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We consider steady-state heat conduction across a quantum harmonic chain connected to reservoirs
modeled by infinite collection of oscillators. The heat, Q, flowing across the oscillator in a time interval �
is a stochastic variable and we study the probability distribution function P�Q�. We compute the exact
generating function of Q at large � and the large deviation function. The generating function has a
symmetry satisfying the steady-state fluctuation theorem without any quantum corrections. The distribu-
tion P�Q� is non-Gaussian with clear exponential tails. The effect of finite � and nonlinearity is considered
in the classical limit through Langevin simulations. We also obtain the prediction of quantum heat current
fluctuations at low temperatures in clean wires.
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A lot of interest has been generated recently in fluctua-
tions in entropy production in nonequilibrium systems.
Several definitions of entropy production have been used
and these give some measure of ‘‘second law violations.’’
A number of authors have looked, both theoretically [1–4]
and in experiments [5,6], at fluctuations of quantities such
as work, power flux, heat absorbed, etc., during nonequi-
librium processes and these have been generically referred
to as entropy production. The new results, referred to as the
fluctuation theorems, make general predictions on the
probability distribution P�S� of the entropy S produced
during a nonequilibrium process [1,2]. Specifically these
theorems quantify the probability of negative entropy pro-
ducing events which become significant if one is looking at
small systems or at small time intervals. There are two
different theorems, the transient fluctuation theorem (TFT)
and the steady-state fluctuation theorem (SSFT). The TFT
looks at the entropy produced in a finite time � in a non-
steady-state. In SSFT, one looks at a nonequilibrium
steady-state and the average entropy production rate over
a long time interval � is examined. The precise statement
of SSFT is

 lim
�!1

1

�
ln
�
P�S � ���
P�S � ����

�
� �: (1)

In the context of SSFT a quantity of great interest is the
large deviation function h��� which specifies the asymp-
totic form of the distribution function P�S� through the
relation P�S� � e�h��� [2,7]. An equivalent statement of
SSFT can be made in terms of a special symmetry of
h��� which is: h��� � h���� � �. Remarkably, this rela-
tion has been shown to lead to linear response results such
as Onsager reciprocity and the Green-Kubo relations
[2,8,9]. Furthermore, it leads to predictions for properties
in the far from equilibrium regime.

Heat conduction is a natural example where one talks of
entropy production. The standard result from nonequilib-

rium thermodynamics is that when an amount of heat Q is
transferred from a bath at temperature TL to a bath at
temperature TR�<TL� the entropy produced S is given by
S � �T�1

R � T
�1
L �Q. However, in general S is a stochastic

variable with a distribution P�S�. The distribution P�S� for
a nonlinear chain connected to Nose-Hoover baths was
studied numerically in [10] where they verified that it
satisfied SSFT. Reference [11] studied heat conduction in
a nonlinear chain connected to free phonon reservoirs.
Based on strong ergodicity properties of the model, it
was proved that P�S� � e�h���, where h��� satisfied the
SSFT symmetry. In a setup with direct tunneling between
two finite systems, a transient version of the heat exchange
fluctuation theorem, valid both for classical and quantum
systems, was proved in [12].

While the SSFT clearly presents a powerful theorem for
nonequilibrium systems, its validity has been established
only in specific systems and so far only classically. In the
transient version, it was proved that quantum corrections
are necessary for a dragged Brownian particle [13]. Thus it
is an open question as to whether quantum corrections to
SSFT exist in quantum heat transport and what the char-
acteristics of the heat current distribution are. This Letter
presents the first explicit calculation of h��� and demon-
stration of SSFT in quantum heat conduction. We study the
steady state of a quantum harmonic chain connected to
baths which are modeled by infinite oscillator sets. This
model is relevant to recent experiments on mesoscopic
quantum heat transport [14,15], where the quantized ther-
mal conductance g0�T� � �k2

