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3.1 Introduction

In this chapter, we study theoretically the collective behaviour and mechanical response of

active filaments (e.g., actin-myosin complexes, motor-microtubule complexes). Such a study

has potential implications in understanding the mechanical response and movement of cells.

The surprising consequences of activity have been highlighted in Chapter 1; indeed the

most dramatic manifestation is in movement [1]. A suspension of active filaments can exhibit

steady states wherein the active particles move with respect to the solvent [2, 3] and hence

generate local flows in the fluid. This would lead to a long-range hydrodynamic interaction

between the filaments. When the concentration of the active particles is large, one might

imagine that this interaction between filaments could result in a tendency to orientationally

order. This however is not the case, since the oriented phase of active suspension is hydro-

dynamically unstable in the Stokesian regime [4]. This is because the flow generated by

a small, long-wavelength splay or bend deformation imposed on an oriented configuration

always acts instanteously (in the Stokesian regime) to further increase the deformation [4].

Here we describe a way to stabilize this orientationally ordered phase, by externally im-

posing a shear flow. We find that an imposed shear, larger than a critical strain rate γ̇c,

stabilizes the orientationally ordered phase, yielding a stability diagram controlled by two

variables, a flow alignment parameter λ and the ratio of the shear to active stress. Hav-

ing stabilized the orientationally ordered phase, we explore its rheological response. The

rheological properties of such active particle systems show strong deviation from passive

systems [3]: the orientationally ordered phase is characterised by a non-zero steady-state

average of the deviatoric stress, which is a kind of yield stress. On approaching the orien-

tationally ordered state from the isotropic fluid, a suspension of active contractile elements

exhibits solid-like behaviour without translational arrest. Unlike in passive nematogenic

systems, which exhibit shear thinning [5], as one approaches the nematic phase from the

isotropic side, active filament suspensions exhibit shear thinning or thickening depending on

the nature of activity, i.e., whether it is contractile or extensile. One way of quantifying the

rheology of these active filament systems would be to prescribe phenomenological constitu-

tive relations between the stress and the strain rate. Instead, our approach will be to derive

the stress-strain rate relations from the underlying hydrodynamic equations.

In constructing the hydrodynamic equations, we need to prescribe how active filaments

generate local mechanical stresses, which lead to hydrodynamic flows which in turn affect

the neighbouring filaments. In section 3.2, we model this active mechanical stress and show
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how the near field flows generated by activity depend on whether the filaments are contrac-

tile or extensile. In section 3.3, we review the rheology of the isotropic phase of such active

suspensions. In section 3.4, we construct hydrodynamic equations for sheared suspensions

of active filaments, analyse the stability of the orientationally ordered phase and obtain a

non-equilibrium phase diagram. In section 3.5, we look at the rheological behaviour of the

shear stabilized orientationally ordered phase. Finally in section 3.6, we discuss possible

extensions of this work.

3.2 Modeling active stress

To determine the stress due to activity, we need to model the forces associated with the active

particles. It is important to realize that the force density associated with each individual

active filament in a fluid must integrate to zero; a consequence of Newton’s Third Law.

Thus the simplest model for an active Stokesian particle is an object which absorbs energy

from its surroundings and dissipates it in the process of carrying out cyclical, non-reciprocal

movements [6]. On timescales larger than this activity cycle time, the active particle can be

represented by a permanent force dipole [4]. This gives rise to two distinct possibilities: (i)

if the centre of the force dipole is such that it coincides with the centre of mass of the active

particle, then by symmetry, there can be no net velocity at the centre of mass of the active

particle, (ii) if the force dipole centre is aymmetrically disposed about the centre of mass

then there will be net relative velocity at the centre of mass of the active particle which we

denote as p. To elaborate, consider the α th active filament, with axis p̂α , with point forces

of equal magnitude on its ends, directed along ± p̂α (Fig 3.1). In general, we keep the force

centres asymmetrically disposed about the centre of mass of the active particle, ~rα(t), the

ends being at ~rα + bp̂α and ~rα − b
′
p̂α respectively. For a collection of such active filaments,

this leads to a force density given by,

Fa = f
∑

α

[

δ(~r − ~rα − bp̂α) − δ(~r − ~rα + b
′
p̂α)

