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Fig 6.1: Geometry for Bragg reflection 

the Bragg regime is shown in Fig 6.1. In the case of a plane mo~fochrolnatic wave 

incident on the medium at z=0, only four out of the six components of the E,H 

arc indel)r~~clcnt. We cl~oose the thcsc indepcntlcnt co~npo~lcrlls lo bc the x arltl y 
components of E i . e . ,  (Ex, Ey) and H i.e., (I-lx, Hy). .Then the Maxwell's equations 

take the form: 

where. 

D ( z )  is a dilferential propagation matrix given by: 

1 - X2/E3 0 
0 '  6 sin 2qt 
0 0 

I 6 sin 2qz 0 E - X2 - 6 ~ 0 ~ 2 ~ 2  0 

I1cre 

A' = (2n/X)&sin 0,  
0, n ~ l g l e  of i~~cidcncc with respcct to lhc pilcl~ 
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eo = dielectric constant of the incident medium 

X = wavelength of light 

6 = (€1 + €2)/2 
6 = (€1 - c2)/2 
q = 2 r / P  
P = pitch 

€1, €2, €3 are the principle values of the dielectric ellipsoid with €3 along the z 

axis 

Integrating ( 6.1) over one period gives 

U(Z) = F(0, z)U(O) (6.2) 

whcre F is a 4 x 4 transfer matrix. The eigen vectors of the matrix F gives the 

net electromagnetic field for the proper modes. In the reflection band these modes 

correspond to the waves formed by the superposition of the waves propagating along 

the forward and backward directions. The electromagnetic field vector components 

a t  any arbitrary location (nP+h) (for any integer n and 0 < h < P) is determined 

by ntultiplying the eigen vector of F(0,nP) by F(nP,h). Using this method we can 

study the polarization structure of the eigen waves. 

In an experimental situation the sample is usually confined between two homoge- 

neous transparent isotropic media. To analyze such cases we express the Berreman 

vector U(z) as a superposition of the waves in the confining media through a trans- 

formation [4] 

'P = BQ \ 

Here B is a 4 x 4 matrix with columns representing the proper modes in the isotropic 
t 

media (llte eigenvcctors of D(isotropic)) and Q = [ t ,  t, re r, ] with t,, t, 

representing the complex amplitudes of Ex, Ey modes propagating in the +z direc- 

tion and re, r ,  are the corresponding strengths in the -r direction. 

Thus wltcti [ i l  i2 1, [ r1 r2 ] and [ I1  t2 ] are the strengtlls of the incident, 

reflected and transmitted Ex and Ey modes respectively, equation ( 6.2) can be 

writlen as 
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where G ,= B-IF-'B. Prom equation ( 6.3) we obtain 2 x 2 transmission matrix 

T and reflection matrix R to be such that: 

and 

The eigenvectors r of the matrix G give the proper modes of the multilayer 

in terms of the modes in the bounding isotropic media. This allows us to analyze 

the attenuated waves in the reflection band in terms of the forward and backward 

propagating waves. For example in the case of normal cholesterics we see that a 

standing wave is formed by the right and left circular waves propagating in the +z 

and -2 directions. Thus, in this case we have, r(1) = j r (2 )  and r(3)  = -jI'(4). 

It should also be mentioned that the vector Q(P) is linearly related to Q(0) 

through the Berreman matrix F. We also see that 

where 

since 

we get from 6.4 

W(0)'FfSF@(O) = @(O)'S@(O) 



Il'ig 6.2: The first three orders in the reflection spectra of a cholesteric n soliton 
lattice for normal incidence at H = 22065 Gauss, and X ,  = Contineous line 

,, is lllc (/<, - LCv) reflection. Broken line rcpresents the (E ,  - LCx)  rcflection. 1 l ~ c  
(Ex  - E,) aad (E, - Ez) reflections are represented by the doted line. n, = 1.595, 
and no = 1.505. 

Fig 6.3: The imaginary part of the wavevector Wk in the first reflection band of the 
s soliton iabticc. 
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Equation, 6.5 shows that the matrix F(0,P) is symplectic [lo]. Then from the 

properties of symplectic matrices we get that if A is an eigen value then so are 

A*, 1/A and l/Xg. where A* is the complex conjugate of A. This property of the 

simplectic matrices results in the coupling of the eigenvalues. For example far away 

from the refiection band we have all the X's complex with AX* = 1. Here we have 

only two independent eigenvalues. Let this be A1 and Az then the other two are 

fixed as A; = l / X 1  and A; = 1/Az. In the Bragg band we have two real eigenvalues 

with one being the inverse of the other. The other two eigenvalues are complex 
9 

with unit modules and are complex conjugates of each other. On the other hand 

in the non-Bragg band we have complex eigenvalues with the modules not equal to 

one. Thus here all the eigenvalues are coupled and are given as ( A , ,  1/A1, A;, l /A ; ) .  

Therefore, in the non-Bragg regions there cannot be any propagating modes since 
\ 

.the medium is non absorbing. 

Using ~nalrices I2 and '1' we can compute the reliection and transmission spectra 

of the soliton lattices. As mentioned earlier the soliton lattice exhibits multiple 

reflection bands. In addition we find that when the applied field is close to the 

cholesteric-nematic transition field HCh-N some of the higher orders are more intense 

than the first order. In Fig 6.2, we show the reflection spectra of a n soliton lattice. 

It should be remarked that each Bragg reflection peak of a normal cholesteric splits 

here into three peaks. 

