
CHAPTER I1 

PROPAGATING EHD INSTABILITIES IN NEMATICS 

2.1 Introduction 

The phenomenon of electrohydrodynamic (EHD) instabilities in nematic liquid crys- 

tals (NLC) has been discussed in some detail in Chapter I of this thesis. NLCs with 

negative or weakly positive dielectric anisotropy (A€) give rise to convective insta- 

bilities in the form of cylindrical rolls or domains under the action of a DC or AC 

electric voltage above a threshold value. Due to the simplicity of the experimen- 

tal set-up this dissipative system has gained importarlce in the study of patter11 

formation [Lowe and Gollub, 1985; Rehberg et  al., 19881. 

In recent years, a travelling wave (TW) instability has been observed in the 

conduction regime, especially in thin samples at frequencies at which either normal 

or o1)liclrlc rolls occur (Itclll>crg c l  nl., 1'388, 1989). 111 this type of i~~stabil i ty tlic 

pattern moves parallel to the wavevector with equal probability of taking either of 

the two possible directions. However so far all the theoretical studics have failed to 

obtain solutions corresponding to such a TW mode. 
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DC excitation has been discussed in the past by a few authors. Iolre ( 1975) illclutlcd 

the flexoelectric terms in EHD equations and incorrectly got oscillatory solutions, 

because the flexoelectric terms used in the equations of motion and in the torque 

balance equations were incorrect (see later discussion). Matyushichev and Kov- 

natskii (1975) have also got incorrect oscillatory solutions because the boundary 

collditiorls werc tiot propcrly take11 into account. Laidlaw (197'3) using an anal- 

ogy with the oscillatory instability predicted by Lekkerkerker (1978) for thermal 

convection, showed that materials with posit ive dielectric anisotropy and i ~ e g a t i v e  

conductivity anisotropy could, in principle, exhibit an oscillatory EHD instability 

under a DC field. But this has not been experimentally observed since the threshold 

for this instability is much higher than that for the Freedericksz transition. Pe~lz  

(1975) suggested that in materials with positive Ac and positive A a ,  a ?'W EII LI 

instability can set in if the sample thickness is very small, but again a t  DC voltages 

above the Freedericksz threshold. 

In the following, we present theoretical calculations in which we exte~ltl  Pe~lz's 

treatment by including flexoelectric terms. We find that the flexoelectric contribu- 

tion suppresses the travelling wave solutions found by Penz. In all thcse thcorctical 

calculations, it is presumed that the NLC is homogeneously aligned, with its director 

making zero pretilt angle at the cell walls. However, we find that i f  the symmetry of 

tlie cell is changed by having a small pretilt angle a t  the cell boundaries, a PI-opagal- 

ing  EIiD instability results at the threshold of DC excitation due to some additional 

flexoelectric torques which are 7r/2 radians out of phase with the main torques re- 

sponsible for EI-ID instability. We present a simple one-dimensional   nod el which 

itself brings out this result. We also present a detailed two dimensional model in 

which the proper boundary conditions are included, whicli essentially confirms the 



results of the 1D model. As flexoelectric effect provides the driving rnecllanis~n for 

this propagating mode, the direction of propagation reverses when the applied field 

is reversed. We also present an experimental study which confirms this prediction 

of the theory. 

2.2 Travelling Wave (TW) Instability 

As was mentioned earlier, Penz (1975) obtained for an applied DC field oscillatory 

solutions of the ElID equations, for materials with positive dielectric and conduc- 

tivity anisotropies. Such solutions exist only a t  voltages above the Freedericksz 

threshold and only for very thin samples. Penz had not included flexoelectric terms 

in his analysis. We were interested to check if the latter terms give rise to T W  solu- 

tions for negative Ac materials. Hence we have extended Penz's model by including 

the flexoelectric terms. 

Penz solved the problem by considering the proper boundary conditions. As we 

are interested in finding threshold contlitions, at which the amplitudes are ex1)cctcti 

to be very small, we linearise the equations. The linearised EHD equations describing 

such a system, can be written as follows (see Chapter I).  

1) Poisson equation 

d Ez a& 80 a2 0 
4 r Q  - ~ I I X  - EL- - A ~ E ~ -  - 4x(e1 + e3)- = o dz dx dxdz (2.1) 

where el and e3 are the flexoelectric cocflicients. 

