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If living cells were machines built from a framework of struts and diverse material com-

ponents, driven by an internal Carnot engine, then our well established laws of mechanics

and thermodynamics of small, open systems would have sufficed to describe its dynamical

state and mechanical response [1, 2]. The living cell (Fig. 1.1) is much more complex: its

architecture is self-organised, reconstructing continually in response to a variety of internal

and external cues [2, 4]. This is facilitated by an incredible array of protein machines which

have evolved to perform a range of tasks such as (i) catalysts, which facilitate or inhibit

biochemical reactions, (ii) motors, which facilitate transport of material, e.g., proteins and

lipids, across the cell and (iii) signaling molecules, which facilitate the transfer of informa-

tion [4, 5]. Some of these protein machines are agents for construction (and deconstruction)

of supramolecular structures such as protein filaments and lipid membranes. Lipid mem-

branes partition specific chemicals into morphologically distinct organelles within the cell,

as well as encapsulate chemicals for transport between organelles [5]. Protein filaments pro-

vide scaffolding and structural stability to the cell and its organelles; in addition they also

serve as tracks for the transport of material within the cell [5, 6, 7].

What lies at the heart of this uniquely regulated behaviour of the living state is activity.

The living cell is maintained in a state far from chemical equilibrium, by producing high

levels of stored chemical energy in the form of Adenosine triphosphate (ATP) or Guano-

sine triphosphate (GTP) [6]. This stored chemical energy is the source for activity, fuelling

protein machines, which when recruited to precise locations on filaments or membranes,

produce local mechanical stresses. These active mechanical stresses can give rise to (i) local

deformations or changes in the state of the filaments or membranes, (ii) directed transport

and (iii) local sources of noise [8]. The change in the state of filaments and membranes re-

sulting from activity, in turn influence the active process. This tight coupling between local

state change of the filaments and membranes, mechanical stress, and chemical reactions is a

hallmark of active processes [8].

In formal terms, active systems are simply a collection of ‘particles’ (filaments + mo-

tors, membranes + pumps), driven by internal energy sources, as a result of which they

give rise to local mechanical stresses [8], which in turn affects the configuration of parti-

cles. The formal study of the physical consequences of activity constitutes a special example

of non-equilibrium statistical mechanics of driven states of matter. Thus one may study

both single particle and collective behaviour of active particles: the steady state patterns

[9, 10, 11, 12, 13], hydrodynamics [14, 15] and rheology [15, 16, 17] are unique and show
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Figure 1.1: Schematic of a typical animal cell, showing the organization of the filaments [3].

qualitative differences from their passive counterparts [15, 16, 17, 18]. Indeed one of the

most dramatic consequences of activity is movement : active systems exhibit moving steady

states [13, 15, 19]. It is hoped that the study of the physical consequences of active systems

will provide the framework to understand complex cellular processes such as intracellular

trafficking, cell mechanics and cell motility, among others.

In this thesis, we focus on cellular filaments, both passive and active. We will study

their mechanics and transport with particular emphasis on the coupling between mechan-

ics and chemistry. In chapter 2, we take the example of DNA-protein (un)binding kinet-

ics, to illustrate that the chemical kinetics of (un)binding of the protein is affected by the

scale-dependent mechanical stiffness of the DNA heteropolymer. In chapter 3, we study the

collective behaviour of active filaments and see how activity manifests through the organiza-

tion and the novel mechanical response of a suspension of filaments. In chapters 4 and 5, we

develop a theoretical framework to understand active transport of cargo vesicles on static fila-

ments. We first discuss bidirectional transport of a single vesicle driven by processive motors

on a filament (chapter 4). The transport properties are regulated by the chemical (un)binding

kinetics of motor proteins. In chapter 5, we study collective transport of interacting vesicles
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on a filament, within a new 4-species model belonging to the class of interacting lattice gas

models.

1.1 Brief description of cellular filaments : DNA, actin and
microtubules

In this brief description of three cellular filaments, Deoxyribonucleic acid (DNA), actin and

microtubules, we will only focus on their structural, dynamic and mechanical aspects. These

polymers are built from monomeric units, some with the aid of ATP/GTP. They are typically

semiflexible, a feature characterised by a persistence length [20], defined as the typical length

over which tangent vectors to the curve representing the polymer are uncorrelated due to

thermal fluctuations. In in-vivo conditions, they typically organize into mesoscale structures,

by coupling to specific proteins [2, 5]. Being polar, they can form tracks on which motor

proteins can transport cargo vesicles and organelles in a directed manner [5, 7, 21, 22].

