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INTRODUCTION

IT is proposed in this paper to discuss the problem of the dynamical behaviour
of a system which may be regarded as an one-dimensional analogue of a
crystal, viz., an extended chain of connected particles with a periodic structure,
in other words, consisting of a great number of similar units each of which
is made up of a finite number of particles with different masses held together
by forces of interaction. To simplify the analysis, it is assumed that each
particle interacts only with its immediate neighbours; otherwise, no restric-
tion is laid upon the magnitude of the interacting forces.

The paper is divided into five parts. Parts I and II deal with the propa-
gation of waves in a periodic linear lattice with p particles in each unit cell,
and it is shown that the group velocities of the waves traversing the lattice
vanish for (2p — 1) frequencies, which we call the characteristic frequencies
of the lattice. In Parts III and IV, the spreading of an initial disturbance
localised in a finite region of the lattice over its entire length is considered
and an important result is established, viz., that the resulting vibration of
the particles of the lattice becomes a superposition of these (2p — 1) charac.
teristic vibrations. The application of the preceding results to crystal physics
and the nature of the normal modes of vibration of periodic lattices are dis-
cussed in Part V.

I. WAVE PROPAGATION IN. LINEAR LATTICES?

We shall consider a linear lattice of polyatomic molecules, consisting
of p atoms in its unit cell. Each cell contains one period of the lattice and
the masses of the particles in any cell are denoted by m,, m,,....m, We
assume small displacements of the particles when a wave propagates along
the lattice, but we restrict the interaction of the particles to their immediate
neighbours alone. The force constant between the gth and the (¢ 4 1)th
particles of any cell is represented by o,, ¢, denoting the interaction constant
between the last particle in any cell and its neighbour in the next cell. The
notation adopted here is explained in Fig. 1, where the small circles indicate
the equilibrium positions of the particles and the vertical lines the boundaries
of any cell.
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If x,, denotes the displacement of the gth particle in the rth cell about
its equilibrium position, the equations of motion for the particles in the rth
cell are given by

- m1551,r = (‘Tp + oy) xl,r"‘“pxp.-r—l — 01Xy,
—my %y, = (04t 0)) X4 p— g 1Xyms, r — OXgys,r (9=2,3....p—1)
—MpXp, = (0p17t0p) Xp,, — Op1Xp1,, — Tp X1, p1 1)
If we take the zero configuration for the potential energy as the energy
of the lattice when all the particles are in their equilibrium positions, and
assume that the displacements of the particles from their mean positions
are due to an initial disturbance imparted to a finite region of the lattice,
then the total energy of the lattice is a finite constant; in this case, the above
equations can easily be obtained from a Lagrangian formulation. The
expressions for the kinetic and potential energies of the lattice are given by

2T = 2 X myx, 2 (lay
ra

”~1
2V =2 [ 5 (X1, — Xpr-1)* +£104 (g1, — X,,.) ]

the summation extehding over all the cells of the lattice. It can easily be
seen that Lagrange’s equations of motion for the particles of the rth cell
of the lattice reduce to equations (1).

We shall assume wave solutions for equations (1) of the form
Xy = [ €0 g=1,2,....p), Q@)
where £ and w are functions of the real variable 6.

Each of these p equations represents a wave propagating through particles
of the same type in the lattice arrangement. The frequencies and wavelengths
- for a given disturbance must be equal, but the amplitudes of the waves are
not necessarily equal; they may differ in phase as well as in magnitude. The
amplitudes of the displacements of equivalent particles in successive cells
are equal when a wave passes through them, but their phases change conti-
nuously.

