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Fig 6.1: Geometry for Bragg reflection
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the Bragg regime is shown in Fig 6.1. In the case d a plane monochromatic wave

incident on the medium at z=0, only four out d the six components of the E,H

arc independent. We choose the these independent components [0 be the x and y
components o E i.e., (EX, Ey) and H i.e., (I-IX, Hy). Then the Maxwell's equations

take the form:
diiz) _ ., . *
.‘ o JkD(z)¥(z)
where.
k= wle
'Ex |
¥ o= 'g: ='.Ex, f{y, Ey ‘-‘H-a; t
—~H,
D(z) is a differential propagation matrix given by:
0 1- X?%/e 0 0
€ 4+ 8 cos 2¢z 0. 6sin2qt 0
. 0 0 0 |
6sin2gz 0 e—=X?—=6cos2qz 0

here

A = (27/X)/eosint;

o

0; = angle of incidence with respect to the pitch

(6.1)
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€o = dielectric constant d theincident medium
A = wavelength o light

= @t e)/2

€
)
qg = 27r-/P
P

€1, €2, €3 are the principle values d the dielectric ellipsoid with ¢; along the z
axis
Integrating ( 6.1) over one period gives

U(z) = F(0,2)¥(0) (6.2)

where F isa 4 x 4 transfer matrix. The eigen vectors of the matrix F gives the
net electromagnetic field for the proper modes. In the reflection band these modes
correspond to the wavesformed by the superposition o the waves propagating along
the forward and backward directions. The electromagnetic field vector components
at any arbitrary location (aP+h) (for any integer n and 0 < h < P) is determined
by multiplying the eigen vector of F(0,nP) by F(nP,h). Using this method we can
study the polarization structured the eigen waves.

In an experimental situation the sampleis usually confined between two homoge-
neous transparent isotropic media. To analyze such cases we express the Berreman
vector ¥(z) as a superposition d the waves in the confining media through a trans-
formation [4]

v = B \

Here B isa 4 x 4 matrix with columns representing the proper modes in the isotropic
media (the eigenvcctors of D(isotropic)) and & = [ t. Te Tm * with te, tm
representing the complex amplitudes o Ex, Ey modes propagating in the +z direc-
tion and r., r,, are the corresponding strengths in the —z direction.

Thus when [ vl 12 ], [ rl r2 } and [ il t2 ] are the strengths o the incident,
reflected and transmitted Ex and Ey meodes respectively, equation ( 6.2) can be
writlen as
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i1 t1 | ‘

2 12 ' '

o I G 0 (6.3)
L r2 a 0 '

where G .= B~'F-!'B. From equation ( 6.3) weobtain 2 x 2 transmission matrix
T and reflection matrix R to be such that:

[ﬁ%]?’f[f;]
[2]-n[3]

and

LH

The eigenvectors I' d the matrix G give the proper modes o the multilayer
in terms of the modes in the bounding isotropic media. This allows us to analyze
the attenuated waves in the reflection band in terms of the forward and backward
propagating waves. For example in the case d normal cholesterics we see that a
standing wave is formed by the right and left circular waves propagating in the +z
and —z directions. Thus, in thiscasewehave, I'(1) = jI'(2) and ['(3) = ~jI'(4).

It should also be mentioned that the vector ¥(P) is linearly related to ¥(0)
through the Berreman matrix F. We aso see that

U(P)'ST(P) = Y(0)ST(0) = 0 o (6.4)

where _ .
0 1 0 0
-10 0 0
S = 0 0 0 1
0 0 =10
since

we get from 6.4

W(0) FESFU(0) = ¥(0)'SU(0)
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S or . : :
F'SF =S5 co " (6.5)

Equation, 6.5 shows that the matrix F(0,P) is symplectic [10]. Then from the
properties of symplectic matrices we get that if A is an eigen value then so are
A*, 1/X and1/A*, Where A* is the complex conjugate of A. This property o the
simplectic matrices resultsin the coupling o the eigenvalues. For examplefar away
from the refiection band we have all the Xs complex with AA* = 1. Here we have
only two independent eigenvalues. Let this be A; and A, then the other two are
fixedas A} = 1/A; and A} = 1/Xs. In the Bragg band we have two real eigenvalues
with one being the inverse o the other. The other two eigenyalues are complex
with unit modules and are complex conjugates d each other. On the other hand
in the non-Bragg band we have complex eigenvalues with the modules not equal to
one. Thus here al the eigenvaluesare coupled and are given as (A, 1/A;1, A7, 1/A7).
Therefore, in the non-Bragg regions there cannot be any propagating modes since
‘the medium is non absorbing. '

Using matrices {2 and 7' we can compute the reflection and transmission spectra
of the soliton lattices. As mentioned earlier the soliton lattice exhibits multiple
reflection bands. In addition we find that when the applied field is close to the
cholesteric-nematic transition field Hgp-n SOmedt the higher orders are moreintense
than thefirst order. In Fig 6.2, we show the reflection spectradf a = soliton lattice.
It should be remarked that each Bragg reflection peak of a normal cholesteric splits
here into three peaks.

