkateswaran, C. S. .. Ibid., 1938, 7 A, 144.