Substituting the set of equations (2) in (1) we get
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—opifor + 4 f;—0,fru=0 (@=2,3....0—1 (3
~0pfy €0 —0p1fpat asfs=10
where :
a, = (0,14 0, —mw?), g=2,3,....p) .
and
4 a, = (0 + oy —mw?
Eliminating the /s from the equations (3), we get
a —o — 0,460
— 0 ay —0y
—02 43 —0O3 ° *
=0 @
TOp-2 Qg1 0p
—ope 0 G

Expanding this determinant along the first row and column by Cauchy’s

method, we get

1Ay —0,2| Ay gel — 0105670 Ay 5p] — 010,4€"0) Ags 2| — 0,7 Augl =0 (5
If we denote the (ij)th element of the above determinant by a;; and the co-
factor of a; by A, then — | Ay ;| represents the cofactor of a; in | Ay, | .
The notation is adopted from Aitken’s Determinants and Matrices.3

It can easily be seen that | Aj;ap| = | Ajype | and each is equal to

CgGge s o '0?—1'

Hence (5) becomes

By (W) —0y? | Ay pp™ | = 20,04.. . .0, cOs 8 6)
where
al -0y .
— 0y a —o
"‘0'2 a3 —03
‘ TOps Qp1 T Opmy
) 01 G
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| Aj1,p5 | can be obtained by suppressing the first-and the last rows and
columns of the above determinant.

From the difference equations satisfied by the contmuants it can easily
be proved that

Al’ (0) = 0103....0p (2 + X 0’ ’ ) (7)
r=1
and
1 .
| Auigp® | = 0105 ...0pm 3 a; ‘ ®

Hence the term independent of w in (6) is equal to 20,0,. .0, (1 — cos £).
Equation (6) can be expressed as a polynomial in w? and we can rewrite

(6) as :
& (w?) = sew??+- sm”‘?—l— «+ s, w¥+ « + 55 (1—cos8) =0 (9)

The coefficients s, ,. . . .5, are expressed below as symmetric functions
in the masses and force constants of the lattice.

SO-_—_ (_'_"l)pmlmz- . mp

5= (—1-'mym,. .. Z; 1+ ) where ¢4 = o,.

Spt = (~— 1)‘ 002, . . .O'pz Z'm,-‘m,-,. . .m," (A — B) (10)
where | . . ,

: 1
. A—(;?_‘- o—1+ o +‘7:‘;—1)(‘7~i, u+1+ + o,
1 1
(‘T—i, + i1 + + Cp

and

1)(1—+ 1+1+ 4 )

(T 4 Ly,
z,+1 Tp—

The summation above extends over all the different ¢ combinations .of

the symbols #, iy, . . ..i, which represent the first p natural numbers in some

order or other. We assume without loss of generality that the i’s in any

term of the summation are arranged in order of increasing magnitude. The

two different sums involving A and B in (10) represent the coefficient of w¥

in A,(w?) and o,® | As1pp | Tespectively; clearly (A —B) is -positive "and
B vanishes when 4, = 1 or i, = p.

Spq = —0102 a?(m1+m2+ -’rmp)(l + + +~1—)

9

S, = 2(*1, T3 .. -0p.
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s, and s,_; being always of the opposite signs, it follows from Descarte’s
rule of signs that equation (9) cannot have any negative roots for w? and

%

hence all its roots are real and positive. W is a polynomial of degree

(p —1) in w? with constant coefficients and hence all the roots of %‘:12 =0

are independent of 6. It follows that. (9) cannot have any multiple root
which is a function of 6. In this paper, we consider only the case of non-
degenerate vibrations in which all the roots of (9) are different for all values
of 8 in (0, 27). Since (9) is an equation of degree p in w?, for each value
of 8 we get p values for w? which are the roots of (9).

From (3) and (9) we can easily see that f and w are periodic functions
of 8 with period 27 and hence the values of 8 outside the range (—w, ) are
mere repetitions of those inside the closed interval —= < 8< = for x,, in (2).
Therefore, we write

1 1 1 1 0
——ng)\ 2d,where)‘ 3md (11)
.| A|>2d and hence the shortest wavelength equals twice the
lattice spacing.
II. Group VELOCITY OF THE WAVES

Differentiating (9) with respect to 6, we arrive at the following expression

for the group velocity of the waves traversing the lattice
dv — Syd sin 0
d(l - (0) 2W (ps w2?—2+ (p — 1) s1w2p—4+ + Sp_l). (12)

When 0 =, ': vanishes and thus for each of the p frequencies
d@)

corresponding to this value of 6, the group velocity of the waves vanishes.
When however 8 = 0, one of the roots of (9) becomes zero and the expression

(12) tends to a definite limit d :S?’ corresponding to this zero frequency.
: . -1

For the remaining (p — 1) roots of (9) which are non-zero, the expression
(12) is equal to zero. Thus, for a lattice with p particles in its unit cell, there
are (2p — 1) characteristic frequencies for which the group velocities of the
waves are zero.