In Fig 6.3 we show, the computed dispersion curvein the first reflection band of
the same = soliton lattice. It has three sub-bands. The eigen modes of the trans-
mission matrix T are linear in all the three regions. For regions | and III we have
a propagating mode and an attenuated mode. The attenuated mode experiences
reflection and the net vibration at any point is obtained by adding the forward and
backward propagation waves d the same polarization (The eigen vectors of the ma-
trix F gives this net vibrations). For these standing vibrations E is perpendicular
to H with a relative phase of r/2 between them. The propagating modesin | and
II1 are orthogonal to each other. The same is true for attenuated modes also. This
is clearly sekn in the reflection spectra given in Fig 6.2, where the sidelobes Of each
reflection band has orthogona polarization states. In region II we have non-Bragg
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reflection where both eigen modes are attenuated. Thusfor any forward propagat-
ji ng wave there is a wave going in the opposite direction, which is interestingly is of
orthogonal polarization. Because df this reason the reflected light here will always
have the polarization orthogonal to that o the incident wave. Thisis shown in Fig
6.2. The net wave in this.region (Which is a superposition o the forward and back-
ward propagating waves d orthogonal polarizations) is elliptical with its ellipticity
varying along the twist axis.

By contrast, in the reflection band d a normal cholesteric the net attenuated
mode is locally linear and is coupled to the loca director. The E and H vectors of
this mode are parallel to each other with a phase differenced #/2 between them.

In Fig 6.4, we give the variation o | E |? as a function'z of these attenuated
modes in the soliton lattices and the usua cholesteric.

The reflection and transmission spectrad cliolesteric soliton lattices get altered
considerably when weinclude linear dichroism. Thisisshown in Fig 6.5 for two inci-
‘dent linear polarizations. It should be noticed that on the shorter wave length side,
the Ey mode (marked YY) isfound to be strongly reflected as well as transmitted
compared to the Ex mode (marked XX). Also we get, an anomalous transmission
compared to the medivin with average refractive index.

The optical properties o cholesteric soliton lattices are in many ways similar to
that of cholesterics at oblique incidence [8]. Many o it's features like the multiple
Bragg reflection, the splitting o Bragg bands, and the anomalous transmission can
be seen here also [9].

6.3 Phase grating mode

All the interesting results of the previous section are rather difficult to realise in
practice. This is due to the large period d these lattices; On the other hand
this large period d the soliton lattices makes them more suitable to be studied in
the phase grating mode. In fact in this mode we require periods of the grating
to be large compare to the wave length of light. Here the direction o incidence is
perpendicular to the twist axis. In this geometry an incident plane wavefront emrges
as a corrugated wavefront. This is shown in Fig 6.6. Raman and Nath [RN] in 1935
[10] developed a theory of isotropic gratings with phase modulation. This theory
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Fig 6.6: Geometry d the phase grating mode

in its simplest form has been applied to anisotropic dielectric gratings like that of
twisted liquid crystals [2,3]. This theory in the form applied to liquid crystals
makes the assumption that the amplitude d the phase modulation of the emergent
wavelront issmaller compared to grating period. Thisiseguivalent to assuming that
(i) the sample is thin, (ii) the birefringenceis small and (iii) the periodicity of the
medium is large compared to the wavelength o light. In effect here we assume that
there is no appreciable diffraction taking place inside the medium, i.e., the wave
front is considerably corrugated only when it emerges out o the medium.

In the RN theory the emergent wavefront is described by
U(z) = Agexp(j2rn,t/A)

where t is the thickness o the sample, A, is the amplitude d the incident plane
wavefront and n, is the refractive index for the vibration perpendicular to the twist
axis at any point z given by

1 sin’d  cosd

~ar  ~a nd

n. and n, being the principle refractive indices parallel and perpendicular to the
director,respectively. The diffractiod pattern is then given by the Fourier transform
o U(z)

S(K) = f " U(2) exp(—jK 2)dz

-
Where _
2rsing,

I =—,
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grating diffraction pattern computed using RN theory (contineous) and RY theory
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H = 22065 with other parameters same as in Figure:6.2
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¢4 being the angle o diffraction.

The above assumptions are not always valid in usual experimental situations.
And in most of the situations the internal diffractions are important. In such cases
a multiple beam analysis [11] wherein we consider more than one plane wave prop-
agating inside the medium, is very useful, In this paper we follow the method o
Rokushima and Yamakita [RY] [l1]and compare the results with those obtained
through Raman and Nath theory.