Deoxyribonucleic acid (DNA) is a semiflexible heteropolymer whose monomeric units

are the four nucleic acids: Adenine(A), Cytosine(C), Guanine(G) and Thymine(T). It is a

double helix formed by two complimentary strands. The complimentary strands comprise of

a sugar phosphate backbone held together by hydrogen bonds between the G-C and A-T base

pairs [5]. The bend persistence length of the DNA is ' 53 nm = 156 bp (base pairs) [23, 24]

and its Young’s modulus is around 1 GPa [4]. Nuclear processes such as transcription and

replication involve attachment of specific proteins to the DNA-strand in a site specific man-

ner. The binding typically leads to a local distortion of the DNA [25, 26], which changes its

elastic properties.

Actin filaments are generated by the polymerisation of monomeric actin to form tight

helical strands of diameter 5-9 nm. They are polar and semi-flexible, with a persistence

length of 17 µm [27]. They are highly dynamic - their polymerisation and depolymerisation

is regulated by the hydrolysis of ATP. In-vivo, they can organize into a variety of structures

- linear bundles, two-dimensional networks, branched networks and three-dimensional gels

- by means of temporary and permanent crosslinkers [2, 5, 6]. In conjunction with myosin,

they apply contractile forces on the cell. They are involved in a variety of cellular functions,

such as providing mechanical support to the cell, cell motility, determining cell shape and

serving as tracks for intra-cellular transport [2, 5, 6].

Microtubule filaments are formed by the polymerisation of α − β tubulin dimers. The

dimers are 8 nm long and under in-vivo conditions, they assemble to form a polarized tubule
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Figure 1.2: Force versus extension data (red crosses) for DNA λ phage DNA (48502 bp)
pulled by magnetic beads in 10mM Na+ buffer. The data are fit to a WLC model solved
numerically (WLC exact), using persistence length Lp = 53nm. The corresponding Freely
Jointed Chain (FJC) curve, WLC interpolation (using an approximate interpolation formula
[30]) curve and Hooke’s law force curve, assuming the same persistence length are also
shown [23].

with a 25 nm diameter [5, 28]. In-vivo microtubules are highly dynamic objects - their poly-

merisation and depolymerisation is regulated by the hydrolysis of GTP. They are intrinsically

asymmetric, with the (+) end chemically and morphologically distinct from the (−) end. This

polarity is recognized by the motor proteins, which move along this track in a directed man-

ner, carrying vesicle cargo along with it [7]. In cells, they are organized roughly radially,

with the (+) end pointing towards the periphery and the (−) end being at the microtubule

organizing center (MTOC) located near the nucleus (Fig. 1.1) [7]. The persistence length

of a microtubule is ∼ 1 mm [4] and thus suitable for long distance intracellular transport. Its

Young’s modulus is ∼ 2 GPa [4], similar to that of hard plastic.

1.2 ‘Single-Particle’ description of filaments

1.2.1 Passive Filaments

At scales much larger than its intrinsic pitch (' 3.4 nm = 10 bp for DNA), the mechanical

properties of passive, semiflexible filaments such as DNA and actin are governed primarily
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by bending, twisting and stretching [29, 30, 31]. Single molecule experiments, such as those

using optical tweezers, measure the force-extension curves of these filaments. For a DNA,

free to swivel at one end, the force-extension curves (Fig. 1.2), show an initial Hookean

regime, arising from entropic elasticity, before rising sharply. A successful model that ex-

plains a whole variety of force-extension curves of DNA is the Worm like chain (WLC)

model, which represents the DNA by an inextensible continuous curve of total length L,

parametrized by an arc length, s. In this model, the elastic energy ( in units of thermal en-

ergy kBT ) stored in a particular conformation is written in terms of its local curvature, twist

and stretch, as,

H
kBT

=
1
2

∫ L

0
ds

[

A(Ω2
1 + Ω

2
2) + C(Ω3 − ω0)2 + Bω2

0α
2 + 2Dω0(Ω3 − ω0)α

+ 2G(Ω3 − ω0)Ω2 + 2Kω0Ω2α] . (1.1)

Here, Ω1,2 are the bending strains, Ω3 − ω3 is the twist strain and α is stretching strain. The

coefficients A and C are the bend and twist persistence lengths,ω0 is the unstressed filament’s

helix density and B reflects the intrinsic stretchability of DNA. The parameter G is the twist-

bend coupling, D is the stretch-twist coupling and K measures the coupling between stretch

and bend [31, 32, 33].