]

p̂α (3.1)

Doing a Taylor expansion about ~rα,

Fa = f
∑

α
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Figure 3.1: A force dipole corresponding to an active filament. If b , b
′

then the active
filament is polar else if b = b

′
then it is apolar. ~rα is the position coordinate of the centre of

mass of α th active particle, O being the origin of the coordinate system.

we immediately see that since Fa is an internal force density, it is the divergence of an active

stress, which to lowest order is given by,

σa
i j(r, t) = f (b + b

′
)c(r, t)(pi p j − δi j/3) = Wc(r, t)Qi j (3.3)

Active filaments are therefore permanent stresslets. Note that this is the deviatoric part

of the active stress. One can interpret Qi j as the local nematic order parameter or alignment

tensor associated with activity. As mentioned eariler, polar active particle suspension (b , b
′
)

disturbs the fluid and induces a non-zero particle velocity with respect to the fluid, p, at the

centre of mass. Suspension of apolar active particles (b = b
′
) because of symmetry cannot

move with respect to the fluid. However to lowest order in activity, both polar and apolar

active particle suspension induces the same far-field fluid flow. This implies that the rheology

of such active suspension should be the same for both the polar and the apolar case. The sign

of W depends on the nature of elementary force dipole. For contractile filaments, W < 0

and such dipoles enhance an imposed flow, whereas for extensile filaments, W > 0 and they

oppose the imposed flow (Fig. 3.2).
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W >  0

W < 0

Figure 3.2: Rods with active force densities attached along their symmetry axis. (i) Extensile
rod (W > 0), opposes the imposed flow. (ii) Contractile rod (W < 0), enhances the imposed
flow.

3.3 Review of active hydrodynamics and rheology in the
isotropic phase

3.3.1 Hydrodynamic equations in the isotropic phase

In the last section we argued that an active filament behaves like a permanent force dipole and

a collection of such active filaments leads to a stress field in this suspension. The deviatoric

active stress has the form given by equation (3.3). We will now review earlier work done on

hydrodynamics and rheology of the isotropic phase of such active particle suspension [3].

The hydrodynamic variables describing the active particle suspension [3, 4] are: (i) the

conserved hydrodynamic fluid momentum g = ρ0u, where u is the hydrodynamic velocity

in a fixed frame (and ρ0, the mean density), (ii) the conserved active-particle concentration

c(r, t) and (iii) the alignment tensor Q constructed from the local drift velocity p associated

with the average drift velocity of the active particle relative to the fluid. We will ignore the

effects of fluctuations of concentration for the purpose of our present discussion. Including

the effects of concentration fluctuations can lead to a clumping instability in the isotropic

phase [7].

In analogy with the form of equation of motion for a passive nematogenic suspension,

we construct the hydrodynamic equations for an active suspension in isotropic phase. The
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equation of motion of Q involves two pieces: (i) the dissipative part and (ii) the reactive part.

The dissipative part is proportional to the molecular field − δF
δQ , where F is the Landau-

deGennes free energy functional for passive nematogens [3, 5],

F
kBT

=

∫

d3r co

[

αTrQ 2 + βTr Q 3 + γ(Tr Q 2) 2 +
K1

2
(∇kQi j)

2 (3.4)

+
K2

2
(∇ jQi j) (∇kQik) + K3(εi jkQil∇ jQkl)

]

.

The first three terms describe the N-I transition and the last three terms are the Frank free

energy terms associated with bending, splay and twist distortions of the alignment tensor Q.

c0 is the equilibrium concentration of the nematogen in the suspension. In the expression

above we have ignored the terms involving solely the concentration, i.e., term corresponding

to entropy of mixing and that involving fluctuations of concentration.