2 )  Charge conservation equation 



3) Toi-que balance equation 

where Icl and are splay and bend elastic constants, and yl = (a3 - a2) where 

a; are the Leslie viscosity coefficients. 

and 

1 a3 + a 4  + a 6  
where P is the pressure, q1 = al + a5 + - (a4  + QJ + a6) ,  q2 = 2 2 7 

- a5 - a2 a 4  + a5 - a 2  
773 = 2 

and q4 = 
2 

We use the ~netliod of l'enz and Ford (1972) to solve these equations. We assunie 

solutions of the form, 

wlicre w = w, - iw,, and S = q z / q r .  111 deriving equation (2.6) we have used the 

continuity equation 

and the Maxwell equation 
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Using the solutions (eqn.2.6) in the EIID equatioris (2.1) to (2.5), tlie followi~ig 

simplified amplitude equations are obtained. 

a )  After eliminating Q using Poisson equation, the charge conservation equation 

becomes 

where U = E,/qx.  

b) Torque balance equation 

c) The x-component of equation of motion, 

d )  The z-component of equation of motion, 

Equations (2.9) to (2.12) form a set of homogeneous equations in the variables 

PI, v l ,  El and Ol. For the existence of ~iori-trivial solutions the determinant of the 

coefficients of the variables in tlie above equations should vanish. This condition 

yields the following 8th degree polynomial in S 



The coeflicients of the polynomial are : 



1 
where 775 = -(a4 + a5 - a2) ; 776 = 771 - 772 - 774 + a4 ; MI = 77601 + 773o11 ; 2 

AcU2 

M2 = 7 b q l  t 7 1 5 ~ ~  ; M3 = 7 7 6 ~ ~  t 7 7 3 ~ 1 1 ;  , M4 = 776611 + ~ ~ € 1  ; L = I& - - ; 47r 
2 P = t1lAo - Aroll = rlAo - AcoL ;PI  = a: - 7,371 ; P2 = o2 - 71571 

Since equation (2 .13 )  is of the eighth order in S ,  there are eight possible solutions 

for S and the general solutions can be written as, for e.g., 

r 7 Similar cxl>ressions can be written for the other varial>les. I llcse gcncral solr~tio~ls 

for the variables should also satisfy the following boundary conditions a t  the two 

surfaces of the cell. Assumi~ig strong anchoring a t  the plates, 

Since the plates are conducting, the transverse field Ex = 0 at the plates. I-lence 

Ex(z = f d / 2 )  = 0 (2.14b) 

As there is no flow at the plates, it follows that 

v x ( z  = f d / 2 )  = 0 ( 2 . 1 4 ~ )  

and 

vz(z = f 4 2 )  = 0 (2.14~1) 



The two boundary conditions at z = f d/2 on v, lead to the following equatiolis 

where 6 = q,d/2, and 

where vj  are arbitrary coefficients. On adding the equations (2.15) and (2.16) we 

8 

C vj  sin S j 6  = 0 
j= 1 

and 

8 

C vj  cos S j6  = 0 
j=1 

The other boundary conditions lead to similar equations for other variables. 

They can be written in terms of the coefficients v j  making use of the equations (2.9) 

to (2.12). Then we get a set of 8 linear equations in vj. For the existence of solu- 

tions satisfying the boundary conditions the determinant of coefficients associated 

with these equations should also vanish. This boundary value determinant can be 

symbolically written as 

Equations (2.13) and (2.19) form a characteristic value problem and any arbitrary 

set of roots of equation (2.13) will not, in general, satisfy equation (2.19). Therefore 

in order to obtain the solutions, we have to find a set of values of S, that  satisfy 

hot11 t l~csc ccluatiol~s sirnultal~cously. 'I'lie calculatio~~s arc l~latlc ~iulrierically. i?or 

a given set of values of the material parameters and a given value of w ,  we choose 



some values of the applied voltage V, and 6 and tlie roots of euatioli (2.13) arc 

obtained. These roots are then substituted in equation (2.19), and the boundary 

value determinant (BVD) is evaluated. The value of 6 is varied till BVD reduces 

to zero. The calculations are repeated for different values of the voltage. Then the 

lowest value of the voltage at which such solutions exist is the threshold voltage Vth,  

and the corresponding value of 6 gives the magnitude of the wavevector q,. 'l'he 

above process is then repeated for a different value of w .  Thus for applied fields 

greater than or equal to a threshold value (V th ) ,  the boundary value problem can 

be satisfied only for particular values of w and q,(6). 

In order to locate the range of existence of solutions corresponding to travelling 

wave instability Penz (1975) used a simple method. Ile took tlie real part of w 

(i.e., w,) = 0 and calculated for each value of q, that value of w, (the imaginary 

part of w ) ,  which satisfies the EHD equations, along with the boundary conditioris. 