In Fig 6.3 we show, the computed dispersion curve in the first reflection band of 

the same n soliton lattice. It has three sub-bands. The eigen modes of the trans- 

mission matrix T are linear in all the three regions. For regions I and 111 we have 

a propagating mode and an attenuated mode. The attenuated mode experiences 

reflection and the net vibration at any point is obtained by adding the forward and 

backward propagation waves of the same polarization (The eigen vectors of the ma- 

trix F gives this net vibrations). For these standing vibrations E is perpendicular 

to H with a relative phase of n/2 between them. The propagating modes in I and 

I11 are orthogonal to each other. The same is true for attenuated modes also. This 

is clearly sekn in the reflection spectra given in Fig 6.2, where the side lobes df each 

reflection band has orthogonal polarization states. In region I1 we have non-Bragg 



Fig 6.4: The variation of IE21 with z of the attenuated modes in reglons correspond- 
ing to I and 111 (broken line) and in region I1 (doted line). The same in the reflection 
band of normal cholesteric (continuous line) is given for comparison. 



Fig 6.5: The transmission coefficient 7 (a) and reflection coefficient R (b) of a 
r so l i t o~~  lattice in ihe presence of linear dicliroism. n, = 1.595 + .025j, n, = 

- 1.805 + .001j, other parameters being the same as Figure:6.2 
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reflection where both eigen modes are attenuated. Thus for any forward propagat- 
> 
ing wave there is a wave going in the opposite direction, which is interestingly is of 

orthogonal polarization. Because of this reason the reflected light here will always 

have the polarization orthogonal to that of the incident wave. This is shown in Fig 

6.2. The net wave in thisxegion (which is a superposition of the forward and back- 

ward propagating waves of orthogonal polarizations) is elliptical with its ellipticity 

varying along the twist axis. 

13y contrast, i n  t l ~ c  reflection band of a normal cliolcsteric t l ~ c  net attenuated 

mode is locally linear and is coupled to the local direct,or. The E and H vectors of 

this mode are parallel to each other with a phase difference of n/2 between them. 
7 

In Fig 6.4, we give the variation of I E l2 as a function z of these attenuated 

modes in the soliton lattices and the usual cholesteric. 

The reflection and transmission spectra of cliolesteric soliton lattices get altered 

considerably when we include linear dichroism. This is shown in Fig 6.5 for two inci- 

'dent linear polarizations. It should be noticed that on the shorter wave length side, 

the Ey mode (marked YY) is found to be strongly reflected as well as transmitted 

compared to the Ex mode (marked XX). Also we get, an anomalous transmission 

coniparcd to l l ~ c  n~cdium wit11 avcragc rcfractive indcx. 

The optical properties of cholesteric soliton lattices are in many ways similar to 

that of cholesterics at oblique incidence [8]. Many of it's featuresdike the multiple 

Bragg reflection, the splitting of Bragg bands, and the anomalous transmission can 

be seen here also [9]. 

6.3 Phase grating mode 

All the interesting results of the previous section are rather difficult to realise in 

practice. This is due to the large period of these lattices; On the other hand 

this large period of the soliton lattices makes them more suitable to be studied in 

the phase grating mode. In fact in this mode we require periods of the grating 

to be large compare to the wave length of light. Here the direction of incidence is 

perpendicular to the twist axis. In this geometry an incident plane wavefront emrges 

as a corrugated wavefront. This is shoyn in Fig 6.6. Raman and Nath [RN] in 1935 

[lo] developed a theory of isotropic gratings with phase modulation. This theory 
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Fig 6.6: Geometry of the phase grating mode 

in ils si~l~]>lest form has been applied to anisotropic dielectric lratings like that of 

twisted liquid crystals [2,3]. This theory in the form applied to liquid crystals 
makes the assumption that the amplitude of the phase modulation of the emergent 

wavefront is smaller compared to grating period. This is equivalent to assuming that 

(i) tlre sample is thin, (ii) the birefringence is small and (iii) the periodicity of the 

medium is large compared to the wavelength of light. In effect here we assume that 

there is no appreciable diffraction taking place inside the medium, i .e . ,  the wave 

front is considerably corrugated only when it emerges out of the medium. 

In the RN theory the emergent wavefront is described by 

where t is the thickness of the sample, A0 is the amplitude of the incident plane 

wavefront and l a ,  is the refractive index for the vibration perpendicular to the twist 

axis at any point z given by 

- - -- 
~ a :  ~ a :  +T 

l a ,  and no being the principle refractive indices parallel and perpendicular to the 

director,rcspectively. The diffractiod pattern is then given by the Fourier transform 

of U(Z) 

E(I{) = 1" U(z) exp(-jI{z)di 
-03 

Where 
27r sin Od 

I{ = 
A '  



Fig 6.7: A comparison of the intensities in the central and second order of the phase 
grating diffraction pattern computed using RN theory (contineous) and RY theory 
(I)nolten line) as a function of the sample thcikness 'd' for a T soliton lattice at  
I1 = 22065 with other parameters same as in Figure:6.2 
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Od being the angle of diffraction. 

The above assumptions are not always valid in usual experimental situations. 

And in triost of the situations the internal diffractions are important. In such cases 

a multiple beam analysis [ll] wherein we consider more than one plane wave prop- 

agating inside the medium, is very useful, In this paper we'follow the method of 

ltokusliinla and Yamakita [ItY] Illland compare the results with those obtained 

through Raman and Nath theory. 