Its easy to see from equation (3.4) that to the lowest order in Q, the molecular field

goes as −a Q, where a is positive and it approaches zero on approaching nematic phase as

a ∝ (T − TN−I). The dissipative part also has term which is associated with frank free energy

distortions which goes as ∇∇Q. The reactive part is given by [5],

R = λoA + κ ·Q +Q · κT − 2

(

Q +
1
3

I
)

Tr (Q · κ) , (3.5)

where κi j = ∇ jui is the strain rate tensor. A is the symmetrised strain rate tensor 1
2 [∇u+∇uT ]

and λo is the alignment tensor.

The linearized equations of motion for Q is obtained simply by adding up the contribu-

tions due to both the reactive part and the dissipative part and retaining terms upto linear

order. In the one constant approximation for the Frank distortions, it is given by,

∂Q
∂t
= −1
τ

Q + K∇2Q + λoA + . . . , (3.6)

where τ is the relaxation time, with τ−1 ∝ a which follows from the fact that molecular field

goes as - a Q, as mentioned earlier.

The conservation of total momentum implies that the total (fluid + suspension) momen-

tum density satisfies the continuity equation ∂tg = −∇ · σ. The total stress, has three pieces

: (i) reactive part, (ii) dissipative part and (iii) active part.

The reactive stress, σOP is given by [5],

σ
OP = −3G +G.Q −Q.G + . . . , (3.7)

where G ≡ − δF
δQ+

1
3ITr δF

δQ is the nematic molecular field constructed to be traceless. The mean

deviatoric passive stress is zero in isotropic phase. Thus to leading order in Q, σOP goes as
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a Q with a being positive in the isotropic phase and a → 0 on approaching the transition to

the orientationally ordered phase. The dissipative stress, σd = −η0A. The active stress, to

leading order in Q is given by σa = WcoQ ≡ W1Q. Adding up all the contibutions, the total

stress in the isotropic phase is given by,

σ = (a +W1)Q − η0A. (3.8)

This defines completely the linearized equation of motion for the momentum density g.

3.3.2 Linear rheology of a suspension of isotropic active filaments

From equations (3.6) and (3.8), we can calculate the linear viscoelastic properties of the ac-

tive filament suspension. It can be easily be deduced that on applying an uniform oscillatory

shear flow at frequency ω in the xy plane

σxy(ω) = −
[

η0 −
(a +W1)λ0

−iω + τ−1

]

Axy (3.9)

=
G
′
(ω) − iG

′′
(ω)

ω
iAxy,

where G
′
(ω) is the storage modulus and G

′′
(ω) is the loss modulus. From (3.9) it follows

that,

−G
′′
(ω)
ω
= ηo − λ0

τ(a +W1)
1 + ω2τ2

(3.10)

The zero-frequency response for the loss modulus is given by ,

−G
′′
(ω = 0)
ω

= ηo − (aτ +W1τ)λ0 (3.11)

Thus because of activity, there is either an enhancement or reduction ηact ∝ W1τ of the

effective viscosity at zero shear rate. Equation (3.11) implies that as the system approaches

a transition to the orientational order from the isotropic side, then for W > 0 , there is a

reduction of the effective viscosity. Note that for the passive case, as the system approaches

the oriented state, then the effective viscosity is reduced by an amount aτ. As τ ∝ 1
a , for

passive nematogen, the reduction of viscosity approaches a constant value. Due to active

contribution for W > 0, the effective viscosity is further reduced leading to enhancement

of shear thinning effect. For W < 0 , the consequences are even more dramatic : Activity

results in enhancement of the effective viscosity on approaching orientational order. This

can lead to mitigation of shear thinning and if strong enough will lead to shear thickening.

From equation (3.9) it also follows,

G
′
(ω) =

λ0ω
2τ2(a +W1)
1 + τ2ω2

(3.12)
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This implies that for active suspension ,

G
′
(ωτ � 1) ' +λ0W1, (3.13)

whereas for a passive suspension, the storage modulus decreases as λ0
τ

.