The curve in Fig. 1.2 can be fit by one parameter, the bend persistence length [23, 24].

The bend persistence length for DNA measured this way is about 53 nm [23, 24] while the

twist persistence length is about 75 nm [29, 34]. The bend persistence length of actin is

around 17 µm [27].

1.2.2 Active Filaments

Active filaments, such as cellular actin and microtubules are maintained singly and collec-

tively out of equilibrium, both by processive motors [2, 4] and continuous polymerization

and depolymerisation [6]. Motors, driven by ATP hydrolysis, move along filaments, pro-

ducing active forces and torques on the filaments which result in directed translational and

rotational movement. On the other hand, it is not obvious how polymerisation - depoly-

merisation processes in cellular filaments are active. To see why this constitutes an active

non-equilibrium process, consider the dynamics of an equilibrium ‘living’ polymer. For an

equilibrium ‘living’ polymer undergoing polymerisation-depolymerisation, the length fluc-

tuates in a diffusive manner. The diffusion coefficient, D = kon c δ2, where kon is the on-rate

for polymerization, c is the monomer concentration, and δ is the increase in length due to
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Figure 1.3: Treadmilling in microtubules: (a) When both the plus and minus ends of the mi-
crotubule has GTP-containing subunits, then the microtubule is stable with polymerisation
at both ends. (b) During treadmilling, the rate hydrolysis of GTP to GDP at the minus end is
faster than GTP containing subunit addition, leading to loss of the “cap” and depolymeriza-
tion at the minus end. At the plus end the GTP containing cap keeps on adding new subunits,
so that there is a net polymerisation at plus end and a net depolymerisation at minus end [37].

the addition of a monomer [6, 35]. For a microtubule filament, kon = 5 × 106 mole−1 s−1,

c = 10 µM and δ = 0.6 nm. If one uses the expression for equilibrium diffusion coefficient

to compute the standard deviation of the length of the filament, then it turns out that the

standard deviation of the length over 1 min is 46 nm and over one week it is only 4.7 µm.

This is to be contrasted with what actually happens with individual microtubules in the cell.

Microtubules can switch between a growing phase (with rate ' 1 µm/min) and a shrinking

phase (with rate ' 10 µm/min) on timescales of minutes [6, 36]. It is seen that neighbouring

microtubules can be in different phases indicating that length fluctuations in microtubules is

not due to fluctuations in monomer concentration.

In general, activity affects individual cellular filament properties in three different ways:

(i) Activity affects the polymerisation-depolymerisation kinetics of the filaments, such

that there is net polymerisation at one end of the filament and net depolymerisation at the

other end, in a process called treadmilling ( Fig. 1.3) [6]. This results in the generation

of non-equilibrium stresses. (ii) These active stresses, in general, produces movement. For

instance, the coupling of polymerising actin with the cell membrane results in cell motility

[38, 39]. (iii) Activity drives motor proteins, which bind to filaments and generate forces and

torques between the filaments, inducing relative motion [6, 17].
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1.3 Collective description of active filaments

The collective properties of passive and active filaments at large scales is best described

within a hydrodynamic framework. The hydrodynamics of passive filaments is well under-

stood [20]; in this section we will describe only those features of the hydrodynamics which

bring out differences between active and passive filaments. This is highlighted by the in-vitro

experiments described below.

In-vitro experiments done on actin-myosin solutions have revealed the role of motor ac-

tivity in generating contractile forces in filaments. Myosin’s motor domain binds to actin

filaments and uses ATP hydrolysis to generate force to move along the polar actin filaments.

This force induces collective sliding of the filaments and produces local stresses [17].

In-vitro experiments on a suspension containing tubulin, kinesin and ATP have revealed

a whole range of dynamic phases and pattern formation [9]. Tubulin polymerises to form

dynamic microtubule filaments. The kinesin motors attach to the microtubules and in pres-

ence of ATP, move towards the microtubule plus ends and form dynamic crosslinks between

the microtubules. In a confined cylindrical geometry, microtubules polymerizing from an

initial homogenous solution of tubulin monomers, first organize into a symmetric aster. As

the microtubules continue to grow, the finite geometry causes them to buckle. The centre

of the aster becomes unstable and a vortex structure is formed. In an unconfined geometry,

further self-organization of previously formed structures of asters and vortices are seen. The

final patterns depend on the initial concentration of the molecular components. At low con-

centration of motors, a lattice of vortices forms, but at slightly higher concentration, a lattice

of asters can be observed. Finally at even higher motor concentration, the microtubules form

bundles [9]. In the cellular context however, the occurence of different organizations is not

necessarily triggered by precise variations of the protein concentration, but rather on a vari-

ety of regulatory processes such as binding of associated proteins [40]. Thus, the collective

behaviour of filaments lead to the formation of various kinds of structures, regulated by ac-

tivity through ATP or GTP hydrolysis.