For voltages above the Freedericksz Transition Voltage he found the variation of w; 

versus q, as sliow~l in figure 2.1 wliicli is ~)lo(,tcd for a 1/11,, t11iri M1313A sa.rlil)lc r1.t 

an applied voltage of 2.8 V. A gap is found in the graph for which no solutions are 

found (Fig.2.1). 

However solutions to EHD equations can be found in this gap when w, # 0. This 

r 1 implics that the solutions in this rcgior~ arc not stationary. I lie variation of wi a.s a 

function of w, in this gap, for which the boundary value problem is solved with q, 

as a j)ara~~ictcr,  is plottcd iri figurc 2.2. l'ltc particular value of tlie voltage used i11 

the calculations is the threshold voltage for the instability when w, = 0. Since w, is 

noti-zero this threshold is for a T W  EIID instability, which travels with a velocity 

of W, /(I,. 

As we descril~ed earlier, we have i~icluded the flexoelectric contril>ution (eclua- 



Fig.2.l: Ilispersion relatior1 for a 1 /1112 thick sarn1)1': of M I j B A .  For all l,l~c solut io~~s 

of w; vs. 2 r d l X  sliow~i in the grapli, w,=O. The gap in solutious indicate that a n  

oscillatory time-dependence is necessary to solve the boundary value problem il l  this 

gap (Itef. I1e11z, 1975). 



Fig.2.2: l'lic cornplcx frequencies (w, , w ; )  of l~iodes in tlie gap sliowrl in Fig.2.1 arc 

plotted as functions of the normalised wavevector. At 2i~d/X=1.17, w;=O and w,=10 

radlsec. U~ider these conditions a distortion will freely propagate with a vclocity of 

8 . 5 ~ 1 0 - ~ . i ~ z / s e t  in a 1 11772 thick sample (Itef. Penz, 1975). 



tions 2.1-2.5) to the EIID equations to study its influence on the 'I'W i~iotlc. ' 1 ' 1 1 ~  

results of our calculations are shown in figure 2.3. The above calculations have beer1 

made using the physical parameters of MBBA listed in table 2.1, except A6 which 

is assumed to be positive. 

From figure 2.3 it is clear that the flexoelectric contribution reduces the  width of 

the gap in which T W  instability occurs. As the magnitude of the flexoelectric terrn 

(el + e3) is increasecl, the gap width is progressively reduced. Thus tlie flexoelectric 

contribution actually suppresses the T W  EHD instability. We have also confirtned 

that when A6 = 0 or negative, there is no T W  solutions to the EEID equation cvci~ 

when the flexoelectric contribution is incorporated. 

2.3 Propagating EHD Instability - One-Dimensional 
Treatment 

It is now well established that the technique of rubbing polyimide coated glass plates 

to align a nematic liquid crystal results in a small pre-tilt angle of tlie director a t  the 

bounding plates (Mosley e t  al., 1987). In the following we study the EHD instability 

in nematic licluid crystals aligned with such a pretilt angle at tlie surfaces. Tlic plates 

are assumed to be in a mutually antiparallel orientation so that the nematic director 

li is aligned with a constant pretilt angle ( P )  throughout the cell. We show that 

in such a cell, at  the threshold of DC excitation, flexoelectric torques which are 

a12 radians out of phase with the torqucs produced dllc to other rnccliaiiis~ris coll~c 

into play. As a consequence of these out of phase torques, the EHD pattern slowly 

propagates normal to the roll axis and in a direction which depencls on the sign of 

the applied field E,, the tilt angle ( P )  and the sign of the combination (el + e3) of 
, 

tlie flexoelcctric coeficients. 



Fig.2.3: The  calculated variation of w; with wavevector q , ( 2 ~ d / X ) .  Note tha t  the 

gap in the figure corresponding to oscillatory solutions decreases when the magni- 

tude of (el + e3)  is increased. 



Table 2.1 

Material parameters of MBBA 11sed in the calculations 

= 6.1 x loF7 dyne (1) a1 = 6.5 cP (3) 

I<z  = 4.0 x 10-' dyne (2) 02 = -77 cl' (3) 

= 7.3 x lo-' dyne (1) a3 = -1.2 CP (3) 

E ~ I  = 4.75 (1) a4 = 83 CP (3) 

~1 = ,5.2,5 ( I )  05 = 46 cI' (3) 

0 1 1  = 0.1 x 10-lOohm-lcm-l as = -34 CP 

2 = 1.5 ( 1 )  (cl + e3) = -7 x e.s.u. ( 4 )  
01 

nu 
- = 0.5 (1) (el - e3) = 1 x lo-' e.s.u. (5) 
UI 

I .  I'c~lz and Ford, 1972 
2. Blinov, 1983 
3. de Gennes, 1975 
4. Ma,dhusudana and Durand, 1985 
5. Dozov e t  nl., 1982. 