The group velocity is the velocity with which the maximum amplitude
of a train of waves of a given frequency travels and for an observer moving
with this velocity in the direction of propagation of the waves, the disturbance
will turn into an approximately simple harmonic wave-train of an assigned
wave-length A, The fact that the group velocity of the waves corresponding
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to the (2p — 1) characteristic frequencies vanishes is highly significant and
implies that wave clusters corresponding to these characteristic frequencies
do not move at all while individual waves may spread along the lattice with
their wave velocities. Hence if a finite region of the lattice suffers an initial
disturbance, all wave clusters other than those that correspond to the limiting
frequencies would have spread along both sides of the lattice so that after
a certain time, the motion of the particles near the domain of initial disturb-
ance will be predominantly influenced by wave-trains with zero group
velocity. It follows that the state of movements of these particles is one of
_ a stationary vibration, consisting of a superposition of the (2p —1) charac-
teristic vibrations of the lattice—a result that is rigorously proved in
Section III. :
III. EFFECT OF AN INITIAL DISTURBANCE

In this Section, we discuss the spreading of an initial disturbance in the
form of small displacements of a group of particles in any cell into those
regions which were previously undisturbed. Due to the interaction of the
particles with their neighbours, the energy concentrated in a limited region
of the lattice is progressively transferred to the entire length of the lattice
and thus all the particles are set in agitation and execute small oscillations
about their mean positions. The general expressions for the displacements
of the particles from their mean positions can be obtained by superposing
wave solutions of the type (2) for all values of # lying in one period of w, i.e.,
within the closed interval (0, 2%). Hence, if we denote the roots of (9) by

Wi, Wa....Ws; —W;, —Wy,....—ws and the corresponding values of
FobYfans fazs - Jops fapsrs -+ -Sqop Tespectively, the general ‘expres-
sions are given by

1 27

Xgr = g7 2 Z' [ g5 8) €% + £ 0 (6) 4] e“”"dﬂ
[

(g=1,2,....p (13)
Let us now suppose that initially all the particles in the cell with index zero
are displaced by small amounts and the velocities and displacements of all
other particles are zero.

(i-e) X4, (0) = o8, and x,,(0) =0 (14)
for all g and r.
Then from (13) we get

2m

xz] ” (0) 4 2 (fq,: + fq s+p) e—"'@ db, (15)

3—1
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Let us now expand b (fc+ f4s+p) as @ Fourier series in the form
8=1

2w

p +oo . 1 ? .
2 (fos S o) =2 Ay ¢ 50 that Ay= 5 Z (fost foso) e** do.

0

Then from (13) and (14) we get

1 2w
%= o f UusFas 40

27
0= 4‘1;f(fq,:+f'q,;+p)e_ir9d0 for all r == 0.
0 -

Since 2% f EF10 df = §,,, we get
]

si(fqd+fq,ﬁ?)=2aq(q=1,2,....p) ¢ {16)
Similarly, from (14) we get
2T
1 2 17,
0= Z?r,i W, (fg.s —fasip)e? do for all r.
. Z_'lws(fq.s—fg.ﬁ_p)==0(q=1,2,....p) a7n

Now, from the set of equations (3), the ratios of the quantities f;, f5. .. .1,
can be uniquely determined. Let us suppose that when w = w, the ratios are
given by '

Srsihostoo ot fpe=8 WD g W2 1g,(w).
Also, since the equations (3) are unaffected by writing — w for w, we have
f;,rl-?:f&.ﬁ-p:' e :f?,s+? =& (W.rz):gz (Wsz):' cens gp (Wsz)'
We shall write f,, = A, g, (w®) and f o= A8, (W7 13