In-vitro experiments done with actin-myosin II and ATP showed that myosin II has a

significant effect on the network rheology — activity reduces the stress relaxation time in a

concentrated polymer solution [17]. Rheological measurements show that the storage modu-

lus (G′) is decreased by around 40%, on addition of ATP, as compared to the solution without

ATP. Most of the filaments displayed sliding in the presence of ATP and were immobilized

under ADP conditions. Thus, the macroscopic rheological and transport properties of active
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filaments are controlled and regulated by activity and are very different from a collection of

passive filaments.

Activity also plays a role in intracellular transport by the motor proteins. The motors use

the filament track to transport cargo and organelles, whose spatial distribution is regulated

by motor-filament binding kinetics driven by activity [7, 21].

To understand these different driven phases that active particle suspensions exhibit

and their rheological response, we resort to a hydrodynamic description, as developed in

[10, 14, 16]. The idea is to write down equations of motion to describe the large-scale, long-

time dynamics of the active particle systems, similar in spirit, to the equations of passive

hydrodynamics. This approach, in principle, can describe the behaviour of a wide class of

active systems, such as actin-myosin complex, bacterial suspensions, moving flocks of birds

and swimming fishes [13, 15]. In analogy with equilibrium hydrodynamics, active particle

systems exhibit distinct phases, which can be classified on the basis of their symmetries. As

with passive systems, their hydrodynamics can be described by a small number of hydrody-

namic variables. The fluid is described in terms of coarse grained number density ρ(r, t) and

velocity v(r, t) fields. The Navier-Stokes equation describing the hydrodynamics of a simple

incompressible fluid [41], is given by,

∂v
∂t
+ (v.∇)v = −1

ρ
∇p +

η

ρ
∇2v (1.2)

In addition, for an incompressible fluid, ∇ · v = 0. Using the incompressibility condition,

the pressure, p can be eliminated. The microscopic features of the fluid are represented by a

single phenomenological parameter, the dynamic viscosity η. Once this parameter is deter-

mined from experiments or from more microscopic models, one can solve equation (1.2), to

predict the velocity profile at all times.

This hydrodynamic description is appropriate to phenomenan at length scales much

larger than the mean free path and time scales much larger than the average collision time.

To identify the relevant hydrodynamical variables, we simply look at those variables which

survive at late times. These correspond to variables which obey conservation laws like the

number density, momentum density and broken symmetry variables [13]. The relevant terms

which appear in the continuum equations for these hydrodynamic variables are terms which

are important at large length scales and long time scales and which are not ruled out by sym-

metries and conservation laws. For instance, the symmetries which appear in the Navier-

Stokes equation are rotational invariance, space and time translation invariance and invari-
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ance under Galilean transformations. At large length and time scales, it suffices to keep the

lowest order terms in space and time derivatives, consistent with symmetry.

Early theoretical modelling of the collective behaviour of large number of active particles

focussed on the phenomenon of flocking among organisms, e.g., flocking of birds [13, 19].

In particular these models noted the striking analogy between flocking and ferromagnetism.

The velocity vectors of individual birds resemble the individual spins in a ferromagnet, which

on an average point in the same direction. In the ordered flocking state, the average centre of

mass velocity of the flock acquires a nonzero value, producing spontaneously symmetry bro-

ken moving steady state. This spontaneous symmetry breaking happens in all dimensions,

d ≥ 2. This is to be contrasted with the absence of long range order in equilibrium spin

systems in 2-dimensions [42].

In describing the collective behaviour of a suspension of cellular filaments or bacteria,

one needs to include the dynamics of the fluid medium. The total momentum of the system (

particles + fluid ) is a conserved hydrodynamic variable. Thus to describe the collective be-

haviour of such systems, one has to formulate hydrodynamic equations for the variables : c,

the concentration of the filaments, p, the broken symmetry variable associated with average

drift velocity of the active filaments with respect to the solvent, and g, the total momentum

density. An active particle, on long time scale acts like a permanent force dipole. A collec-

tion of such active filaments gives rise to active stresses. The deviatoric part of this active

stress, to leading order, is given by [14],

σa (r, t) = Wc (r, t)
(

p p
p2
− 1

3
I
)

, (1.3)

where the magnitude and sign of W characterises the nature of the elementary force dipoles

[14, 16].