In the IEY theory we Fourier expand the dielectric tensor and electromagnetic 

field components as - 

2n 
where q = --. and qo = &sin p 

P 
Mere p is the incidence angle with respect to a plane normal to the twist axis. 

Thus we can express tlie Maxwell's equations for the tangential field components in 

the zx plane in the form, 

Ilere~;, are (271 + 1) x (212 + 1) submatrices with elements q j n l  = ~ i j l - ~ ,  q = 6nlql, 

q, = lq + qo and e,,  l ~ , ,  e,, h, are (2n + 1) column matrices. Equation ( 6.6) is solved 

nu~ncrically for 11. 

In the simple theory of RN as the sample thickness increases the number of 

diffraction orders increases. While in the RY theory the number of diffraction orders 

increases up to a certain thickness beyond which it decreases. We compare in Fig 6.7 
the results of RN and RY theories in the case of normal cholesteric soliton lattice. 

The intensities of the central and second orders are given as a function of the sample 



Diffraction Orders 
Fig 63:  The asymmetry in the diffraction pattern of the n soliton lattice same as 
in figure:G.7 with w = nl16. 

Diffraction Order Diffraction Order 

Fig 6.9: Diffraction due to the segregation of absorbing grains. For N-W soliton 
lattice (a) and for n soliton lattice (b). P 3 19pm, and the grain refractive index 
11 = 1.505 + .02j. 
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thickness. We see that the RN theory is valid only up to certain thickness (in our case 

7 p ) .  It must be remarked that in general in the RY theory (for cholesterie soliton 

lattice) each order is elliptically polarized. But a t  low values of the birefringence 

they are nearly linear states. In RN theory, however, they are strictly linear states. 

When the angle of incidence w with respect to the field direction is such that 

0 < w < (see Fig.6.6) the diffraction pattern is asymmetric this is shown ifn Fig 

6.8. This feature is typical of a soliton lattice. When the structure is absorbing 

we have also linear dichroism. Then the development of the soliton lattice can be 

easily recognized. Here we find for w = 0 all the orders to to be weak for positive 

dichroism. This implies that th'e weakly twisted regions are nearly parallel to the 

field. 

We shall now consider the peculiar features associated with the ferrocholesteric 

solitoli lattices. One important featurc is the migration of the magnetic grains. The 

grains can either be transparent or absorbing. When the grains are absorbing the 

rncdinrn also become absorbing. Since the concentration of tlie grains along tlie twist 

axis is notiuniforni this absorption will also be nonuriiforrn along the twist axis. 'I'liis 

nonuniformity alone results in diffraction when the incident polarization is parallel 

to the twist axis. This kind of diffraction is peculiar to the soliton lattices in the 

sense that they are totally absent for undistorted system. This is depicted in Fig 

6.9. In Fig 6.9a we show, the diffraction pattern due to N-W soliton lattice obtained 

for X .  < 0 niaterials. This is very dilrerent from diffraction of the soliton lattice ill 

xa > 0 materials (Fig 6.9b). The peculiar feature of the diffraction in N-W soliton 

lattice is that intensity fluctuates from order to order and we find the even orders 

to be less intense than the odd orders, whereas for the double n lattice the intensity 

decreases monotonically. This feature in the pattern could be used to distinguish 

N-W lattices of X, < 0 materials from soliton lattices of X, > 0 materials. 

In these calculations we have ignored the Faraday rotation due to the magnetic 

grains. This parameter itself can considerably alter the diffraction pattern even in 

simple ferrocholesterics [12] 

6.3.1 Test for twist induced biaxiality ' 

It is now well established that cholest&ic liquid crystals are in principle biaxial [13] 
T l ~ c  inlicrcnt cliirality arid the hintlercd rotation of the molecule due to t l ~ e  twist 



Diffraction Order 

Fig 6.10: 'I'llc cotr~l)utotl tlilfri~ction patl,crn t l ~ ~ c  to tllc virriatior~ of twist i~ltlucctl 
biaxiality alolig the twist axis of a n  soliton lattice. 
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are the two mechanisms proposed [13] to expain this biaxiality. It has been argued 
that the induced bixiality increases with increase in twist. To our knowledge, no 

direct optical measurements have been purposed to verify this. It is easy to see that 

twist induced bixiality in the soliton lattice will vary as function of z resulting in 

a fluctuation in refractive index nl( As a result of this effect, for the incident light 

with polarizalion parallel to the twist axis, we get a diffraction pattern. In Fig 6.10, 

we show one such diffraction pattern computed by assuming th'e bixiality to vary 

linearly with twist. The pattern appears even for Anll as small as 5 x Thus, 

the method appears to be sensitive enough to reveal the. twist induced bixiality. 
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APPENDIX A 

GEOMETRICAL THEORY OF DIFFRACTION 

Geometrical theory of diffraction(GTD) deals with Fresnel diffraction. It is a 

recapitulation of Young's idea of diffraction, viz., diffraction is a manifestation of 

interference between the light waves directly transmitted by an aperture and waves 

emitted by the boundary. From the point of mathematical computations this theory 

is quite simple and straightforward. Also it is possible to easily and physically ac- 

count for many of the strange and peculiar facts associatkd with Fresnel diffraction 

patterns. GTD has a long history. Many of its essential steps were worked out by 

the Raman school [I]. Later thery were rediscovered by the successive investigators 

in particular by Iceller [2]. For an historical account see ref [3]. 