BT=�6@� was measured
[15,16]. We use the method of full-counting statistics
[17] to compute the generating function of Q. We then
show that the corresponding large deviation function sat-
isfies the SSFT symmetry condition. For finite � we con-
sider heat transport across small chains and study the
classical limit through Langevin simulations. We also con-
sider the effect of introducing nonlinearity in the oscillator
potential.
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Model.—Our model consists of a harmonic chain
coupled to two heat baths kept at temperatures TL and
TR, respectively. For the heat baths we assume the standard
model of an infinite collection of oscillators. The full
Hamiltonian is given by

 

H �
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where fmn; xn; pn; kn; kg refers to the system degrees of
freedom, fx‘; p‘; m‘;!‘g refers to the left reservoir, while
fxr; pr;mr; !rg refers to the right reservoir. The coupling
constants between the system and the bath oscillators
f�‘; �rg is switched on at time t � �1. The initial density
matrix is assumed to be of the product form ���1� �
�S � �L � �R, where S, L, R refer, respectively, to the
system and left and right reservoirs. The left and right
density matrices are equilibrium distributions correspond-
ing to the respective temperatures: �� �
e���H �=Tr�e���H �	 for � � L, R, and �� � 1=�kBT��.

It can be shown [18] that eliminating the bath degrees of
freedom leads to an effective quantum Langevin equation
for the system. The effect of the baths is to produce noise,
given by �L;R�t�, and dissipative effects controlled by
memory kernels 	L;R�t�. The properties of the noise and
dissipation are completely determined by the initial con-
dition of the baths at t � �1. We now make a few
definitions. Let �L;R�!� �

R
1
�1 dt�L;R�t�e

i!t, ~	L;R�!� �R
1
0 dt	L;R�t�e

i!t and let �r
L;R�!� � �i!~	L;R�!�, which,

as we will see later, gives the self-energy correction com-
ing from the baths to the Green’s function of the harmonic

chain. We also define the spectral function JL�!� �

�
2

P
‘

�2
‘

m‘!‘

�!�!‘� for the left reservoir and a similar

function JR�!� for the right reservoir. Then the dissipation
kernels and noise correlations are given by

 

	��t� �
2

�

Z 1
0
d!

J��!�
!

cos!t;

h���!����!0�i � 4�@
�!�!0����!��1� f��!�	
(3)

for � � L, R and where ���!���Imf�r
��!�g�

J��!���!��J���!����!� and f��!��1=�e��@!�
1�. All higher noise correlations can be obtained from the
two-point correlator. Using the quantum Langevin ap-
proach it is straightforward to derive the Landauer type
result for average heat current hÎi [18]

 

hÎi �
1

4�

Z 1
�1

d!@!T �!��fL�!� � fR�!�	;

T �!� � 4�L�!��R�!�jG
r
1;N�!�j

2;
(4)

 Gr�!� � �M!2 �K��r
L�!� ��r

R�!�	
�1; (5)

where M, K are the mass and the force constant matrix
and �r

L;R�!� are self-energy correction matrices with ele-
ments ��r

L�!�	m;n � �r
L�!�
m;n
m;1 and ��r

R �!�	m;n �
�r
R�!�
m;n
m;N. Note that T �!� is the transmission coef-

ficient for phonons while Gr�!� is the phonon Green’s
function for the chain.

Statistics of phononic heat transfer.—The heat transfer
in time � is given by hÎi�. Here we are interested in the
statistics of heat transfer in the nonequilibrium steady state
and so need to calculate higher moments of the heat trans-
fer. The quantum Langevin approach can in principle be
used to compute correlation functions at any order but this
becomes increasingly cumbersome. Instead we use the
Keldysh approach which, as we will show, gives the gen-
erating function of the heat transfer.

Several definitions of Î are possible depending on where
we evaluate the current. Here we consider the current
from the left reservoir into the system (obtained by taking
a time derivative of energy in the left reservoir H L �P
‘�p

2
‘=�2m‘� �m‘!