This result is indeed surprising; at equilibrium one would expect such strong viscoelastic

behaviour near translational freezing and not near orientational ordering [3]. However the

orientationally ordered phase of active particle suspension has been shown to be always

unstable in the absence of any imposed shear [4]. In section 3.5 we would come back to

the rheological consequences of the the oriented phase and the behaviour of the system on

approaching orientational order, once we are able to stabilize the oriented phase.

3.4 Active hydrodynamics of the orientionally ordered
phase in a shear flow

On reducing the temperature towards TN−I , or increasing the packing fraction, the isotropic

phase of passive nematogens becomes unstable, leading to a first order phase transition to the

orientationally ordered nematic phase. Surprisingly, this is not true for active suspensions –

increasing the concentration, or lowering the temparature does not lead to an orientationally

ordered state. As shown in [4], long-range uniaxial orientational order in active Stokesian

suspension of polar active particles is always destroyed by a hydrodynamic instability. This

is because a flow generated by a small, long wavelength splay or bend deformation imposed

on the oriented configuration always acts instantaneously to further increase the deformation

[4]. In this section, we will prevent this instability and stabilize the orientationally ordered

phase by imposing a shear flow. Since the calculational route to obtain the instability and

stabilization by shear is the same, we will display the calculation for the hydrodynamics of

a sheared suspension of active particles and analyse the result with and without the imposed

shear.

3.4.1 Hydrodynamic equations in the oriented phase with shear

The hydrodynamic variables for a suspension of active particles [4, 3] are (i) the total mo-

mentum density g = ρu of the particles + fluid, where u is the hydrodynamic velocity field

and ρ the density, (ii) the concentration c(r, t) of active particles, and (iii) the orientational

order parameter field. For polar systems, the order parameter is the polarisation vector p(r, t)

of the force dipoles associated with the active particles. Active systems being out of thermal
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Figure 3.3: Suspension of active vector ordered particles subject to an imposed velocity
along the x̂-axis, u0 = γ̇yx̂ with a gradient along the ŷ-axis. The shear alignment angle θ and
the angle ξ between the wavevector q and the ordering direction are also shown.

equilibrium, a local polarisation always implies a local average drift velocity of the active

particle relative to the fluid. We thus take p to be the velocity field of the active particles

relative to the fluid. Apolar nematic orientational order is characterised by a traceless sym-

metric tensor Q ≡ S( pp
p2 − (1/d)I), where p is now the director and S is the scalar nematic

order parameter [20]. We focus on the polar case, and indicate differences where appropriate

for the apolar case. Momentum conservation in the Stokesian limit means ∇ · σ = 0, where

the total stress tensor σ ≡ σa + σr + σd is the sum of contributions from activity, order-

parameter gradients and viscous dissipation, and overall incompressibility of the suspension

means ∇ · u = 0, ρ = ρ0, the mean density. Impose a planar shear flow (Fig. 3.3) along the

x̂-axis, with a velocity gradient along ŷ, giving rise to an imposed velocity field u0 = γ̇yx̂.

The equations for the active polar order parameter p read

∂tp + (u · ∇) p − 1
2

(∇ × u) × p +
[

λ1 (p · ∇) p + λ2 (∇ · p) p + λ3∇|p|2
]
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=
λ

2

(

∇u + (∇ u)T
)

· p − ζ ∇c(r, t) + Γ h + . . . (3.14)

In (3.14), the first three terms on the left are the material derivative of p (co-moving

and co-rotating with the suspension) and the square brackets (as well as the ζ term on the

right) contain symmetry-allowed polar contributions [1] (of which the λ1 term alone [7]

is active), ruled out in apolar nematohydrodynamics, whether passive [20, 19] or active

[4]. The first term on the right, together with the ∇ × u term on the left, lead to flow-

alignment [20]. The relaxation dynamics is contained in the order-parameter molecular field

h = c(r, t)
[

αp − β|p|2p + K∇2p
]

which favours a fixed length for p and assigns an elastic

cost to inhomogeneities in the one-Frank-constant approximation.