Diflmction by thin edge of arbitrary shape 

'Using I<riclil~off's ll~eory one can in principle calculate llie I~rcsnel difIraction pattern 

of Llie obstacles and apertures. But the calculations are difficult and wherever one 

got the answers a physical understanding was elusive. In 1888 Maggi showed that 

the I<irchlioff diffraction integral may be reduced to a sum of ( i )  a wave propagating 

according o the laws of geometrical optics called the geometrical wave, and (ii) a 

wave originating from every point on the boundary of the obstacle or aperture - 
callcd the boundary wave. For an incident spherical wave consider a cone forrned 

by the rays emitted by the source and the boundary of the aperture. Then this 
bor~ndary wave can tlien be written as: 

where, 

p = distance of the point of integration from the source, 
r = distance of the point of integration from the point of obeservation, 
01 = angle of reflection at the cone surface, 
0, = angle of incidence at the curved element of the edge, 
O3 = angle of reflection at the edge. 

The a!>ove integral is highly oscillato~y. Thus substantial amount of contribution 

corl1c.s fro~n  only a, f(:w poin1.s (1,5,11 ca.llrcl poles, l'l~c~sc. a.rc ptiir~l,~ on I,llc l)o~rntli~ry 



1 

wllcre the phase is stationary with respect to the movement on the boundary curve s. 

This condition of stationarity of phase on the contour s gives the reflection condition 

COS 0 2  = - COS 19, 

Tllus a t  any point of observation the boundary wave contribution is essentialy re- 

duced to that from a few points on the boundary. ~amachdndran [6] showed that 
these contributions will have an additional phase of f n/4  depending upon whether 

the point is one of maximum or minimum path with respect to the point of obser- 

vation. 

, 
Corner radiation 

This method of stationary phase fails at the sharp corners of obstacles and apper- 

tures. I<athavate pointed out that these points acts as sorces of spherical radiation 

[7]. We find the corner radiation to be given by [a]: 

iX sin E cos(n, r) 2% 
v, = - exp(-ikr)- 

47r T dl dz 
where, 

t = angle bctwccn t l ~ c  two local tar~gcnts to t l ~ c  bo~uldary a1 t l ~ c  
corner 

= the perpendicular distance from the point of observation to the 
sorce 

= components of the vector joining the foot of the perpendicular to 
the corner j 

Surjuce diflmction 

So far we have restricted ourselves to infinitly thin diffracting objects. In the case of 

objects wit11 finite lateral thickness the diffraction pattern can be very different as 

was s11own by Italnarl and I<rishan [9]. In the case of smooth objects light actualy 

creeps along the surface, always leaving the surface along the local tangent. This 

explains the observed difference between the Poisson spot intensity of a disc and a 

sphere of equal diameter [9]. 

Generalized Fermat 's principle 

All the avove effects could be accounteckas the result of one principle known as the 

gonc-ralizc>tl fcr~\ri\ts principle [lo]. 'Shis s h k s  that light is always so dilrractcd that 



the path chosen from the source to the boundary and to the point of observation is 

an extrimum. 

Ijy i~ppca l i~~g  lo Son~nlerfeld's iheory of dilrraction at a straight edge [Il l  I<eller 

worked out the amplitude of the diffracted field. When the light is incident at an 

a ~ ~ g l c  (1 011 a straight edge thid field is given by: 

with 
exp(-in/4) 

Do = - 1 
f 

1 

2(2rk)'I2 sin f f  cos[(d - do)/2] cos[(d + d0)/2] 

U, is the incident wave, q5 and do are the angle made by the incident and dilfracted 

wavefronts with the diffracting plane. We take the + (or -) sign when the iricident 

clctric polarization is parallel (or perpendicular) to tlie scrccn. 

This gives the diffracted rays travelling on a cone symmetric about the edge. For 

11or111al incidence this predicts tlie edge to emmit cyli~ldrical waves as fi1.st sc~ggcstctl 

by Itaman [l] and Rubunowicz [5]. 

I<eller argued that the edge with a finite curvature emits cylindrical waves lo- 

cally. Thus the diffracted wavefro~~t in this case will be curved. From light flux 

conservation I<eller showed that, the diffracted rays in such cases to be given by: 

Where p, denotes the distance from tlie edge to the caustic measurctl negatively 

in the direction of propagation. Hence as we cross the caustic U gets an extra phase 

of n/2, and the expression itself is not valid at and near the caustic. 

App2ications;of GTD 
GT]) cam be used to si~nrllate the tliffraction pattern of complicated objects. These 

patterns are fou~ld to agree very well with the experimental results [12]. Ilowever, 

it has its own limitations. For example it does not smoothly go over to the Frau~i- 

Iial~fer patlcr~i a ~ ~ d  gives si~~gularities at the caustics. Many of this proble~~is are 

overcome in the Uniform theory of diffraction which has been dealt with exhaus- 

tively l)y McNa~na,ra et.  al., [13]. We w'ill now look at some of the irnporta~it results 
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Fig A.1: Dependence of poisson spot intensity with distance from the diffracting 
screen for an elliptic disc of major diameter 1.0 cm and qinor diameter 0.99 cm. 