In the RY theory we Fourier expand the dielectric tensor and electromagnetic
field components as -

€i;(2 z e exp(flgz) | - .

l=—n
1 & '
E,--'=— ein(z)exp{—7(qo + nq)z)
fo 2 (z) p( J(qo_ _9'))

Z hm exp '—J (Q'O + ﬂQ) )

O—n

where q = ~2~|5 and ¢o = veysin B

Mere /3 is the incidence angle with respect to a plane normal to the twist axis.
Thus we can express the Maxwell's equations for the tangential field componentsin
the zx plane in the form,

; . da: Jcn | _ - R (69
&1 ., o 0 _' | -1 0 0
_ ke _ _ symem, €ay —Eyy+q® 0 0 nyeuq
where, n= c. and C = . qgmgw 0 0 _qam:q +1
b, , 0 0 e 0.

Heree;; are (2n + 1) x (2n + 1) submatrices with elements &1 = €iji-n, 0 = g,
¢ =lg+qo and e, h,,e,, h, are(2n+ 1) column matrices. Equation ( 6.6) is solved
numerically for 7.

In the simple theory o RN as the sample thickness increases the number of
diffraction ordersincreases. Whilein the RY theory the number of diffraction orders
increases up to a certain thickness beyond which it decreases. We comparein Fig 6.7
the results o RN and RY theories in the case d normal cholesteric soliton lattice.
Theintensities o the central and second orders are given as a function of the sample
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thickness. Weseethat the RN theory isvalid only up to certain thickness (in our case
7). It must be remarked that in general in the RY theory (for cholesteri¢ soliton
lattice) each order is elliptically polarized. But at low values of the birefringence
they are nearly linear states. In RN theory, however, they are strictly linear states.

When the angle o incidencew with respect to the field direction is such that
0 <w < 7 (seeFig.6.6) the diffraction pattern is asymmetric thisis shown ifn Fig
6.8. This feature is typical of a soliton lattice. When the structure is absorbing
we have also linear dichroism. Then the development of the soliton lattice can be
easily recognized. Here we find for w = 0 all the orders to to be weak for positive
dichroism. This implies that th'e weakly twisted regions are nearly parallel to the
field.

We shall now consider the peculiar features associated with the ferrocholesteric
soliton |attices. One important feature isthe migration of the magnetic grains. The
grains can either be transparent or absorbing. When the grains are absorbing the
medium also become absorbing. Since the concentration of the grains along the twist
axis is nonuniform this absorption will also be nonuriiforrnalong the twist axis. This
nonuniformity alone results in diffraction when the incident polarization is parallel
to the twist axis. This kind o diffraction is peculiar to the soliton lattices in the
sense that they are totally absent for undistorted system. This is depicted in Fig
6.9. In Fig 6.9a weshow, thediffraction pattern due to N-W soliton lattice obtained
for xo < 0 malerials. Thisis very different from diffraction o the soliton lattice in
Xa > 0 materials (Fig 6.9b). The peculiar feature o the diffraction in N-W soliton
lattice is that intensity fluctuates from order to order and we find the even orders
to be lessintense than the odd orders, whereas for the double = lattice the intensity
decreases monotonically. This feature in the pattern could be used to distinguish
N-W lattices of x, <0 materials from soliton lattices of x, > 0 materials.

In these calculations we have ignored the Faraday rotation due to the magnetic
grains. This parameter itself can considerably alter the diffraction pattern even in
simple ferrocholesterics [12]

6.3.1 Test for twist induced biaxiality

It is now well established that cholestéric liquid crystals arein principle biaxial [13]
‘The inherent chirality arid the hindered rotation o the molecule due to the twist



13
10 'lg
‘3)10 =
—y -
) ]
q n
. q) -
-~ -3
210 s .
= =
10 _4—5
10'“5 |

, : |
~6 -5 —'4’—3:'—2 -1 0 1 2 3 i1 5 6
Diffraction Order

Iig 6.10: The computed dillraction pattern due to the variation o twist induced
biaxiality along the twist axis o a & soliton lattice.



Optical behaviour of.... 56

are the two mechanisms proposed [13] to expain this biaxiality. It has been argued
that the induced bixiality increases with increase in twist. To our knowledge, no
direct optical measurements have been purposed to verify this. It iseasy to see that
twist induced bixiality in the soliton lattice will vary as function of z resulting in
a fluctuation in refractive index ;. As aresult o this effect, for the incident light
with polarization parallel to the twist axis, weget a diffraction pattern. In Fig 6.10,
we show one such diffraction pattern computed by assuming th'e bixiality to vary
linearly with twist. The pattern appears even for Any as small as 5 x 102, Thus,
the method appears to be sensitive enough to reveal the.twist induced bixiality.
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APPENDIX A
GEOMETRICAL THEORY OF DIFFRACTION

Geometrical theory o diffraction(GTD) deals with Fresnedl diffraction. It is a
recapitulation o Young's idea d diffraction, viz., diffraction is a manifestation of
interference between the light waves directly transmitted by an aperture and waves
emitted by the boundary. From the point o mathematical computations this theory
Is quite simple and straightforward. Also it is possible to easily and physically ac-
count for many o the strange and peculiar facts associatkd with Fresnel diffraction
patterns. GTD has a long history. Many o its essential steps were worked out by
the Raman school (1]. Later thery were rediscovered by the successive investigators
in particular by Keller [2]. For an historical account see ref [3).