Conservation of active particles states

∂tc = −∇ ·
[

c (u + p)
]

. (3.15)

The reactive stress from order-parameter gradients is

σ
r = −λ

2

(

p h + (h p)T
)

+ Π I (3.16)

where Π is a generalised pressure, and the viscous stress is,

σ
d =
η

2

(

∇ u + (∇u)T
)

≡ ηA, (3.17)

where η the bare shear viscosity of the suspension.

To determine the active stress, we make use of the fact that the simplest active particle,

on long timescales, is a permanent force dipole (equation 3.3) [3, 4]. To leading order, the

deviatoric part of the stress coming from activity is given by,

σ
a (r, t) = Wc (r, t)

(

p p
p2
− 1

d
I
)

, (3.18)

where d is the spatial dimension, and the magnitude and sign of W characterise the nature of

the elementary force dipoles [3, 4].

Here we use this hydrodynamic description to study the effect of shear flow on the order-

ing and stability of active particle suspensions.

3.4.2 Homogeneous steady state

The instability of the orientationally ordered phase [4] and its stabilisation due to shear is

most simply seen in two dimensions (d = 2); we therefore present detailed calculations in

d = 2, and merely state results in d = 3.
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We look for homogeneous steady states of (3.14), (3.15); the steady state concentration

is a uniform c(r, t) = c0. The amplitude and phase of the steady state active vector order

parameter are, respectively,

p2
0 =

α

β
+
γ̇

2β

√
λ2 − 1 (3.19)

tan θ =

√

λ − 1
λ + 1

. (3.20)

The flow alignment parameter λ can take values between 1 and ∞, corresponding to

0 ≤ θ ≤ π/4. Note that while p0 increases with shear rate, the phase θ is independent of it.

3.4.3 Dynamics of fluctuations

To determine the stability of this homogeneous steady state, we set p(r, t) = p0(cos θ, sin θ)+

δp(r, t), u(r, t) = u0 + δu(r, t) and c(r, t) = c0 + δc(r, t), where the perturbations are assumed

small. It is convenient to decompose δp and δu parallel and perpendicular to the ordering

direction p0, e.g., δp = (δp‖, δp⊥),

(i) Order parameter fluctuations : To linear order in fluctuations and lowest order in

spatial derivatives, the hydrodynamics of the order parameter fluctuations read,

δṗ‖ + λ1 p0∇‖δp‖ + λ2 p0∇ · δp + 2λ3 p0∇‖δp‖ + γ̇y∂xδp‖ −
γ̇

2
δp⊥

+
γ̇y
2

(

cos θ∇‖δp‖ − sin θ∇‖δp⊥
)

= λp0∇‖δu‖ +
λγ̇

2
(

sin 2θδp‖ + cos 2θδp⊥
) −

(

2α +
3
2
γ̇
√
λ2 − 1

)

δp‖

− ζ∇‖δc (3.21)

and

δṗ⊥ + λ1 p0∇‖δp⊥ + 2λ3 p0∇⊥δp‖ +
γ̇

2
(1 + y cos θ∇⊥) δp‖ + γ̇y

(

∂x −
1
2

sin θ∇⊥
)

δp⊥

+
p0

2
(∇⊥δu‖ − ∇‖δu⊥

)

=
λγ̇

2
cos 2θδp‖ −

λγ̇

2
sin 2θδp⊥ +

λp0

2
(∇⊥u‖ + ∇‖u⊥

) − γ̇
2

(√
λ2 − 1

)

δp⊥

− ζ∇⊥δc (3.22)

Since we expect δp‖ to be massive, we may solve for δp‖ in terms of the other modes. Thus

to lowest order,

δp‖(t) = Fδp⊥ − D0∇‖δc + δp‖(0) exp(−Pt) + exp(−Pt)
∫ t

0

d
dt′

[

γ̇

2
δp⊥ − ζ∇‖δc

]

exp(Pt′)dt′

(3.23)
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where, P = 2α+ γ̇
(

λ2 − 1
)

, F = γ̇/P and D0 = ζ/P. For t � P−1, δp‖ is slaved to these other

modes. The resulting equation for δp⊥, may be recast in fourier space,

[

∂t + iq‖λ1 p0 + 2iq⊥Fλ3 p0 + γ̇
√
λ2 − 1

]