The g’s are known from equations (3) and the A’s are the unknown
quantities. By substituting (18) in (16) and (17) we get 2p equations in the X’s
which enable us to determine them in terms of the g’s and «’s. Thus the
equations (3) together with the initial conditions are sufficient to determine
the f°s. To obtain the actual values of the f’s as functions of the frequencies of
the waves, the following procedure may be adopted. From the initial condi-
tions (14) and the set of equations (1), the initial values of the higher deriva-
tives of the displacements of the particles can be determined and hence from
the initial values of the derivatives of orderup to (2p — 1) of the displacements
of the particles, we get the following 2p linearly independent equations
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? .
W fout fand =hyy ¢ =01 vc.p =1) (19)
EW (fre—f o) =0 (r=0,1,....p —1) (20)

where h = h(m, a,0, 6). For example, h,, = 2a,, etc. Since by assump-
tion the roots of (9) are all different, the square matrix of the coefficients of

(fos—fastp) in (20) is non-singular and hence it follows that *
fos=Fost2@s=1,2,....p) @D
The equations (13) can now be written as
1

Yor = 4z z f @5 (€ + ') e~ df

8=1

2‘!‘—

-2 f Sos @+ e 0 (g=1,2,....p) (22)

where O < B < = (since f and w are periodic functions of 6).

We shall find the asymptotic value of the above integral for large values
of ¢ by employing Kelvin’s method of stationary phase.* When w, is large
compared to r, cos w;t is a rapidly oscillating function and hence the maximum
contribution of the above 1ntegral arises from those points at which w;, is

stationary (i.e.) at the points where 717: =0. ... 8=0 or =

Now the asymptotic value of the integralé I =— / ’ f(x) €*** dx for
large values of ¢ is given by ’

'\/271‘ f(x)ei(w(lo)ti
L~ 2 oGt I3

where the positive or negative sign in the exponent is to be token according
as w” (xp) is positive or negative and the summation extends over all the

points in the interval (@, b) which are solutions of the equatxonfl 0.

Applying this result to (22), we find that the asymptotic value of x,,
for large values of ¢ is given by

we= () £riomeo(nr+)
+ (—1)y (27”) 2 %{’;':T(% cos (vﬁ.pt + :—I),
(¢4=1,2,....p) (23
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wherethe positive or negative sign in the cosine terms is to be taken according
as w," (6,) (6,=0, =) is positive or negative. v, and v,,, are the values of w, ()
when 8 =0 and #. f(0) and f(w) are real and v, = 0. Hence, asympto-
tically ’

(1) the state of vibration of the particles tends to a superposition of the
(2p — 1) characteristic vibrations of the lattice and

(2) the amplitudes of vibrations of the particles vary inversely as the
square root of the time elapsed. ,

IV. PARTICULAR CASES ‘

As a particular case of the above general theory, we shall consider the
vibrations of a monatomic lincar lattice which was first studied by Hamilton
in connection with his researches on the theory of the dispersion of light.’
The equation of motion for the rth particle is given by mx, = o (x,-; +x,4;
— 2x,), where m is the mass of any particle and o is a force constant.

If we assume wave solutions for the above equations of the form

X, = f(6) @) (24)
we can easily see that w is given by the roots of the equation
mw? = 4o sin? /2. : (25)

If the initial conditions are x, (O) = ad,,
and %,(0) =0 (26)
for all r, then the general expressions (22) for the displacements of the particles
about their equilibrium positions reduce to
2T
x, = Z,,a;.‘. f (eiwt + e_z‘wt) e_irg do
[
™

= ; J cos (vt sin ) cos 2r8d8

= aJy, (v1), (27)

where v = 4/4o/m—we arrive at the same result obtained by Hamilton in
a different way. '

Hence when vt is large compared to r, the asymptotic value of (27)

becomes
X, = (%t)i (— 1) cos (vt - g) (28)
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showing that the motion is periodic with a frequency that is precisely the
characteristic frequency of the lattice. '

It is interesting to consider the way in which the nth particle begins its
motion. The Bessel function attains its maximum value when its argument
is slightly greater than its order so that the maximum amplitude of this
particle is attained only after a time given by the inequality v > 2n. Also
since J,, (2) approaches zero as z** and the first value of z for which J,, (2)
vanishes lies between 4/2n 2n + 2) and /2 (2n + 1) @n + 3), we can easily
see that the larger # is, the slower is the beginning of the motion and a longer
time does this particle take to reach its maximum in one direction. Finally,
when vt is large compared to n so that the asymptotic approximation for
the Bessel function can be applied to (28), all the masses within the belt J-nd
and those in the neighbourhood of the nth particle vibrate with the limiting
frequency of the lattice, consecutive particles always oscillating with opposite
phases.