Diffraction by thin edge d arbitrary shape

'Using Krichholl’s theory onecan in principlecalculatethe I'resnel diffraction pattern
o the obstacles and apertures. But the calculations are difficult and wherever one
got the answers a physical understanding was elusive. In 1888 Maggi showed that
the Kirchhoff diffraction integral may be reduced to a sum of (i) a wave propagating
according o the laws d geometrical optics called the geometrical wave, and (ii) a
wave originating from every point on the boundary of the obstacle or aperture -
called the boundary wave. For an incident spherical wave consider a cone forrned
by the rays emitted by the source and the boundary o the aperture. Then this
houndary wave can then be written as:

vy = "Lj 3'*'02%_’ coshy sinf,| ds
T ar s| p v 14costy 2
where,
p — distance d the point d integration from the source,
r = distance d the point d integration from the point of obeservation,
f, = angled reflection at the cone surface,
#, = angled incidenceat the curved element o the edge,
03 = angled reflection at the edge.

The above integral is highly oscillatory. Thus substantial amount df contribution

comes from only afew points [4,5,1] called poles, These are points on the houndary
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1

where the phase isstationary with respect to the movement on the boundary curves
This condition of stationarity d phase on the contour s gives the reflection condition

cosfly = —cos by

Thus at any point o observation the boundary wave contribution is essentialy re-
duced to that from a few points on the boundary. Ramachandran [6] showed that
these contributions will have an additional phase d 4= /4 depending upon whether
the point isone d maximum or minimum path with respect to the point of obser-
vation.

Corner radiation
This method o stationary phase fals at the sharp corners d obstacles and apper-
tures. Kathavate pointed out that these points acts as sorces o spherical radiation
(7). We find the corner radiation to be given by [8]:

_iAsing cos(n, 1) : _zﬁ_
ve = exp(—-zkr)dld2 (A.2)

where,

¢ = angle between the two local tangents to the boundary at the
corner
= the perpendicular distance from the point of observation to the
sorce
dy,d; = components d the vector joining the foot o the perpendicular to
the corner !

Surface diffraction

So far we have restricted ourselves to infinitly thin diffracting objects. In the case of
objects witll finite lateral thickness the diffraction pattern can be very different as
was shown by Raman and Krishan [9]. In the case o smooth objects light actualy
creeps aong the surface, aways leaving the surface along the local tangent. This
explains the observed difference between the Poisson spot intensity d a disc and a
sphere o equal diameter [9).

Generalized Fermat'’s principle
All the avove effects could be accounted’as the result o one principle known as the
generalized fermats principle {10]. This states that light is always so diffracted that
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the path chosen from the source to the boundary and to the point o observation is
an extrimum,

By appealing to Sommerfeld’s theory of diffraction at a straight edge [11] Keller
worked out the amplitude o the diffracted field. When the light is incident at an
angle e on a straight edge thid field is given by:

ikr

U= U.-Do% (A.3)
with
Do = - exp(—in/4) f 1 n 1 }
0 2(2rk) 2 sina | cos[(¢ — ¢0)/2] ~ cos[(¢ T ¢0)/2]

U; isthe incident wave, ¢ and ¢, are the angle made by the incident and diffracted
wavefronts with the diffracting plane. Wetakethet (or —) sign when the incident
clctric polarization is paralel (or perpendicular) to the screen.

This givesthe diffracted rays travelling on a cone symmetric about the edge. For
normal incidence this predicts the edge to emunit ¢ylindrical waves as first suggested
by Raman [1] and Rubunowicz [5].

Keller argued that the edge with a finite curvature emits cylindrical waves lo-
caly. Thus the diffracted waveflront in this case will be curved. From light flux
conservation Keller showed that, the diffracted raysin such cases to be given by:

e:kr

OUE
[r(1 +r/p1)]""
Where p; denotes the distance from the edge to the caustic measurctl negatively

in the direction o propagation. Hence as we cross the caustic U/ gets an extra phase
o 7/2, and the expression itself is not valid at and near the caustic.

(A4)

Applications:of GTD

G'TD can be used to simulate the tliffraction pattern of complicated objects. These
patterns are found to agree very wel with the experimental results {12]. However,
it has its own limitations. For example it does not smoothly go over to the Fraun-
haufer pattern and gives singularities at the caustics. Many of this problems are
overcome in the Uniform theory o diffraction which has been dealt with exhaus-
tively by McNamara et. al,, [13]. We will now look at some o the important results
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I'ig 2 (a) Fringe system for a cylinder (broken line) d radius 0.1 cm and strip
(continuous line) o the same width at a distance 2 cni. Abscissa shows the distance
from the center of the pattern as we move across the shadow. Ordinate depicts
the intensity scaled with respect to the intensity at the center. (b) Visibility of
the fringe system. Upper and lower curves are the visibility of the ftinge system
d a cylinder at a distanced 4 cm and 2 cm respectively. The middle curve shows
the fringe visibility o the strip at these two distances. In this case the visibility is
independent, o the distance from the strip.
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FFig A.3: The diffraction pattern in the shadow of a square obstacle. (a) and (b) are
the pattern obtained from experiments (after reference [7] ) for the monochromatic
and polychromatic light respectively. (¢)and (d) depicts the same pattern simulated

using GTD.
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obtained by using GTD.