In order to understand the mechanism of the propagation mode, we first stt~cly 

the problem in a simple one-dimensional model, ignoring the boundary conditions. 

Figure 2.4 shows the geometry of the cell. We make the following simplifications: 

1. The dielectric anisotropy of the medium is taken to be zero. 

2. The pretilt angle P is assumed to be small (experi~nentally it is .V 1 - 2") and 

hence we retain only linear terms in p. 

3. We assume that the convective rolls are normal to i i ,  though the flexoelectric 

effect tends to produce oblique rolls under DC excitation (Madliusudana et 

al., 1987), and 

4. From physical considerations (Helfrich, 1969; Orsay Liquid Crystal Group, 

1970) q, is set equal to .rr/d where d is the sample thickness. 

Under these approximations, using the usual symbols, the linearised EHD equation 

can I>c written as - 

1. T h e  Poisson equa t ion  

2. T h e  charge  cont inui ty  equat ion  

3. The t o r q u e  balance equat ion  

4. The equa t ion  of mot ion  along t h e  Z-axis 



Fig.2.4: The  experirnental georrietry for the propagatirlg mode. 

/3 is the pretilt angle. 



Q 4  + a 5  - a 2  
where 17 = 

2 
It is clear that under the approximations made in the present model, only the flex- 

oelectric terms couple to the tilt angle. We again assume solutions of the followilig 

form. 

8 = 81ei(qzx-wt) . Q = Q ~ ~ ~ ( P Z ~ - W ~ )  . 
I 

E, = ~ ~ ~ ~ ( q x x - w t )  i ( q , ~ - w t )  and v, = v l e  (2.24) 

The amplitude equations corresponding to equations (2.20) to (2.23) are: 

and 

E,QI + ~r2wq.01 - r j q ; ~ ~  = 0 

Eliminating Q 1  from equations (2.25) and (2.26) we get, 

irw [AaE, - Pw(e1 + e3)q.I 81 
El = (91 + G) 

(0; + $$) 

Eliminating vl from equations (2.27) and (2.28) 

Now eliminating E l  and O1 from equations (2.29) and (2 .30) ,  we get 



The real part of the above equation leads to 

From the imaginary part of equation (2.31) along with equation (2.32), we get 

wlicrc the cliargc relaxation frcqucricy 

and tlie director relaxation frequency 

If w = 0, equation (2.32) reduces to thc tlireshold condition obtained by Ilelfricli 

(1969) for the onset of stationary EHD instability. Further, since the third term in 

equation (2.32) has a negative sign, the propagating solution with a non-zero w has 

a lower threshold (E,) than the threshold obtained for stationary instability with 

p = 0. Tlie equation for w (2.33) contains tlie terrn Eo ill it. 111 order to calculate 

E,, we assume w which is a small quantity to be zero. From equation (2.32) tlie 

t hrcsliold electric field becomes 

Now substituting for E, from equation (2.36) in the equation (2.33), we calculate w 

and hence the velocity of propagation v. 



and 

From equation (2.37), we find that the velocity of propagation v is proportional to 

qx. Further for a given sign of P and (el + e3) ,  the sign of w depends on the sign 

of Eo, i.e., the propagation reverses its direction when the applied electric field is 

reversed. As we have to assume qx = in the one dimensional analysis, vcx a ,  i.e., 

velocity of propagation decreases in thicker samples. 

The sum (el+e3) of the flexoelectric coefficients arises from the aligned quadrupoles 

of the molecules and has a non-zero value in general (Prost and Mercerou, 1977). 

Therefore it is clear from equation (2.33) that the convective rolls obtained a t  the 

threshold of the instability should propagate normal to their axes. For the standard 

MBBA values of the material parameters (table 2.1) the velocity of propagation 

calculated using equation (2.37) is of the order of O.lpm/sec. 