δp⊥(q) +
γ̇

2
(F cos θ − sin θ)

∂

∂qy
(q⊥δp⊥(q))

=

[

ip0q2

2ρ0q‖
(1 + λ cos 2ξ)

]

δg⊥(q) +

[

iγ̇q‖
2

D0 +
iλγ̇q‖

2
D0 cos 2θ

]

δcq, (3.24)

Since the instability we are interested in has maximum growth rate [4] at zero wavenumber,

we ignore the term qi
∂
∂q j

operating on the fields, whose effect can be shown to vanish for

q→ 0.

(ii) Velocity fluctuations: Fluctuations in the hydrodynamic velocity field, δu ≡ δg/ρ0

are governed by ∇ · σ = 0, i.e., the Stokes equation. Thus the equation of fluctuation of the

hydrodynamic velocity field, to linear order is given by,

0 = −∇ jΠδi j + η∇2δgi −W

(

c0

p2
0

∇k[δ(pi pk)] − c0 pi pk∇k

[

δ

(

1
p2

)]

− pi pk

p2
0

∇kδc +
1
3
∇iδc

)

.

(3.25)

This maybe simplified by the following steps of tedious algebra. First, resolve p‖ and

p⊥ in the xy plane, pi pk = p2
0

[

cos2 θδixδkx + sin2 θδiyδky + cos θ sin θδixδiy + cos θ sin θδkxδky

]

and δ(pi pk) = p0

(

cos θδix + sin θδiy

)

δpk + p0

(

cos θδkx + sin θδky

)

δpi, and use the variation

δ
(

1
p2

)

≈ − 2δp‖
p3

0
. Then fourier transforming, we obtain,

0 = − iqiΠδi j − νq2δgi −
iAc0

p0

[

qkδpk

(

cos θδix + sin θδiy

)

+ δpi

(

qx cos θ + qy sin θ
)]

+
2iAc0δp‖

p0

[

qx cos2 θδ jx + qy sin2 θδ jy + cos θ sin θ(qyδ jx + qxδ jy)
]

+
iqiA

3
δcq

− iAδcq

[

qx cos2 θδ jx + qy sin2 θδ jy + cos θ sin θ(qyδ jx + qxδ jy)
]

. (3.26)

Since the fluid is incompressible, we can eliminate the generalized pressure, Π by operating

both sides of (3.26) with the transverse projection operator, δi j − qiq j

q2 . Now rearranging the

terms we obtain,

0 = −ηq2δg⊥(q) +















iWq2
‖q⊥

q2















δcq +

[

2iWc0q‖q⊥
p0q2

]

q⊥δp⊥(q) − iWc0q‖
p0
δp⊥(q) . (3.27)

(iii) Concentration fluctuations: Using equation (3.15) we obtain the Fourier transformed

equation for concentration fluctuations. To linear order it is given by,

∂tδcq = −i q‖ p0δcq − ic0
(

q⊥ − Fq‖
)

δp⊥(q) . (3.28)
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3.4.4 Fluctuation spectrum

We are now in a position to compute the full fluctuation spectrum. While we have analysed

the linear stability of the orientationally ordered phase in the basis spanned by δu, δp and

δc, we find that the origin of instability and its recovery by the shear flow can be understood

even in the absence of the concentration equation. Thus, to make the subsequent analysis

more transparent, we drop the concentration fluctuation terms at the outset.