Poisson spot:- We have already mentioned the existence of a bright central spot in
the case o circular disks. This is due to the constructive intefernce of boundary
waves frorn all the points on the boundary. However an interesting possibility exists
in the case o a rectangular and elliptic disks. If we ignore the contribution due to
the corner radiations which are generally very weak then in both cases we have four
poles contributing to the central spot. The contribution from opposite poles are in
phase at the center. But the two pair pole radiations will. be in and out o phase as
we recede from the plane d the object resulting in central spot intensity fluctuation.
In Fig A.1. we show this intesity fluctuation in the case o an elliptic disk.

Surface versus edge diffraction:- We have allready mentioned that in the case of
smooth objects with finite lateral thickness light creeps along the surface. Po il-
lustrate this phenomena we will take a strip and a cylinder of equal width as an
. example. The creeping effect in cylinder makes the diffraction pattern to be very
different from that of astrip in terms o fringe position and visibility. This isillus-
trated in Fig A.2,

Polychromatic light diffraction:- To get the diffraction pattern due to white light all
we have t0 do in G'T'D is to add the contribution due to the individual component
d incident light. The computed pattern for a square disk agrees very wdl with
the experiments. In Fig A.3 we compare the experimetal diflraction pattern in the
shadow region d a square obstacle obtained by Kathavate [L:'] with the same simu-
lated using GTD.

Lffect of polarizalion:- We see that the value d D, is different for the two orthogo-
nal polarizations. This leads to an interesting answer in the case of diffraction by a
square disk. Here when the incident polarization is paralel to one pair ofeclgesit is
orthogonal to the other pair o edges. Thus the diffraction pattern in this case will
have only a two fold symmetry. We get the strict four fold symmetry only when the
incident light is unpolarized or is lincarly polarized at an angle = /4 with respect to
the edge.
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CHAPTER YV

TOPOLOGICAL SOLITONS$IN
FERRONEMATICS AND
FERROCHOLESTERICS

5.1 Introduction

We have already seen that a magnetic field alters considerably the structure of
the defects in liquid crystals. We also saw that the fields required for the elastic
deformation o ferronematics is much less compared to that of normal nematics. In
the limit o a good mechanical coupling between the host nematic and the grains
‘in magnetic fields we get new types d topological defects in these systems. The
diamagnetic anisotropy d the host and the magnetization of the grains strongly
influence the structure o these defects, in the presence o a magnetic field [1).

In 1970 Brochard and de Gennes [4] studied on theoretical grounds, ferroc-
holesteric liquid crystals (FCh) = wherein the ferromagnetic grains are aligned with
their magnetization m along the local director.It is well known that when a mag-
netic field IT is applied perpendicular to the twist axis of normal cholesterics they
undergo a transition to the nematic state at a critical field Hga—n [2,3). It was aso
pointed out by earlier workers that for fields 0 < /1 < Heuon the twist angle 0 varies
non-linearly with distance along the twist axis [2,3] leading to a lattice of 180° (or
7} twist walls. In recent literature this has been described as a soliton lattice. This
transition is purely due to the local diamagnetic anisotropy x, o the cholesterics.
Brochard and de Gennes [4] worked out the magnetic field effects in ferrochol esteric
by ignoring 'theintrinsic diamagnetic anisotropy o the host matrix. They preédicted
a soliton lattice of 360° (or 2r) twist walls te develop in these systems. Since it
is now known [5] that the diamagnetic anisotropy d the host does influence the
behaviour of these ferro systems in a magnetic field, it will also be interesting lo
work out the unwinding o ferrocllolest(f;rics in a magnetic field.

In this chapter we will discuss the field inducetl soliton states in ferronematics
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and ferrocholesterics

5.2 Ferronematics

While discussing the Freederickzs transition in ferronematics we ignored grain seg-
regation. This was reasonable since the associated distortions were small. But in
topological defects distortions are rather large. Hence we also consider grain segre-
gation under fiedd induced distortions. We confine ourselves to the case where the
grain magnetization m is along the nematic director n. -

5.2.1 Positive diamagnetic anisotropy

Consider an infinitesample d aferronematic in the presence d a magnetic field. A
2n wall (planar soliton) connecting two regions with grain magnetization m aligned
along the magnetic fidd is a permitted solution. Far away from agiven plane z =0
on both sides, the director will be aligned aong the field, with magnetization m
paralel to H. And most of the 2= distortion is confined to a narrow region of space.
Such narrow twist wals have also been tkrmed as 'planar solitons'  {6] We will now
work out the structure o this defect. The free energy density in the one constant
approximation for a dilute solution d grainsis.