2
‘x

2
‘=2	):

 Î � �
X
‘

�‘
m‘

p‘x1: (6)

We also define the average heat transfer operator Q̂ �R�=2
��=2 dtÎ�t�. Using the Keldysh approach let us compute

the following quantity

 Z��� � hT
!

e��i=@�
R
1

�1
dt�H�’�t�Î�	T

 

e���i=@�
R
1

�1
dt�H�’�t�Î�	i;

where h:::i denotes an average over the initial state, T
 

and T
!

denote forward and reverse time ordering, and the counting
field’�t� is defined as’�t� � �@�=2 for��=2 
 t 
 �=2
and zero elsewhere. It can be shown that lnZ��� is the
cumulant generating function for the heat operator:

 lnZ��� �
X1
n�1

�i��n

n!
hQ̂n
ic; (7)

where hQ̂n
ic is the nth order cumulant at large �. Hence the

probability distribution of measuring a heat transfer Q is
obtained by taking the Fourier transform P�Q� � 1

2� �R
1
�1 d�Z���e

�i�Q. For large � one obtains Z��� � e�G���

and P�Q� � e�~h�q� with ~h�q� � G���� � i��q and where
�� is the solution of the saddle-point equation
dG����=d�� � iq � 0. We evaluate G��� using the stan-
dard path integral and Green’s function techniques along
the Keldysh contour. The final result is the following form
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G����
�1

4�

Z 1
�1
d! lnf1�T �!��fR��!�fL�!�

��ei�@!�1��fR�!�fL��!��e�i�@!�1�	g: (8)

Phonons convey energy in units @! and this appears in the
exponential form with the factor �. It is easily verified that
Eq. (8) reproduces the correct first moment of Î given in
Eq. (4). The second moment is given by

 

hQ̂2
ic

�
�

1

4�

Z 1
�1
d!�@!�2fT 2�!��fL�!��fR�!�	

2

�T �!��fL�!�fR��!��fL��!�fR�!�	g: (9)

We have verified this also with the Langevin approach.
This bosonic fluctuation is similar to the optical one [19].

Symmetry.—We note the following symmetry of G:

 G ��� � G���� iA�; (10)

where A � �R � �L. Using the identification � �Aq
and the relation between h��� � ~h�q� and G��� immedi-
ately leads to the SSFT relation Eq. (1). Thus we conclude
that quantum heat transports satisfy the SSFT without any
quantum corrections.

The symmetry (10) contains information regarding
transport coefficients [9]. For fixed �L � �R let us make
the expansion hQ̂n

ic=� �
P
mLn;mA

m=m!. The nonlinear
response coefficients Ln;m are then given by Ln;m �
@n�mG���=@�i��n@Amj��A�0. This coefficient repre-
sents a nonlinear response of the general cumulants of
current to the thermodynamic force (�R � �L). The sym-
metry (10) gives the general relations between the coeffi-
cients:

 Ln;m �
Xm
k�0

m
k

� �
��1��n�k�Ln�k;m�k; (11)

with L0;m � 0. For example, we get L2;0 � 2L1;1 and
L4;0 � 2L3;1 � 6L2;2 � 4L1;3. The first relation is simply
the Green-Kubo formula relating the linear current re-
sponse to equilibrium fluctuations while the second leads
to relations between nonlinear response coefficients.

Typical distributions.—We present some results on the
form of the distribution P�Q� � e~h�q� for a small chain
(N � 2) connected to Ohmic reservoirs (~	L;R�!� � 	).
In Fig. 1 we plot ~h�q�, which is numerically obtained, for
different temperatures TL with fixed temperature differ-
ence TR � TL. In all temperature regimes, ~h�q� shows a
clear linear dependence at large q, and those are well fitted
by �Rq and ��Lq for q < 0 and q > 0, respectively. This
exponential tail is one of the characteristics in P�Q�.