Following [4], we express the fluctuation spectrum in terms of the splay fluctuation Φ =

∇⊥δp⊥, the in-plane expansion rate Θ = ∇⊥δg⊥, and the angle ξ made by q with the ordering

direction:

[

∂t + iq‖λ1 p0 + γ̇
√
λ2 − 1

(

1 − 1
4λ

)

+ O(γ̇2)

]

Φq −
[

ip0q2

2ρ0q‖
(1 + λ cos 2ξ)

]

Θq = 0 (3.29)

and

0 = −ηq2Θq −
[

iWc0q‖ cos 2ξ

p0

]

Φq (3.30)

This implies that the splay fluctuations Φq have a growth rate

Ω =
Wc0

2η
cos 2ξ (1 + λ cos 2ξ) − γ̇

√
λ2 − 1

(

1 − 1
4λ

)

+ O(γ̇2) . (3.31)

3.4.5 Instability in the absence of external shear

In the absence of imposed shear, γ̇ = 0. From equation (3.31) we see that the splay fluctua-

tions Φq have a growth rate,

Ω =
Wc0

2η
cos 2ξ (1 + λ cos 2ξ) . (3.32)

From this relation one can understand the generic instability when γ̇ = 0: the oriented

phase is always unstable, either to splay or to bend fluctuations, depending on the sign of W

[4]. This can be seen even at q = 0, where the growth rate Ω+(0) > 0 for −π/4 > ξ > π/4
when W > 0, and Ω−(0) > 0 for π/4 > ξ > 3π/4, when W < 0 (Fig. 3.4). The dispersion

curve Ω± is shown in Fig. 3.5 : fluctuations with wavenumber q < q0 ∝ |W | grow in time;

this sets the scale over which orientational order can be stabilised. Note that both the polar

phase, as noted by [4], and the apolar nematic as well, are generically unstable in the absence

of shear. This is clear, since the polar terms containing {λi} and ζ in (3.14), do not appear in

the growth rate equation (3.32).
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Ω-

4 2 4
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Figure 3.4: The growth ratesΩ±(q = 0) versus 2ξ (angle between perturbing and the ordering
direction), for either sign of activity W. Inset shows the induced flow lines arising from active
rods subject to a flow.

3.4.6 Non-equilibrium stability diagram in d = 2

The imposed shear flow represented by a horizontal line γ̇ = const. in Fig. 3.5, cuts this

dispersion curve at q∗(γ̇), suggesting that fluctuations whose scale is smaller than 1/q∗ are

the first to be stabilised by the shear flow. Our estimate of q∗ is qualitative : the crossover

fromΩ-dominated to γ̇-dominated at nonzero q cannot strictly be evaluated in our treatment,

since we dropped the qx∂qy terms on the grounds that they wouldn’t matter at q = 0 where

the instability is fastest. As γ̇ is increased, q∗(γ̇) decreases, till at γ̇ = γ̇c, this cutoff scale

moves to zero, as q∗ = (γ̇ − γ̇c)1/2. At this shear rate γ̇c, the oriented phase is completely

stabilised by the shear flow. This defines a stability boundary as a function of λ and W.

The stability phase diagram is best represented by defining a dimensionless active Peclet

number, Pea = 2ηγ̇/|W |c0, as the ratio of the imposed shear rate to the typical shear-rate

produced around the active particles. As one crosses from the unstable to the stable region in

the plane of Pea and flow-alignment parameter λ (Fig. 3.6), the orientational order parameter

sets in at the value given by equation. (3.19), which in effect gives a discontinuous transition

since the order parameter in the hydrodynamically unstable region is zero. For polar active

particles, the shear-stabilised oriented phase has a nonzero drift of the particles with respect
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Figure 3.5: Dispersion curvesΩ± versus q, for ξ corresponding to maximum growth rate. The
horizontal line corresponding to a frequency γ̇

√
λ2 − 1

(

1 − 1
4λ

)

defines the scale q∗ beyond
which fluctuations are stabilised. As γ̇ increases towards γ̇c, the stabilisation scale goes to
zero as (γ̇ − γ̇c)1/2.

to the solvent. Note that the critical shear rate required to stabilise the oriented phase γ̇c is

larger for positive W than negative.

3.4.7 Shear flow induced stabilisation in d = 3

The calculation of the stability diagram is more tedious in d = 3; however since the spirit

is the same, we merely quote results and point out differences. To start with, we note that

p0, the steady state orientational conformation in the presence of the shear flow u0 = γ̇yx̂,

is the same as (3.19) and (3.20), i.e., it still lies in the plane of the imposed velocity and its

gradient (the xy plane). We then decompose the fluctuations in an appropriate orthonormal

basis, viz., δp = (δp‖, δp⊥, δpz), where δp‖ = δp · p0, δp⊥ = δp · (ẑ × p0) and δpz = δp · ẑ
(similarly for δg). As before we ignore concentration fluctuations.