' ,  
Distance (cm) --> 

Fig 2 (a )  Fringe system for a cylinder (broken line) of radius 0.1 cm and strip 
(coliti~iuous line) of thc same width at a distal~ce 2 cni. Abscissa shows the distance 
from the center of the pattern as we move across the shadow. Ordinate depicts 
the intensity scaled with respect to the intensity at the center. (b) Visibility of 
the fringe system. Upper and lower curves are the visibility of the fiiinge system 
of a cylinder a t  a distance of 4 cm and 2 cm respectively. The middle curve shows 
the fringe visibility of the strip at these two distances. In this case the visibility is 
ilidcpcliclcnt of the distance from the strip. 



Fig A.3: T h e  clifractiori patter11 i l l  the sllatlow of a square obstacle. (a)  ant1 (11) are 
I.lw pat,t,rrn ol~tainrrl from exprrirnrr~f.~ (aft.er refrrr~ire [ i ]  ) for tllc ~ r ~ o ~ ~ o c l ~ r o ~ ~ ~ a l i c  
al~t l  ~ ) o l y c l ~ r o ~ ~ ~ a l i c  light respeclively. ( c )  and (d) depicts l l ~ e  sarrle pa.tt,err~ si11111lale<1 
using GTD. 
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obtained by using GTD. 

Pozsson spot:- We have already inenlioned the existence of a bright central spot in 
the case of circular disks. This is due to the constructive intefernce of boundary 

waves frorn all the points on the boundary. IIowevcr an intel&sting possibility exists 

in the case of a rectangular and elliptic disks. If we ignore the contribution due to 

the corner radiations which are generally very weak then in both cases we have four 

poles conlributing to the central spot. The contribution frorn opposite poles are in 

phase at the center. But the two pair pole radiations will. be in and out of phase as 

we recede from the plane of the object resulting in ce~ltral spot intensity fluctuation. 

In Fig A.1. we show this intesity fluctuation in the case of an elliptic disk. 

S ~ ~ r J a c e  versus edge di$inction:- We have allready mentioned that in the case of 

sn~ool.h ol)jccf.s with finite latcral thickness light creeps along the srlrfacc. 'Po i l -  
1ustra.t~ this pl~enornena we will take a strip and a cylinder of equal wid111 as an 

. exan~plc. 'Phc crceping effect in cylinder rr~akes the diffra.ct,ion patt,err~ to hc vcry 

dilrcrc~~t, fro111 l l ~ a l  of a strip in ternrs of fringe position al;d visil,ility. 'I'l~is is illus- 

trated in Fig A.2. 

l'ol~jchroi,~n/ic ligl~,t diflrnctio7t:- To get the diffraction pattern due to white ligllt, a.ll 

we I I ~ L V C  to tlo i l l  G'I'L) is to add the contribution due to the individual c o r ~ ~ l ) o n e ~ ~ t  

of incident light. The computed pattern for a square disk agrees very well with 

lhc cxpcrin~c~~ts .  In Fig A.3 we cornpare the experilnetal difrraction pattcr~r in the 

shadow region of a square obstacle obtained by I<athavite [7] with the same sirnu- 

latcd using GTD.  
IJ'Ject of po1nvization:- We see that the value of Do is different for the two orthogo- 

na.1 polarizations. This leads to an interesting answer in the case of diffraction by a 

square disk. IIere when the incident polarization is parallel to one pair ofeclges it is 

orthogonal to the other pair of edges. Thus the diffraction pattern in this case will 

have only a two fold symmetry. We get the strict four fold symmetry only when the 

i~~citl(*ut, ligllt is u~~l)olarizcil or is li~~early polarized at all ar~glc n/4 wil , l~  respec1 to 

the edge. 
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CHAPTER V 

TOPOLOGICAL SOLITON$ IN 
FERRONEMATICS AND 
FERROCHOLESTERICS 

5.1 Introduction 
, 

We have already seen that a magnetic field alters considerably the structure of 

the defects in liquid crystals. We also saw that the fields required for the elastic 

deformation of ferronematics is much less compared to that of normal nematics. In 

the limit of a good mechanical coupling between the host nematic and the grains 
'in magnetic fields we get new types of topological defects in these systems. The 

diamagnetic anisotropy of the host and the magnetization of the grains strongly 

influence the structure of these defects, in the presence of a magnetic field [I]. 

In 1970 Brochard and de Gennes 14) studied on theoretical grounds, ferroc- 

holesteric liquid crystals (FCh) - wherein the ferromagnetic grains are aligned with 

their magnetization m along the local director.It is we", known that when a mag- 

11c1,ic ficld H is al)plicd pcrpe~~tliculiir to the twist axis of norn~al cl~olevtcrics t l~cy 

undergo a transition to the nematic state at a critical field H c A - ~  [2,3]. It was also 

pointed 0111; hy earlier worlters tl~&t, for fieltls 0 < ff < lfc,,-N l,I~e twist n.11gle 0 viwics 

non-linearly with distance along the twist axis [2,3] leading to a lattice of 180' (or 

T )  twist walls. In recent literature this has been described as a soliton lattice. This 

transition is purely due to the local diamagnetic anisotropy X ,  of the cholesterics. 