We now study the effects of a finite � and nonlinear
potential using the classical system. We evaluate P�Q�
from direct simulations of the classical Langevin equa-
tions with white noise. In Fig. 2 we compare the simula-
tion results for different values of � with the asymptotic

function ~h�q� (obtained for @! 0). It is clear from Fig. 2
that convergence to the asymptotic distribution function
takes place on a rather large time scale. The nonlinear
case is also plotted for the same system with an onsite
potential V�xn� � �x4

n=4. In the inset, the function
ln�P�Q�=P��Q�	=� is plotted for three cases. The distri-
bution for the nonlinear case deviates from the harmonic
cases, and both the average heat current and its fluctuations
are suppressed. However, as the inset shows, SSFT is
satisfied in the nonlinear case, which indicates the symme-
try (10) and the relation (11) hold too.

Heat current fluctuations in a pure wire.— Using
Eq. (8), we can derive the heat current fluctuations for a
homogeneous wire connected to reservoirs through non-
reflecting contacts, a case for which the quantized thermal

FIG. 1 (color online). Plot of ~h�q� for various temperature
regime with TR � TL fixed to 1.0 �@k�1

B

���������
k=m

p
	. The parameters:

N � 2, m1 � m2 � m, k1 � k2 � k, and 	 � 1:0�
�������
mk
p

	.

FIG. 2 (color online). Plot of ln�P�Q�	=� from Langevin simu-
lations for the same system as in Fig. 1 for various �. Here P�Q�
is normalized so that its maximum is one. The large deviation
function ~h�q� is also shown by black solid line. The parameters
are N � 2, m � k � 1 kBTL � 10, and kBTR � 20. The non-
linear case has � � 2. The inset shows ln�P�Q�=P��Q�	=�, and
SSFT line q��R � �L� (black solid line). Heat transfer is mea-
sured at the contact to the left reservoir.
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conductance has been measured [15]. Consider a pure wire
with all masses and spring constants equal. If we consider
that the heat reservoirs themselves are semi-infinite wires
(i.e., the Rubin model of a heat bath) then it is easy to show
that the contacts are perfect and we get T �!� � 1 for
all ! within the allowed bandwidth. At low temperatures
and for small �T � TL � TR, Eq. (4) leads to the quan-
tized heat conductance g0�T� � hÎi=�T � �k2

BT=�6@�.
From Eq. (9) we now also get the thermal noise power at
zero frequency S0 � hQ̂

2
i=�:

 S0 � kBT
2
Lg0�TL� � kBT

2
Rg0�TR�: (12)

This is valid for TL;R in the temperature regime where
g0�T� can be measured [15]. The noise power is also
independent of details of the system. Independent contri-
butions from TL and TR are obtained since there are no
scattering process between phonons. Equation (8) with
T �!� � 1 gives us the generating function valid in the
same regime. While our results have been derived for a
one-dimensional wire with scalar displacement variables
they are easy to generalize. Similar results can be obtained
for realistic models [20] of nanowires and nanotubes.

Summary.—Unlike equilibrium physics there are few
general principles to describe nonequilibrium phenomena.
The exceptions to this are the Onsager reciprocity and the
Green-Kubo relations which are valid in the close-to-
equilibrium linear response regime. In view of this the
nonequilibrium fluctuation theorems are quite remarkable
in that they seem to be exact relations valid arbitrarily far
from equilibrium and from which one can recover standard
linear response theory. However, the full range of validity
and applicability of these theorems is still not known. In
this Letter we have derived the explicit distribution for
fluctuations in phononic heat transfer across a quantum
harmonic chain and have obtained the first proof of SSFT
in quantum heat conduction. We find that there are no
quantum corrections. We note that fluctuations in charge
current in mesoscopic systems have been already studied
both theoretically [17,19,21,22] and experimentally [23].
The present study provides a theoretical basis to study
fluctuation of heat transfer. The measurement of fluctua-
tions of phononic heat transfer in experiments is an im-
portant challenging problem. A modification of the setup
used in [15] should be able to make a measurement of
fluctuations in heat transfer. One possibility is to use
heaters with some feedback mechanism so as to maintain
the two reservoirs at fixed temperatures. The fluctuations in
the power from the heater would be related to the fluctua-
tions in the heat transfer through the wire.
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