The physical mechanism responsible for the propagati~ig instability can be ulltler- 

stood by referring to figure 2.5. The transverse electric field gradient in the rriediurn 

is large in  the region wliere the cliarge delisity is liigli. When /3 = 0 (Fig .2 .h)  

this cannot produce any torque on the quadrupoles of the medium. On the other 
i 

hand, when P # 0 (Fig.2.5b), the field gradient produces a torque on the direc- 

tor. This torque is spatially 7r/2 radians out of phase with the torques produced by 

other physical mechanisms. Further, when P f . 0 ,  the flexoelectric polarisation has 

a divergence, which gives rise to space charge densities which are also 7r/2 radians 

out of phase with those collected by the coupling of the conductivity anisotropy 

with the curvature in the medium. The force produced by E, on these additional 

charges gives rise to hydrodynamic torques, which are again 7r/2 radians out of phase 

with the main contributions responsible for the EHD instability. As a consequence 



Fig.2.5: (a)  P=O, tile space cliargcs (sllo~v~l i l l  f u l l  circlcs) arising fro111 t.lic colicll~c- 

tivity ariisotropy cause EHD instability. ( b )  When ,L? #O, the quadrupoles develop 

an out of pllase torque due to the horizontal Reld gradients and arlditiorial cl~a~rgcs 
-4 

( in  dotted circles) are collected due to divergence of the flexoelectric polarisatiorl P. 



of thcsc out of phase torques, we gct a slow propagation of tho instal~ility i l l  tlic 

medium. Since the coupling responsible for the propagation is flexoelectric in origin, 

the direction of propagation depends on the sign of the applied field. Thus it  is clear 

that this mechanism cannot explain travelling wave EHD instability which has been 

experimentally observed for AC fields (Rehberg et al., 1988, 1989). 

2.4 Propagating EHD instability - two-dimensional 
calculations including the boundary conditions 

We have confirmed the above result of the one-dimensional analysis by a more 

rigourous calculation using the appropriate boundary conditions. Under the same 

approximations made in one-dimensional calculations except for including the bound- 

ary conditions (see § 2 . 3 ) ,  the linearised equations can be written as follows. 

1. The Poisson equation 

2. The charge conservation equation 

3. The torque balance equation 

where 7 2  = (a2 + a3) 



4. The equation of motion: x component 

d P  -- d2 4 d2vx d2vX 
dx 

+ Q3- 
dzdt + r ) l ~  dx t ' l 2 3 - p  

where 771 = a1 + a5 + [ 0 3 + ~ 4 t ~ 6 ] ;  ( ~ 3 t ~ t 0 6 ) ,  

2 772 = 7 

115 = ( 2 q  + 2a5 - a6) and 76 = (I.1 + 0 6 .  

5. The equation of motion: z component 

where 777 = (al + a 6  - 2a5). In order t o  solve these equations we follow the same 

procedure outlined in section 2.2 of this chapter. Using solutions given by equatior~ 

(2.6) in the above, we get the following amplitude equations 

Substituting for Q1 from equation (2.43) in equation (2.39) we get 



Eliminating PI from the equations (2.46) and (2.47)) we get 

For the existence of non-trivial solutions the determinant.of the coefficients of vari- 

ables, namely El, vl and dl in the equations (2.44), (2.45) and (2.48) should vanish 

wlicre 
iwc iwc 

A ,  = ( 0 1  + 2DAu - -) ; A2 = all - - ; A3 = (el  + e3)wPqx ; 4 7r 4 7r 

Equation (2.49) yields the following 8th degree polynomial in S 



where Sj is the jth power of S and aj is the corresponding coeflicient. The roots 

of equation (2.50) can be determined using the eight boundary conditioris that tlie 

variables 0 ,  E,,v, and v, have to satisfy at tlie two surfaces of tlic cell. Tl~esc  

boundary conditions are 

O(z = f d/2) = P, the pretilt angle; E,(z = f d/2) = 0; 

v , ( z = f d / 2 )  = O  v,(z = f d / 2 )  = O  (2.51) 

As before, using these boundary conditions we write the boundary value determinant 

(BVD) 

Dij = O ; i , j =  1 ,8  (2.52) 

This boundary value problem was solved by the method used in section (2.2) of this 

chapter. 

Using the standard MBBA values of the material parameters, we have calcu- 

lated tlie threshold voltage and the frequency w as functions of tlie pre-tilt arigle P 

(Fig.2.6). For the range of P values shown, the wavevector q, 4/d. The linear 

variation of w with p is in agreement with the prediction of the one-dimensional 

model, viz., equation (2.33). The threshold voltage is also almost independent of 

/3 which is assumed to be small. Further the direction of propagation is fount1 to 

depend upon the signs of the applied electric field E,, the pretilt angle /3 and the 

sign of (el + e3). 