Brochard and de Gennes [4] worked out the magnetic field effects in ferrocholesteric 

by ignoring 'the intrinsic diamagnetic anisotropy of the host matrix. They pr6dicted 

a so l i to~~ lattice of 360' (or 2n) twist walls ta develop in tllcsc systcrns. Since it 

is now known [5] that the diamagnetic anisotropy of the host does influence the 

l~ehavionr of these ferro systems in a ma,gnetic ficltl, i t  will a.lso I)(: i~ltcrcsting lo 

work out the unwinding of ferrocl~olesterics in a magnetic field. 
Z 

In this chapter we will discuss the field inducetl solit.on states in ferrol~e~natics 
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and ferrocholesterics 

5.2 Ferronematics 
" 

While discussing the Freederickzs transition in ferronematics we ignored grain seg- 

regation. This was reasonable since the associated distortions were small. But in 

topological defects distortions are rather large. Hence we also consider grain segre- 

gation under field induced distortions. We confine ourselves to the case where the 

grain magnetization m is along the nematic director n. ' 

7 

5.2.1 Positive diamagnetic anisotropy 

Consider an infinite sample of a ferronematic in the presence of a magnetic field. A 

2n wall (planar soliton) connecting two regions with grain magnetization m aligned 

along the magnetic field is a permitted solution. Far away from a given plane z = 0 
on both sides, the director will be aligned along the field, with magnetization m 

parallel to H. And most of the 2n distortion is confined to a narrow region of space. 

Such narrow twist walls have also been tkrmed as 'planar solitons' [GI We will now 

work out the structure of this defect. The free energy density in the one constant 

approximation for a dilute solution of grains is: 

where, 

magnetic field along the x-axis 
elastic constant 
diamagnetic anisotropy 
magnetization of the individual grains 
volume of the individual grains 
volume fraction of the grains 
angle w.r.t. y-axis 
Boltzmann constant 
temperature 

Minimizing the net energy with respect to f and 0, we get 

-p,IIsinO$ Inf + 1 = 0 



t "-  - - 
"7 

0 
D 

Z y -  - 
0 

7 - - 

-6 -4 -2 0 2 4 6 

XIS.-+ 
I b) 

Fig 5.1: Director profile, tilt and concentration f /f  for 2a twist planar soliton for 
k = 0.5 x dynes, Ix,I = lob6 cgs units, po = 0.02 Gauss-', f = and 
II, = 78 Gauss, for (ajN = 70, (b)H = 1000 Gauss. 
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and 

where, 

here f is the average volume fraction of the grains in the undistorted state. The net 

magnetization due to the grains is M = fm 

The parameter po can be considered as a measure of the degree of segregation 

of the grains. At z = co the volume fraction of the grain f approaches its mean 

value f and 0 = will be an odd multiple of n/2. Solving Equation (5.2) with this 

boundary conditions we get 

$ = exp [po(sin 0 - 1) HI (5.4) 

Here it is assumed that when the grains are expelled out of the central region to 

the outer regions, the average grain concentration remains unaltered at  z = f co. 

Equations (5.3) and (5.4) are solved numerically with the boundary conditions: 

80 n -3n 
- = O a t z = f w ,  O = - a t z = + c o  and O = -  

2 2 
at  z = -co. 

dz 

At low fields the magnetic energy due to the diamagnetic anisotropy is negligible. 

Thus a t  these low fields (5.3) allows the familiar Brochard-de Gennes 2n planar 

soliton solution. As field increases the diamagnetic energy becomes important. From 

(5.1) and (5.4) we see that above a critical value of the magnetic field given by: 

the diamagnetic term in the free energy is higher than the magnetic energy due to 

tlic grain magnetization. Tlius for I1 > Ifc tlie 2a planar soliton should beconle 

unstable. In Fig 5.1 we compare the structure and grain profile of the planar soliton 

for H above and below the critical field H,. It is clearly seen that above H, the 2n 



Po- 

Fig 5.2: Variation of the critical field H, pith the segregation parameter p ~ .  
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Fig 5.2: Variation of the critical field H, pith the segregation parameter p ~ .  
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Fig 5.2: Variation of the critical field H, pith the segregation parameter p ~ .  
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wall splits into two r walls. As is to be expected the magnetic grains move out of 
the central region. This segregation increases with increasing field. The critical field 

H, decreases rapidly with po. This is shown in Fig 5.2. Another interesting feature 

is that though the splitting takes place for fields above H, the distance of separation 

between the two r walls is more sensitive to po, increasing po increases the distance 

of separation between the s walls. 

The symmetry of the system also permits us to construct a linear soliton of the 

Mineev-Volovik type [6,7] which has cylindrical symmetry. Here as we move radially 

away from the center the the director rotates through s from a state where m is 

antiparallel to H to m parallel'to H. But its structure and energetics cannot be 

worked out without the higher gradient terms in the free energ$, This is akin to a 

similar problem in normal nematics with M = 0 [6,8] 

5.2.2 Negative diamagnetic anisotropy 

IIcre the tcndcncy of the diamagnclic anisotropy of the molecules is to make n 
to align in a plane perpendicular to the magnetic field while the magnetization m 

tries to  be parallel to the field. Thus we consider director distortions of the form 

11 = (n,, la,, la,) in cylindrical polar coordinates where: 

,n, = sin 6' cos(cp - a) ,  n, = sin 6' sin((o - a) ,  n, = cos 6' 

0 being the angle w.r.t. li and cp is the azimuthal angle. The free energy density is 

now given by: 

1 ae 2 

Fd = - [(kil COS' 6' + k33 sin2 0) cos2((o - a)  + kZ2 sin2(cp - a)] (-1 
2 87- 

mH 
x a H 2  cos26' + -cos6' - +kll cos2((o - a)] sin26' + 

2 

This Icads to thc following Euler cquation : 



Topological solitons ...... 

d2(o - 
[(k33 sinZ 0 + k,, cos2 8) sin2((o - a )  + kll cos2((o - a) ]  sin2 8- - 

Br2 
sin[2((o - a) ]  

2 
[(-kll cos2 8 + k33 sinz 8 

The above equation permits the solutions (o = a and (o = a ;t n/2. 