Once again, δp‖ is massive, and we rewrite the order parameter fluctuations in terms

of the in-plane splay Φ⊥ = ∇⊥δp⊥ and Φz = ∇zδpz. Similarly invoking incompressibil-

ity, we rewrite the momentum fluctuations as the in-plane expansion rate Θ⊥ = ∇⊥δg⊥ and

Θz = ∇zδgz. Eliminating the momentum fluctuations via force-balance, we find that the re-

sulting linearised dynamical equations for Φ⊥ and Φz give rise to an eigenvalue spectrum



66 Chapter 3. Active oriented filaments: shear stabilization and rheology

1 2 3 4
0

1

2

3

4

λ 

Pea

W < 0

W > 0

- 1

Figure 3.6: Stability diagram in the plane of Active Peclet number Pea and flow-alignment
parameter λ.

qualitatively resembling (figure 3.5). Thus even in d = 3, one may define a stability phase

diagram in the Pea − λ plane; a large enough shear rate stabilises an orientationally ordered

phase.

3.5 Rheology in the oriented phase

Once we have stabilized the oriented phase by an externally imposed shear, we can explore

the rheology of the active oriented phase and highlight the differences with passive nemato-

gen.

Recall that in section (3.3) we had shown that a suspension of active particle have a

nonzero, macroscopic and anisotropic mean stress. This is sharp contrast to the orientation-

ally ordered state for a passive nematogen. A passive nematogen, bound by Pascal’s law has

purely isotropic mean stress, i.e., pressure. The deviatoric stress for the passive suspension

always integrates to zero.

Another notable qualitative difference of the active oriented suspension with respect to

the passive nematics is in the form of normal stresses. For the passive case, the normal

stresses are always positive, ensuring that they are rheologically stable. However for an ac-
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tive oriented suspension, the sign of the normal stress depends on the sign of W - active

oriented matter can be rheologically unstable.

The viscoelastic behaviour of active suspension also differs qualitatively from their pas-

sive counterparts: While the G
′
(ωτ � 1) for a passive nematogen decreases as λo

τ
and

approaches zero near the equilibrium isotropic to nematic transition, for the active case,

G
′
(ωτ � 1) ' W. This is indeed surprising. At equilibrium one would expect such strong

viscoelastic behaviour from a fluid or suspension near translational freezing, not near orien-

tational ordering.

Note that the vector-ordered phase has a non-zero drift velocity vd, with a magnitude pro-

portional to c0 p0 (3.19). This macroscopic particle current will result in a counter solvent

flow of the same magnitude. Experimental realisations in a planar shear flow geometry will

necessarily have to contend with finite boundaries; it is therefore important to specify bound-

ary conditions for the active order parameter p. This is especially important in the polar case,

since the local polarisation implies a local average drift velocity of the active particle relative

to the fluid. Assuming the active particles cannot penetrate the walls, p must be tangent to the

confining walls (the homogeneous boundary conditions of liquid crystal physics). In plane

Couette flow, however, this is at odds with the flow-alignment requirement of p pointing at

an angle to the suspension velocity as in equation (3.20). This conflict must be resolved by a

boundary layer in p at the walls.

3.6 Conclusions

In conclusion, we have shown how to stabilise the orientationally ordered phase of an active

particle suspension by imposing a uniform shear flow. We have determined the nonequilib-

rium phase diagram in the plane of “active Peclet number” and flow-alignment parameter.

Further we have shown how the rheology of suspension of active particles in the oriented

phase is in sharp contrast to equilibrium orientionally ordered phase.

The unusual rheological features of the oriented phase would have vital consequence, es-

pecially in understanding the dynamics of reorientation of endothelial cells subject to shear

flow [24].
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