2.5 Experimental 

2.5.1 Construction of the cell 

?'he cell is made of two indium tin oxide coated glass plates with their conducti~ig 

surfaces treated with polyirnide. The plates are rubbed unidirectionally and a sand- 



Fig.2.6: Va,riation of Vth and w wit11 pretilt angle obtained frorn calctrlatiorls 

i ~ ~ c l u d i ~ ~ g  the boul~tlary coriditior~s. Ac=O and otlier material pararrleters llave the 

MBBA values at 303 I(. Thickness of the cell = 15 p m .  



wich cell is prepared by placing two siich glass plates with their rubbing clirections 

opposing each other (Fig.2.7). Mylar spacers are used between the glass plates to 

control the thickness of the cell which is sealed at the edges using an epoxy corn- 

pound. The cell is filled with a room temperature nematic liquid crystal mixture, 

whose composition is described later in this section. If a standard 3% polyimide 

solution is used to get the alignment, the EHD patterns obtained under DC exci- 

tntiort are rather patchy and further the threshold varied consitlcrably with tirrie. 

Presumably a dense coating of polyimide acts as an insulating layer which reduces 

tlie licltl i r i  the sariil)lc as ions collect near these layers (see 13linov, 1983). IIowcvcr 

on reducing the concentration of the polyimide to about 1120th of the standard 

value, we get better EHD pattern under DC excitation. This is probably due to 

a porous coating of the polymer. The alignment obtained under these conditions 

remain satisfactory. 

The cell thickness is measured using an optical interferometric technique. Tlie 

liglit reflected riorrnally froni the two glass surfaces bounding the air gap correspond- 

ing to  the cell thickness is made to fall on a constant deviation spectroscope (Adam 

and Milger Ltd.). A spectrum with alternate dark and bright fringes is seer1 due to 

interference of light reflected from the two surfaces of the cell forming the air film. 

'i'lie cell thickness is calculated using the expression, 

where A m  and A n  are the wavelengths corresponding to nzth and n th dark fringes 

respectively. 



Rubbing direction 
_____) 

Mylar spacer 

~olyimide layer 

- 
Rubbing direction 

Fig.2.7: The cross-section of the cell with the antiparallel arrangement of 

unidirectionally rubbed polyimide coated glass plates. The  nematic 

director li though tilted is uniformly aligned in the cell. 

Fig. 2 of it licluid crystal coll s l iowi~~g t l ~ c  prctilt a~ lg le  

angle of incidence of tile light 11ealn. 



2.5.2 Measurement of pre-tilt angle 

To measure the low pre-tilt angle accurately we have used the crystal-rotation 

method (Baur et al., 1976 and Nakano et  al., 1980). 

The NLC is confined between the cell plates, whose rubbing directions are an- 

tiparallel. We have then a uniaxial medium with its optic axis a t  an angle P witli 

respect to  the plane of the plates (Fig.2.8). Let 4 be the angle of incidence of the 
-, 

liglit bearn. 'l'lien the nematic director ii and the wave riorrrlal S of the incitle~it 

beam is defined by the vectors, 

ii = (cos p, 0, sin p)  0" 5 ,d 5 90" 

S = (sin $, 0, cos $) - 90" 5 4 5 90" 

The transmission of light through such a uniaxial medium placed between parallel 

1)ola.riscr.s alitl witli tlie plnric of po1;~risatiori of tlic iticidclit liglit l~iakitig a11 at~gl(: 

of 45" with the projection of the director on cell walls, is given by (Nakano et al., 

1980) 

noit, Jn2(p) - sin2 4 
T ( $ )  = cos2 [$ ( - 

2 2 
n2tP> 

- ne - sin /? cos p sin $ > 1 (2.53) 

where X is the wavelength of the incident radiation, 12, and n, are the ordinary and 

extraordinary refractive indices of the nematic liquid crystal respectively, and 

n (p )  = Jn: cos2 /3 + n: sin2 p (2.54) 



Tlle intensity vs. 4 curve obtained from equation (2.53) for typical valucs of 

n,, no are given in figure 2.9. Equation (2.53) is differentiated to get the followirig 

condition for minimum in the intensity of transmitted liglit 

Assrl~i~il~g tliat p is very sriiall, equatiori (2.55) can be approxiliiated as follows, 

-2 sin 4, 
sin 2/3 = 

(no + n,) JqGGT 
This minimum corresponds to that shown by the dotted line about which the inter- 

ference pattern is approximately syrnrnetric (Fig.2.9). 

In the experiment, the angle q5 is measured using a goniorneter spectrometer 

(Freiberger). The cell is mounted vertically on the prism table, such that  the plane 

of the cell is a t  right angles to the plane of the prism table. The cell is rotated about 

an axis which is perpendicular to the rubbing direction (Fig.2.10). We have used 

the CGS units in all the theoretical calculations though presenting our experinlental 

results we have consistently used the S.I. units. The incident light from a sodiurn 

source is passed through the collimator and is polarised at an angle of 45" with 

respect to the rubbing direction. The light intensity is measured using a photodiode 

(Centronics). 4 is varied from +60° to -60". The transmitted intensity is plotted 

against tlie angle of incidclice in figure 2.11. Frorii the grapli, tlie a~iglc 4, at  whicli 

the transmittance curve has a minimum is noted. Then from equation (2.56) the 

pretilt angle /3 is calculated. 