2 T2 ] ]
P, o= ; (80) - ——-—-X“;I sin?f — fmlsind + kaTIn(f) (5.1)

‘T 2192 Vv
where,

H = magneticfidd along the x—axis

-k = elastic constant
xe = diamagnetic anisotropy
m = magnetization d theindividual grains
V = volumed theindividual grains
f = volumefraction d the grains
§ = anglew.r.t. y—axis

“ kg = Boltzmann constant
T = temperature

Minimizing the net energy with respect to f and 4, we get
~poHsin0 +Inf+t1 =0 (5.2)
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and

9’0 _ sin(20)  ¢pcosd
922~ 2%} &

(5.3)
where,

po = (mV/ksT) ¢ = f/f

& = k/(xaH?) & = k/(mfH)

here f is the average volumefraction d the grains in the undistorted state. The net
magnetization due to the grainsisM = fm

The parameter p, can be considered as a measure o the degree of segregation
o the grains. At z = oo the volumefraction o the grain f approaches its mean
value f and ¢ = will be an odd multipled x/2. Solving Equation (5.2) with this
boundary conditions we get

¥ = explpo(sin0 = 1)H] (5.4)

Here it is assumed that when the grains are expelled out of the central region to
the outer regions, the average grain concentration remains unaltered at z = Zoo0.

Equations (5.3) and (5.4) are solved numerically with the boundary conditions:

a0 T =3 _

% =0 at z = oo, 9_~2~atzm+oo and 9=Tatz——~oo.

At low fieldsthe magnetic energy due to the diamagnetic anisotropy is negligible.
Thus at these low fields (5.3) alows the familiar Brochard-de Gennes 2z planar
soliton solution. Asfield increases the diamagnetic energy becomesimportant. From

(5.1) and (5.4) we see that above a critical value d the magnetic field given by:

Hc=mf

a

exp(—2poH.)

the diamagnetic term in the free energy is higher than the magnetic energy due to
the grain magnetization. Thus for // > I the 2» planar soliton should become
unstable. In Fig 5.1 we compare the structure and grain profiled the planar soliton
for /4 above and below the critical fidd H.. It is clearly seen that above H, the 2x
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wall splitsinto two r walls. Asis to be expected the magnetic grains move out of
the central region. This segregation increases with increasing field. The critical field
H, decreases rapidly with pe. Thisisshown in Fig 5.2. Another interesting feature
isthat though the splitting takes placefor fields above . the distance of separation
between the two = walls is more sensitive to pg, increasing py increases the distance
o separation between the = walls.

Thesymmetry of the system also permits us to construct alinear soliton o the
Mineev-Volovik type [6,7} which has cylindrical symmetry. Here as we moveradially
away from the center the the director rotates through = from a state where m is
antiparallel to H to m parallel'to H. But its structure and energetics cannot be
worked out without the higher gradient terms in the free energy. This is akin to a
similar problem in norma nematicswith M = 0 [6,8]

5.2.2 Negative diamagnetic anisotr opy

Here the tendency o the diamagnetic anisotropy of the molecules is to make n
to aign in a plane perpendicular to the magnetic field while the magnetization m
tries to be parallel to thefield. Thus we consider director distortions d the form
n = (n,, ne,n;) in cylindrical polar coordinates where:

n, = sin6 cos(yp —a), ne = sinb sin(p —a), n, = cos6

¢ being the angle w.r.t. /{ and ¢ is the azimuthal angle. The free energy density is
now given by:

Fy = % [(kn cos® @ + ’C33Sin2 9) COos (‘P a)+ kaz sin (‘P a)] (gg)
1 (0O 2 . 2 29\ 20 s
+§5 £ [(k33 sin“ & + kq; cos 9) sin (tp - a) (5.5)

+kyq cos?(p — @) Jsin® 0 + M2 cos?§ T Tcosﬂ

This leads to the following Euler equation :
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[(k33sm 0 -+ kag c0S*8) sin*(p — @) + kyy cos 2(p — a)] sin? ggf =

sin[Z(t,; —3)] { [(—kn cos® 0 + kaaSin’ 0) + k”] (g_f-) (5:6)

o} [k33 sin29 + kzz COS2 f — kn] Sl? 9 (2 -— a('o) ?.i'i

Oa /| O

, . 10600y |
-+ [kzz - kll] sm(2t9 ;a—ra—a}

The above equation permits the solutions ¢ = aand ¢ = a4 /2.