Thus activity generates flow. For a suspension of polar filaments it can lead to an average

drift velocity of the active filaments with respect to the surrounding fluid medium [16]. In

chapter 3, we will derive the equations of motion for an active-filament suspension, from

which we will obtain steady state patterns, hydrodynamic flows and rheology of the active

suspension.
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1.4 Prelude to chapters

1.4.1 Chapter 2 : Sequence-dependent DNA elasticity - Implications
for DNA-protein binding

A variety of proteins such as RNA polymerase and transcription factors, bind to DNA in

order to initiate and perform tasks such as transcription and replication. In each instance, the

protein locally distorts the DNA in the process of binding. Experiments on the binding of

434 repressor (involved in transcription) [26], showed that it distorts the DNA over a scale

of 12 bps upon binding.

In this chapter, we ask whether this elastic deformation of the DNA filament is sensitive

to the sequence of the base-pairs over that scale. We answer in the affirmative. This implies

that the (un)binding kinetics of a DNA-binding protein depends on the elastic properties of

DNA in a sequence dependent manner. This suggests that even for non-specific binding,

the kinetics of DNA-protein binding is sequence dependent. Thus far from being a passive

substrate wherein biological function happens, we believe that the underlying filament may

regulate the process itself.

We study the ‘sequence’- distribution of thermally averaged global and local elastic prop-

erties of a DNA random heteropolymer of a fixed length N, within the simple WLC model.

Using a mapping to the disordered Heisenberg chain, we arrive at a number of qualitative

results, on the form of the distribution function of the thermally averaged end-to-end dis-

tance 〈R2〉, and its moments. For long, N → ∞ chains, this distribution is Gaussian; for

shorter chains, there is a crossover to an exponential distribution, with the most probable

end-to-end distance deviating significantly from the mean. Further, the distribution of local

quantities related to the thermally averaged tangent-tangent correlator are typically broad,

even in the thermodynamic limit, i.e., they do not self average. We argue that this scale

dependent ‘sequence’ sensitivity should have important biological implications, specifically

for the binding of proteins to DNA — we present a simple model calculation of the bind-

ing/unbinding kinetics of DNA-binding proteins and give numerical estimates for the human

DNA-repair enzyme HOGG1.

1.4.2 Chapter 3 : Active oriented filaments — shear stabilization and
rheology

In this chapter we study the collective behaviour and mechanical response of active fila-
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ments such as actin-myosin and motor-microtubule complexes.

Theoretical studies focussing on the rheological properties have looked at the interplay

between activity, flow and order [16]. These studies have predicted novel behaviour of such

systems and sharp departures from the rheological behaviour of their passive counterparts.

For instance, for active suspensions there is an active enhancement or reduction of viscosity

on approaching the transition to the orientationally ordered phase from an isotropic phase.

This in turn can lead to a mitigation of shear thinning effects and in some cases to shear

thickening [16]. This is in contrast to the passive system, where the onset of orientational

order invariably leads to shear thinning. The question we ask is, what is the rheological re-

sponse of this active suspension when it is driven across the orientational transition.

However it has been shown that the orientationally ordered phase of such active particle

suspension is hydrodynamically unstable [14].

In this chapter we study the effect of an externally imposed planar shear on the stability

of the orientationally ordered active phase. We proceed by setting up coarse-grained equa-

tions governing the hydrodynamic velocity, broken symmetry variable associated with the

polarization vector defining the average drift velocity with respect to the fluid and the con-

centration of the active filaments. We then look at the stability of the homogeneous oriented

steady state in the presence of the imposed shear flow.

We find that a sufficiently large shear rate can overcome the instability caused by the

active stresses and stabilize the orientationally ordered phase. We show that a dimension-

less active Peclet number, the ratio of the active stress to the externally applied shear stress,

determines the phase stability. We obtain the non-equilibrium stability diagram as a func-

tion of this dimensionless number and alignment parameter. The rheology of the stabilized

active oriented phase exhibits interesting behaviour; the orientationally ordered state has a

non-zero, anisotropic prestress in contrast to equilibrium nematics.

1.4.3 Chapter 4 : Active bidirectional transport of vesicles on micro-
tubules

In chapter 4, we study the role of activity in the transport of cargo vesicles on cellular

filaments. More specifically, we focus on bidirectional transport of vesicles and organelles

on microtubules.