When (o = a i.e., for the all radial structure 0 is given by: 

sin(28) 2 sin 0 
t-- t- Sl S22 

€1 = t 1  -p k + k  
1 1 t  33 

k' = -+u 

For (o = a + $12 the structurc is all circular and 0 is given by the equation 

- siia(20) t- - 2 sin 0 2(1 + E") - 80 (5.8) 

t? ti r d r  

It is clear from (5.7) and (5.8) that the orientation at r + oo is given by the 

~nagnetic torque alone. This perrnits the director orientation at r = w to be given 

by 
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Fig 5.3: (a) N flower and (b) W flower configurations in ferronematics in a magnetic 
field H = 3000 Gauss. 
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-mf -M 
coso = - - - - 

XaH x o H  

When H < MIX,, the above condition demands that 0 at r -4 oo to be 2Nn. While 

N = 0 results in a uniform state N # 0 leads to the formation of a linear soliton. 

However, above H > H, = MIX, the director at r = w will be aligned at an angle 

Om = COS-~(-M/~,H).  

In a field H > H, it is possible to have two cylindrically symmetric structures 

as shown in Fig 5.3. One of these structures is rich in splay distortion(Fig 5.3a). It 

is structurally close to the umbilic obtained for a homeotropicaly aligned nematic 

with negative diamagnetic anisotropy. The other solution (Fig 5.3b) is rich in bend 

distortion. These are three dimensional analogues of the 'N' and 'W' walls discussed 

by Dmitrienko and Belyakov [9] in smectic C* in an electric field. We call them 'N 
flower' and 'W flower' respectively. just as the N wall is of lower energy compared 

to the W wall the N flower has lower energy compared to the W flower. However, 

there is an important difference. The N and W planar solitons (walls) have the same 

thickness. But we find the thickness of N flower to be much greater than that of W 
flower. As H -+ IIcthe N flower goes over to the uniform state while the W flower 

becomes the familiar linear soliton. At the other extreme of H + oo both N and 

W flowers go over to a 'U flower', which has 0 = ir/2 at r -+ w. In fact when 

magnetic grains are absent,i.e., in pure X ,  negative materials we get only a U flower 

a t  every field. 

These 'flowers' can exist either in an all radial (bend-splay) configuration (rp = 

a )  or in an all circular (bend-twist) rp = a+i7/2 depending on whether kllis smaller 

or greater than k33 .The bend energy is defferent for the two cases. A calculation 

of energy igrioring grain segregation, gives the interesting result that even when 

kll < kS3 a bend-twist configuration can be of lower energy compared to a splay- 

bcnd configuration , provided k22 is small ehough. Likewise, when kll > k33 it is 

possible to have a splay-bend structure bo be energetically favorable provided kzz is 

large enough. Grain segregation does not alter very mucl~ these results. 



Fig 5.4: The orientation and grain concentration of an N Flower for (a)H = 2000 
Gauss, (b)H = 3000Gauss, and (c)H = 3500 Gauss. (H, = 1800 Gauss). 



Fig 5.5: Scliemalic representation of possible transformations of a ferronematic 
Hedge in a magnetic field. (a) Classical linear soliton for H < H, (b)N and W 
Flowers for H > H, and (c) U Flowers for H -+ w. 
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// 

However, the grain segregation does alter the structure and the grain distribution. 
The minimization of the free energy (5.6) with respect to f leads to a distribution 

of the grains given by 

f II, .= -= = exp [po(cos 0 - cos6,)H] 
f 

We have shown in Fig 5.4 the effect of grain segregation on N flower. As we increase 

the field above I fc  the core thickness decreases in the beginning and later increases. 

IIowever, the core of W flower is virtually unaltered by segregation over the same 

range of the field. As the field is increased the grains move out of the core of W 
flower, while for N flower they move into the core. For higher fields the core of W 
flower starts shrinking. 

Apart from the cylindrically symmetric structures discussed above we can also 

have structures that lack cylindrical symmetry. For example in the one constant 

,approximation we can construct flowers having (o = -a. They behave like N and 

W flowcrs. We call them 'Hyperbolic flowers' as they posses hyperbolic symmetry. 

It has already been remarked that the classical Frank energy expression is inade- 

quate to work out the structure and energetics of a linear soliton [6,7]. Nowever,we 

find, interestingly, that when the orientation at  r = + co is not f n as in our present 

case this difficulty does not arise and the problem is completely solvable. 

5.2.3 Point defects 

It is wcll known that in a magnetic field a f 1 point defect of a nematic becomes a 

linear soliton terminating in the singular point [6,10]. In the case of ferronematics 

with negative X, one expects a splitting of this linear soliton into N flower and W 
flower solitons above a threshold field. The sequence of possible structural changes 

with increasing H are shown in Fig 5.5 for a +1 point defect. 

5.3 Two component systems 

Instead of ferromagnetic grains if we dope a nematic with rod like solute molecules 

of diamagnetic anisotropy X: in a nemdtic host of diamagnetic anisotropy ~ 2 ,  then 

a simple extension of the above model permits us, to a good approximation, lo write 



Fig 5 Director tilt 0 and grain concentration f / f  in a nematic with solute 
tnolcc~rlcs. Diamagnetic anisotropy of tlie solute X: = cgs units and the l~ost 

= -0.5 x cgs units, f = H = 6000 Gauss, po = 2.0 x lo-' Gauss-'. 
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the free energy density as follows: 

Thus in a magnetic field the solute molecules like the magnetic grains get re- 
distributed in the distorted configuration. In Fig 5.6 is shown this segregation 

calculated for the U flower configuration with the host and solute molecules having 

negative and positive diamagnetic anisotropy respectively. 