When ¢ = ai.e, for the al radial structure 8 is given by:

P20 (L4 )sin(28) 21 + ¢)cos(26) 50
21 + ¢ c03(29) o = u - - 7 (5.7)
sin(20)  2siné . 80\’
+ £ + 2 + 2¢'sin(20) (Br
Where " y
2 __ 2
61 - XGHE 62 me

— L _ ku+k
Ef:k" 2 k'__LgZ_a:t

For ¢ = a+ m/2 the structure is adl circular and # is given by the equation

2(1 + e”){f = sinr(22t9) (1 — &+ 2" cos(26))
| _sin(20) t 259 -2017F ”]60 (5.8)
& & ar
Where 2 o 2 y
& = E‘ﬁﬁ £ = m

It is clear from (5.7) and (5.8) that the orientation at » — oo is given by the
magnetic torque alone. This permits the director orientation at r = oo to be given
by
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sinf = 0
or
oS0 = —mf _-M
B X Xa,H

When H < M/x., the above condition demands that 0 at » -4 oo to be 2Nx. While
N = 0 resultsin a uniform state N # 0 leads to the formation of a linear soliton.
However, above H > H, = M/x. the director at r = oo will be aligned at an angle
0 = cos™H{—M/[x.H).

In afidd H > H, it is possible to have two cylindrically symmetric structures
as shown in Fig 5.3. One d these structuresis rich in splay distortion(Fig 5.3a). It
is structurally close to the umbilic obtained for a homeotropicaly aligned nematic
with negative diamagnetic anisotropy. The other solution (Fig 5.3b) isrich in bend
distortion. These are three dimensional analogues o the'N' and ‘W' walls discussed
by Dmitrienko and Belyakov [9] in smectic C* in an electric field. We call them *N
flower' and 'W flower' respectively. just as the N wal is d lower energy compared
to the W wall the N flower has lower energy compared to the W flower. However,
thereis an important difference. The N and W planar solitons (walls) have the same
thickness. But wefind the thickness o N flower to be much greater than that of W
flower. AsH — H.the N flower goes over to the uniform state while the W flower
becomes the familiar linear soliton. At the other extreme of H — oo both N and
W flowers go over to a ‘U flower', which has 0 = »/2 at r — oo. In fact when
magnetic grains are absent,z.e., in pure y, negative materials weget only a U flower
at every field.

These 'flowers can exist either in an all radial (bend-splay) configuration (¢ =
a)orin an al circular (bend-twist) ¢ = a+=/2 dependingon whether k,;is smaller
or greater than ka; .The bend energy is defferent for the two cases. A calculation
o energy ignoring grain segregation, gives the interesting result that even when
ki1 < ka3 a bend-twist configuration can be o lower energy compared to a splay-
bend configuration , provided k;2 is small enough. Likewise, when ky; > ksy it is
possible to have a splay-bend structure to be energetically favorable provided ks, is
large enough. Grain segregation does not alter very much these results.
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{

However, thegrain segregation does alter thestructureand thegrain distribution.
The minimization of the free energy (5.6) with respect to f leads to a distribution
o thegrains given by

P .= .= exp[po(cosd — cosb,,)H])

We have shown in Fig 5.4 the effect of grain segregation on N flower. As we increase
the field above H, the core thickness decreasesin the beginning and later increases.
However, the core d W flower is virtually unaltered by segregation over the same
range of the field. As the field is increased the grains move out o the core of W
flower, while for N flower they move into the core. For higher fields the core of W
flower starts shrinking.

Apart from the cylindrically symmetric structures discussed above we can aso
have structures that lack cylindrical symmetry. For example in the one constant
,approximation we can construct flowers having ¢ = —a. They behave like N and
W flowers. We call them 'Hyperbolic flowers as they posses hyperbolic symmetry.

It has already been remarked that the classical Frank energy expression isinade-
quate to work out the structure and energetics of a linear soliton [6,7]). However,we
find, interestingly, that when theorientation at r = — oo isnot £x asin our present
case this difficulty does not arise and the problem is completely solvable.

5.2.3 Point defects

It is well known that in a magnetic field a &1 point defect of a nematic becomes a
linear soliton terminating in the singular point [6,10]. In the case of ferronematics
with negative x. one expects a splitting of this linear soliton into N flower and W
flower solitons above a threshold field. The sequence d possible structural changes
with increasing H are shown in Fig 5.5 for a -1 point defect.

5.3 Two component systems

Instead o ferromagnetic grains if we dope a nematic with rod like solute molecules
of diamagnetic anisotropy x2 in anemdtic host o diamagnetic anisotropy x*, then
asimpleextension o the above model permits us, to a good approximation, |0 write
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the free energy density as follows:
SkT
|4 nf.

Thus in a magnetic field the solute molecules like the magnetic grains get re-
distributed in the distorted configuration. In Fig 5.6 is shown this segregation
calculated for the U flower configuration with the host and solute molecules having
negative and positive diamagnetic anisotropy respectively.

-(V’é’)2 + (xh + fxa)—cos 0+ ——

54 Ferrochol esterics

We will now work out the structure d ferrocholestrics(FCh) in the presence of mag-
netic field taking into account the effect of both diamagnetic anisotropy x, and the
magnetization m o the grains [11). We will consider both x, < 0 and x, > 0
materials. We also consider the effects of grain segregation in such structures.