One of the striking features of the cell is that its constituents, the organelles and the innu-

merable transport vesicles are spatially organized. This heterogenous organization within the
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cell is maintained actively and dynamically, employing different mechanisms [6, 7]. Much

attention has been focussed on the two related questions,

How is this spatial organization (often polarized) achieved?

How is transport regulated ?

In-vitro studies done using melanophore cell extracts, have exhibited bidirectional trans-

port of pigment granules on microtubules by multiple oppositely directed motors. Similar

nature of experiments have been done to study axonal transport in nerve cells. It has been

observed that regulation of the activity and (un)binding of motors lead to a change in the

macroscopic organization of the vesicles and organelles within the cell, which under certain

physiological conditions can lead to a polarized distribution of vesicles.

In this chapter, we develop a ‘single-particle’(vesicle) transition rate model [43] for bidi-

rectional transport. In this model, the state of the vesicle is described by the number of

plus-end directed motors (kinesin) and minus-end directed motors (dyenin), carried by the

vesicle cargo, which are attached to the filament. We then derive the general master equa-

tion governing the time evolution of the state of the vesicle. Next, we consider microscopic

models for the form of the velocity of the vesicle and the (un)binding rates of the motors

in a given state. With these inputs, we determine the steady state solutions of the master

equation and various macroscopic transport properties, such as, distribution of the velocity

of the vesicles, the distribution of reversal times of the vesicles, the first passage time of

unbinding of the vesicle from the filament and the average number of the motors attached to

the microtubule.

We quantitatively predict how motor binding affinity of kinesin and dyenin would lead

to changes in the macroscopic distribution of the vesicles and their velocities. We see that

increasing the efficiency of binding of one kind of motor relative to the other, can lead to

polarized distribution of the cargo vesicles and a skewed distribution of velocities. Similar

efficiency of binding for both kinesin and dyenin results in no net directional transport of

vesicles. We make qualitative comparisons of our predictions with experimental data ob-

tained from tracking individual vesicle trajectories [44] and find broad agreement of certain

gross features such as occurence of multiple peaks in the distribution of the velocities of the

vesicles.

Our hope is that such models, in conjunction with vesicle tracking experiments, would be

able to shed light on the microscopic mechanisms of (un)binding and movement of vesicles

by motor activity.



14 Chapter 1. Introduction

1.4.4 Chapter 5 : Collective transport of interacting vesicles on micro-
tubules

Many macroscopic features of vesicle transport in controlled in-vitro experiments may be

understood in terms of single-particle models. However, in the over-crowded environment

of the cell, one cannot ignore interactions between vesicles. Further, the effect of finite

boundaries on the transport properties can be significant, as cargo vesicles are loaded and

off-loaded at specific locations within the cell.

We present a simple minimal model for the collective transport of vesicles, which in-

corporates both the interaction between vesicles and the effects of finite boundaries. In this

minimal model, we restrict the maximum number of attached motors of either kind to 1. We

incorporate the effects of the boundaries and the interaction between the vesicles through

excluded volume effects. The dynamics consists of; (i) the translation of the vesicles on 1-d

lattice, and (ii) the inter-conversion between the states of the vesicles. We derive equations

of motion with these dynamical rules, and obtain the steady state solution and the corre-

sponding phases in a specific limit - when the inter-conversion dynamics is much faster than

translation- using a mean-field analysis. We obtain phase boundaries and the entire phase

diagram using a domain wall approach [45], and find good agreement with Monte-Carlo

simulations done in this limit. We illustrate qualitatively how (un)binding kinetics, effects of

excluded volume and finite boundaries can influence the macroscopic phases characterizing

collective state of the vesicles. We believe that this 4-species model, is a minimal model for

the dynamics of interacting vesicles undergoing bidirectional transport.

1.5 Conclusions

In this thesis, we look at the mechanics of and transport on cellular filaments. Our study

reveals the crucial role played by activity in determining individual filament behaviour and

shaping the collective response of these filaments. It also highlights the contrast in the be-

haviour of active filaments and their passive counterparts. While the mechanics and transport

within the living cell is enormously complex, we have, in this thesis, attempted to construct

primitive models which highlight basic mechanisms and principles underlying the workings

of this intricate ‘machine of life’. For doing this we have liberally taken recourse to our fa-

miliar laws and techniques of non-equilibrium statistical mechanics, with the hope that such

an exercise will shed some light on the actual processes occuring within the cell.
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