We used a room temperature nematic liquid crystalline mixture consisting of 

46 mole % (2-1nethylpheny1)-bis-4-n-butylbenzoate (RO-CE 1700), 50 rnole % 1-11- 

propyl-4[4-ethoxyphenyll-cyclohexane (PCI-1-302) and 4 mole % 4'-n-pentyl-4-cyano- 



Fig.2.9: Angular dependence of intensity of tra~lsnlitted light 

(Ilcf. Naka~io  c l  nl:, 1980). 

Fig.2.10: Schematic representation of the experi~nental set up used 

to mcaslire ti1 t angles. 
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Fig.2.11: Angular dependence of trails~rii tjtecl light intcnsi ty (X=5893 x 1 O - ' O ~ ~ r )  for 

a cell of tliickness 53.0 pnz for nematic liquid crystal mixture with 1z,=1.501 and 

1z,=1.639 at room temperature. The value of P=1.2". 



1)iplicriyl (5CR). Tllcsc are cornmcrcial cornpo~intls ol)t,air~c~tl from Iloff~~lari 1,a 110(.11(~ 

and are chemically stable. The structural formulae and transition temperatures of 

these colnpounds are given in figure 2.12. 'i'his mixture has a low negative dielectric 

anisotropy. We have also added about 0.1% of ionic impurities such as tetrabuty- 

lal~irnoniur~i bromide ('I'BAB), to iricrease the coriductivity of tlie mixture to about 

ohm -' m-'. The refractive indices no and n, of this mixture were measured 

by an iridel>endent experiment using an Abbe refractorneter. The values obtained 

were no = 1.501 and n, = 1.639. For the cell used in our experiment P was found 

to be 1.2". 

2.5.3 Experimental study of propagating mode 

For observing the propagating EHD instabilities, the liquid crystal cell is ~nountcd 

on the stage of a Leitz polarising microscope (Orthoplan). A Mettler hot stage 
I 

(FP82) is uscd to regulate the temperature of the cell. At roo111 ternpcraturc tlic 

pattern observed at the threshold under DC excitation consisted of propagating 

oblique rolls whose propagation direction reversed when the field was reversed. 

On increasing the temperature, the obliquity of the rolls decreased and a t  about 

333 Ii' almost normal rolls were obtained. In order to minimise the influence of the 

moving boundaries between domains of opposite tilts of the rolls on the propagation 

of the rolls themselves, we have made all the detailed observations a t  about 333 K .  

Preliminary video-prints (Fig.2.13) clearly show the propagating modes. In order to 

make rnore cjuantitative rneasurernents we used better sarnl>lcs ant1 tlic 15111) 1)attcrri 

is recorded using a CCD video camera (Sony) mounted on the microscope. The video 

ou tp~ i t ,  wl~icli is digitised with a rcsolutiori of 512 x 512 pixels of 256 grey lcvcls, 

is fed to an IBM Personal Computer with a frame g-abbir  (Fig.2.14). The  frame 
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Fig.2.12: Structural formulae and transition temperature of the compounds used 

in the mixture. 



Fig.2.13: Video prints of propagating electroconvection in a nematic mixture under 

1)C cxc i t a t i o~~  in a CCII  of d=80 i i l r r .  St i~s t i l~g  fro111 ~ I I C  toj), t,Iic vi(i(:o r(:~os(lillgs 

correspond to (i) t = 0, ( i i )  t = 120 sec. for V,  = $2.4 V, (iii) t = 0 and t = 120 

sec. for V,=-2.4V. Each optical domain contains two rolls of opposite vorticity. ?'he 

sensitivity of tlie L)C i~istability to local surface coliclitions causes the deviatiolis 

from straight rolls. (magnification x 70). 
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Fig.2.14: Schematic representation of the experir~iental set-up used to  observe 

propagating EHD instability. 

I 



grabber is ~rogrammed to grab a video frame a t  intervals of 2 sec. Then successive 

intensity profiles along a line normal to the roll axis are sequentially plotted as 

shown in figure 2.15. 111 the absence of any propagation the line joining tlie peaks 

of the successive profiles would remain vertical. But when there is propagation of 

domains, the line joining tlie intensity peaks form an angle with the vertical as shown 

in figure 2.15. With the reversal of the applied field, this line takes the opposite 

slope indicating the reversal of the direction of propagation of EIHD pattern. 