5.4 Ferrocholesterics 

We will now work out the structure of ferrocholestrics(FCh) in the presence of mag- 

netic field taking into account the effect of both diamagnetic anisotropy X, and the 

magnetization m of the grains [ll]. We will consider both X, < 0 and X, > 0 

materials. We also consider the effects of grain segregation in such structures. 

.c - 

-- 

Fig 5.7: Schematic representation of ferrocholesteric in a magnetic field 

5.4.1 Elastic instability in ferrocholesterics 

As pointed out earlier we incorporate in our analysis the diamagnetic anisotropy of 

the host matrix. Then the generalized Brochard-de Gennes free energy density of 

the FCh in a magnetic field (For the geometry shown in Fig 5.7) is given by 
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k22 = twist elastic constant 
P = pitch of the FCh = 2n/qo, 

Under the influence of a magnetic field not only the director n gets distorted but 

also the magnetic grains will get redistributed from their initial uniform distribution. 

From the lninimization of Fd with respect to f ,  we get, , 

where, po = ( M , V / k B T )  and $0 is the normalization constant so chosen that 

The Erller equation for 0, is 

where, 
kzz (; = - kzz kzz and 5; = - - - 

x a H 2  M , H ~  - M H  
Integrating equation (5.11) and using (5.10) we get 

where a is a constant. Integration of ( 5.9)  over one pitch using ( 5.12) leads to: 

I.' 2rqo(: in 40 + e + - $) - = ( a - l ) ( b - : )  -- 
P M H  P P P61 o 

+ -  
(5.13) 

T l ~ c  condition for minimum of the free energy 6F = 0 gives, 



Fig 5.8: The 0 profile (a) and $ profile (b) of a'double ?r lattice shown for one period 
(continuous line for H > H,, dashed line for H = O), for parameters X. = 5 x 
cgs units, M = 1.8 x Gauss, H = 7609 Gauss and po = The same for 
X. = 0 is given for (dotted line) for comparison 
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From ( 5.9) and ( 5.10) we get, 

Substitution of equation ( 5.15) in ( 5.14) results in 

here, 

2 ~oHt2~ 
6,  - z - POHE; 

2 
and 6, - - 

2E12 

We can determine +b0, a and P by solving equations (5.10), (5.12) and (5.16) 

simultaneously. These equations have been solved numerically. 

5.4.2 Structure of the soliton lattice 

For positive diamagnetic anisotropy X, > 0 at fields lower than a threshold H, = 
M/xa we get, the Brochard-de Gennes 2n soliton lattice - a periodic array of 2n twist 

walls. However above H, the 2a lattice becomes unstable with each 2 r  twist wall 

splitting into a 'double ?I' twist wall this has been depicted'in Fig 5.8a (a similar 

behavior was predicted by Hudik [12] in smecticC' in an electric field. But we 

should notice that in smectic C' there is no process equivalent of grain migration). 

During the formation of the soliton lattice the grains migrate out of the strongly 

twisted regions to the weakly twisted regions where the director or m is nearly 

oriented along the field. Fig 5.8b, shows the grain concentration profile in this case. 

For ,ya < 0 materials, the behavior is entirely different. At low fields we get the 

usual 2n soliton lattice. For fields H 3 H, = MIX, the equilibrium orientation of 

the director in a nematic makes an angle 0 ,  = cos-'(M/x,I-I) with the field as in 



Fig 5.9: The 0 profile (a) and 11, profile (b) of N-W lattice shown for one period. 
x. = cgs units, M = 1.8 x Gauss, H = 22065 Gauss and po = 
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the case of ferrronematics with negative 2,. Then each 2n wall splits into a N twist 
wall and a W twist wall. In the N wall the director turns from -8, to +Om while 

in the W wall the director rotates from +Om to 27r - 8,. It should be remarked 

that these are very similar to the N and W walls described by and Dmitrienkov and 

Belyakov for SmC* in an electric field [9] In Fig 5.9a, is shown the 8 profile over one 

pcriod of tlie N-W soliton lattice. In this case the segregation of magnetic grains 

has a different profile from that of 2n or double n soliton lattice. This is depicted in 

Fig 5.9b. It should be noticed that unlike the previous case here the grains migrate 

fro111 the W wall to the N wall. 

Another important difference between the N-W lattice and that of classical 2n 

lattice pertains to the slope of the twisted regions. In the case' of 2n lattice the 

twisted region has the same width as the pitch of the cholesteric a t  H = 0. This 

means that the slope of this region in the 8 - z plot is close to qo. This is no longer 

lruc it1 the N-W lattice. We cart see from Fig 9.a that even tllough in the N wall the 

slope more of less close to qo in the W wall it is very different from this value. Also 

t,lie thickncss of W wall increases with the magnetization m. However wall thickness 

is not very sensitive to the grain migration. It can be seen from Fig 5.8a that even 

in tlie "double n" wall the two regions have different slopes. 
1 

Many of the structural details of cholesteric and ferrocholesteric soliton lattices 

can be elucidated by an optical technique. This forms the subject matter of the 
next chapter. 
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