Fig5.7: Schematic representation d ferrocholesterm in a magneticfidd

5.4.1 Elastic instability in ferrocholesterics

As pointed out earlier we incorporate in our analysis the diamagnetic anisotropy o
the host matrix. Then the generalized Brochard-de Gennes free energy density of
the FCh in a magnetic field (For the geometry shown in Fig 5.7) is given by

_ k00, 00 xuf?

po= (D03, a0 kaT

sin? 0 — me cosl + Inf (5.9)
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where,
ka2 = twist elastic constant
P = pitch o the FCh = 27 /4y,

Under the influenced a magnetic field not only the director n getsdistorted but
also the magnetic grains will get redistributed from their initial uniform distribution.
From the minimization o Fy with respect tof, we get,

Y = o exp(poH cos ) e
where, po = (M,V/kgT) and 3, is the normalization constant so chosen that

.
/ﬁ vdz = P (5.10)

The Euler equation for 0,is

0*0  sinfcosf  ¢sind

=T tTg (511
where, . . )
2 22 2 22 22
= d = . = —=
§= & M,Hf = MH
Integrating equation (5.11)and using (5.10)we get
do
2= 61_1(a,-¢+5g sin? 6)1/2 (5.12)

wlere ais a constant. Integration o ( 5.9) over one pitch using ( 5.12) leads to:

F | 2 2rqof2  Inyyg , €2 jem, 7 . 2 1/2

N AN e+ 52 in20 — )" 4
(a 1)(p p) =2 4 — Péljo (™ 62sin?g — %)

(5.13)

The condition for minimum o the free energy 8§ = 0 gives,
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da | 2maokyyp , ldbo . & /2ff(da_¢d¢u) o
P P2 | P o 2P6, Jo o (a + 5% sin? — w)lh
. 2 r ’
_ g—'-"‘j)—fjo (a+&sin?0 - y)""do = 0 (5.14)
1

From ( 5.9) and ( 5.10) we get,

P 2 do 2r . ¢d0
5 = - 5.15
g '/O (a + 6%sin*4 t,l)) ok '/(; (a +' 6% sin? 9¢)l/2 (5.19)

Substitution of equation ( 5.15) in ( 5.14) resultsin

2r
Irgedy = fo (@ + 82 sin? 0 — )1/2d0 (5.16)

here,

, H¢? poHE?
612 — Pozfz and 63 - (:26%2

We can determine w, a and P by solving equations (5.10), (5.12) and (5.16)
simultaneously. These equations have been solved numerically.

5.4.2 Structure of the soliton lattice

For positive diamagnetic anisotropy x. > 0 at fields lower than a threshold H, =
M /x, weget, the Brochard-de Gennes 2 soliton lattice - a periodic array of 2 twist
walls. However above H, the 2= lattice becomes unstable with each 2# twist wall
splitting into a 'double =’ twist wall this has been depicted'in Fig 5.8a (a similar
behavior was predicted by Huddk [12] in smecticC* in an electric field. But we
should notice that in smectic C* there is no process equivalent of grain migration).
During the formation o the soliton lattice the grains migrate out of the strongly
twisted regions to the weakly twisted regions where the director or m is nearly
oriented along thefield. Fig 5.8b, shows the grain concentration profile in this case.

For x. < 0 materials, the behavior is entirely different. At low fields we get the
usual 27 soliton lattice. For fiddsH » H, = M/x, the equilibrium orientation o
the director in a nematic makes an angle 8,, = cos™!(M/xH) with the field as in
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the case d ferrronematics with negative x,. Then each 2z wall splitsinto a N twist
wall and a W twist wall. In the N wall the director turns from —4,, to +4,, while
in the W wadl the director rotates from +4,, to 2 — 6,,. It should be remarked
that these are very similar to the N and W walls described by and Dmitrienkov and
Belyakov for SmC* in an electricfield [9] In Fig 5.9a, isshown the ¢ profile over one
period of the N-W soliton lattice. In this case the segregation d magnetic grains
has a different profilefrom that o 2= or double « soliton lattice. Thisis depicted in
Fig 5.9b. It should be noticed that unlike the previous case here the grains migrate
from the W wall to the N wall.

Another important difference between the N-W lattice and that of classical 2x
lattice pertains to the slope o the twisted regions. In the case' of 2# lattice the
twisted region has the same width as the pitch o the cholestericat H = 0. This
means that the dope o this region in the 8 — z plot iscloseto ¢,. This is no longer
true in the N-W lattice. We cart see from Fig 9.a that even though in the N wall the
slope more o less close to ¢ in the W wall it is very different from this value. Also
the thickness o W wall increases with the magnetization m. However wall thickness
IS not very sensitive to the grain migration. It can be seen from Fig 5.8a that even
in the "double " wall the two regions have different slopes.

Many o the structural details o cholesteric and ferrocholesteric soliton lattices
can be elucidated by an optical technique. This forms the subject matter of the
next chapter.
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