In order to illustrate the phenomenon and also bring out the problems connected 

with a DC experiment, we first describe the results on a cell of thickness 17.5 p m  at  

333 Ii'. The velocity of propagation is also found to be sornewhat different for tlie 

two signs of the voltage,viz., O.SPnt/sec for positive voltage slightly above threshold 

and -0.5/~m/sec for negative voltage. Under AC excitation the Elf11 j)attcrn was 

found to drift with a velocity of about t 0 . 2  pmlsec just above the threshold. Hence 

the difference in the propagating velocity for positive and negative voltagcs coultl 

arise from a small thickness gradient present in the cell which leads to  a drift of 

the pattern in a particular direction independent of the sign of the voltage. We 

have also observed that the threshold voltages are slightly different for positive and 

negative applied voltages (Fig.2.16). This is probably due to some assymmetry in 

the coating on the two electrodes. 

We have also studied the thickness dependence of tlie velocity of the propagating 

mode (Fig.2.17). The velocities measured using two cells of thickness 12.7 pnz 

and 53.0 pnl are 1.4 pnalsec and 0.5 pmlsec respcctivcly at 333 11'. 'I'lle velocity 
I 

approximately goes as l ld .  In view of the inherent problems associated with DC 

fieltls, the crrors in thcsc mcasurcments are relatively liigli. Fro111 figure 2.6 wc scc 

that for a pretilt of 1.2" the propagation velocity obtained from the theory for A6 = 0 



Fig.2.15: The light intensity profiles along a line normal to the rolls recorded a t  

intervals of 2 secs. ~)lottcd on top of o n c  a~iotller. (a) V=-8.9 volt , ( I , )  V=+8.9 

volt (Vth=8.5 volt). Note that tlie rolls propagate i l l  opposite directions for 

opposite signs of the voltage. Thickness of tlie cell = 15 p ~ n ,  

te~riperatllrc = 333 K.  
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Fig.2.16: Variation of threshold voltage with temperature for a cell of d=17..5 /un,  

filled with nematic liquid crystal mixture wit11 TNr=342.8 K. for negative field 

and 0 for positive field. It may be noted here that the EIiD pattern consists of 

oblique rolls bclow t l ~ c  tcrril~erature 333 I<. 



Fig.2.17: Thickness depenclerlce of velocity of propagating ~riodes a t  

temperature 333 I(. 



and for MBBA values of other ~naterial parameters at 303 Ir' is about 0.5 prnlsec for 

a cell with d=15 pm. Thus the observed propagation velocity is comparable to  that 

obtained from the theory. We have determined the sign of (el + e3) for this mixture 

to be negative (see Chapter IV). For the experimental configuration used (Fig.2.5), 

tlle theory predicts that the d i r e c t i o ~ ~  of propagation is along the positive X-axis for 

positive E,. This direction agrees with the observations (taking into account the 

image inversion in the microscope). 

We have repeated these experiments at different temperatures, and made the 

following ~bservat~ions. The threshold voltage decreases with increase in temperature 

(Fig.2.16) whereas the velocity of propagation increases with increase in temperature 

(Fig.2.18). From the equation for threshold field (eqn.2.36) it is clear that the 

decrcasc of tliresholtl voltage is clue t,o the decrease of IG with tcrrlpcrat,r~rc. I7ro11l 

equation (2.37), velocity of propagation is M 4. Therefore the velocity of propagation 

is expected to decrease with increase of temperature. 

2.6 Conclusion 

The oscillatory solutions of the EHD equations which were found by Penz to exist 
I 

over a narrow voltage range above the Freedericksz thresllold for a nematic with 

positive A6 in a planar aligned cells are suppressed by the flexoelectric effect. IIow- 

ever i f  the nematic is aligned with a small pretilt of the director at the bounding 

surfaces, the flexoelectricity of the medium leads to a propagating EHD instability 

under DC excitation. The results of our experiments on the propagating instability 

are in qualitative agreement with the theoretical predictions. 



Fig.2.18: Variation of tlic vclocity of pn~~)agatirlg lrlodc wit11 tc~rlpcraturc for a 

cell of d=17.5 pm, filled with NLC mixture with TN1=342.8 I< for negative field 
v - v,, 

and 0 for positive field. In all these observations the dimensionless ratio r = 

is liiailitaillcd at a value <0.05. 'I.11~ 13111) pattcrn consists of ohliquc rolls hclow 

the temperature 333 I{. 
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