The case p = 2 corresponds to the vibrations of a linear lattice of diatomic
molecules which was recently discussed by Nagendra Nath and S. K. Roy.%?
By evaluating the values of the f”s as functions of the frequencies of the
waves, we can easily see that (23) reduces to the expressions obtained by
these authors by using the method of steepest descents.

V. SoME GENERAL REMARKS

The dependence of the amplitudes of the particles on time is instructive
and indicates that the vibrations decay slowly, the law of decrease being #-%.
This is due to the fact that the initial energy is progressively transferred to
the neighbouring cells and the amplitude of any particle is proportional to
the square root of its vibrational energy. The damping of the vibrations
suggests the possibility of restricting our discussion to a finite but long
linear lattice, with its ends far from the region of initial disturbance. In
such a case, the outgoing cluster of waves would have almost died out before
it reaches the end and gets reflected, and hence the boundary exerts prac-
tically an insignificant influence on the subsequent vibrations of the particles
of the lattice. Again for all observations confined within the time-limit T
which is the time taken by the fastest group to reach the end, the above
analysis holds good rigorously and T can be made sufficiently large by taking
the length of the lattice great enough.

Restricting ourselves to the region in which the disturbance has settled
into a stationary mode of oscillation, the asymptotic form (23) suggests a
striking similarity of the vibrations of the particles with the normal modes
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of vibrations of polyatomic molecules characterised by a common frequency
and phase for the vibrations of all the atoms of the molecule. The displace-
ments of the particles of the lattice from their equilibrium positions arise
due to the transmission of the initial energy by waves of all possible wave-
lengths and amplitudes to them, but the asymptotic state of théir movements
is built up of a superposition of (2p — 1) normal modes of vibration which
differ entirely in their behaviour from a wave-motion involving a conti-
nuous change in the phases of particles. The (2p — 1) characteristic modes
of vibration fall into two classes, one consisting of (p — 1) modes in which
equivalent particles in successive cells vibrate with the same phase and
amplitude at any instant, while in the other p modes due to the dependence
of the amplitudes on the factor (— 1), equivalent particles in successive cells
vibrate with opposite phases. Thus there is a complete agreement of these
results with the general theory for three-dimensional lattices proposed by
Sir C. V. Raman! that a crystal with p atoms in its unit cell has (24p — 3)
normal modes of vibration of which 21p modes belong to a set in which
vibration occurs with alternate layers moving with opposite phases while in
the remaining (3p —3) modes, equivalent particles in consecutive cells =
vibrate with the same amplitudes and phases.

The author feels deeply grateful to Professor Sir C. V. Raman for the
many uscful discussions he had with him and for his valuable suggestions
and guidance in the preparation of this paper. :

SUMMARY

The nature of wave propagation in a linear lattice consisting of p
particles in its unit cell has been studied and it is shown that the group
velocity of the waves corresponding to each of the (2p —1) characteristic
frequencies of the lattice is identically equal to zero. It has been further
proved that the state of movements of the particles resulting from an initial
disturbance localised in a finite region of the lattice tends asymptotically to
a superposition of the (2p —1) characteristic vibrations of the lattice. In
(p —1) modes of these vibrations, equivalent particles in successive cells
vibrate with the same phases and amplitudes, while in the remaining p
normal modes, vibration occurs with equivalent particles moving alternately
with opposite phases. These results form an one-dimensional analogue of
the general theory of vibrations of crystal lattices formulated by Sir C. V.
Raman and are generalisations of the results corresponding to the cases p = 1
and p=2 which were first obtained respectively by Hamilton and by
Nagendra Nath and S. K. Roy. In view of the decay of the amplitudes of
vibrations of the particles with time, these results hold good for a finite lattice
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also, provided its length is sufficiently large and the domain of initial disturb-

ance is far from its ends.
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