CHAPTER II

PROPAGATING EHD INSTABILITIES IN NEMATICS

2.1 Introduction

The phenomenon of electrohydrodynamic (EHD) instabilities in nematic liquid crys-
tals (NLC) has been discussed in some detail in Chapter | of this thesis. NLCs with
negative or weakly positive dielectric anisotropy (Ae) give rise to convective insta-
bilities in the form of cylindrical rolls or domains under the action of a DC or AC
electric voltage above a threshold value. Due to the simplicity of the experimen-
tal set-up this dissipative system has gained importance in the study of pattern

formation [Lowe and Gollub, 1985; Rehberg et al., 1988].

In recent years, a travelling wave (TW) instability has been observed in the
conduction regime, especially in thin samples at frequencies at which either normal
or oblique rolls occur (Rchberg et al., 1'388, 1989). In this type of instability the
pattern moves parallel to the wavevector with equal probability of taking either of
the two possible directions. However so far all the theoretical studies have failed to

obtain solutions corresponding to such a TW mode.

The possibility o cither oscillatory or T'W electroconvection in nematics under
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DC excitation has been discussed in the past by afew authors. loffe (1975) included
the flexoelectric terms in EHD equations and incorrectly got oscillatory solutions,
because the flexoelectric terms used in the equations o motion and in the torque
balance equations were incorrect (see later discussion). Matyushichev and Kov-
natskii (1975) have also got incorrect oscillatory solutions because the boundary
conditions were not properly taken into account. Laidlaw (1979) using an anal-
ogy with the oscillatory instability predicted by Lekkerkerker (1978) for thermal
convection, showed that materials with positive dielectric anisotropy and negative
conductivity anisotropy could, in principle, exhibit an oscillatory EHD instability
under a DC field. But this has not been experimentally observed since the threshold
for this instability is much higher than that for the Freedericksz transition. Penz
(1975) suggested that in materials with positive Ae and positive Ao, a TW EHD
instability can set in if the sample thickness is very small, but again at DC voltages

above the Freedericksz threshold.

In the following, we present theoretical calculations in which we extend Penz’s
treatment by including flexoelectric terms. We find that the flexoelectric contribu-
tion suppresses the travelling wave solutions found by Penz. In al these theoretical
calculations, it is presumed that the NL C is homogeneously aligned, with its director
making zero pretilt angle at the cell walls. However, we find that if the symmetry o
the cell is changed by having a small pretilt angle at the cell boundaries, a propagat-
ing FHD instability results at the threshold of DC excitation due to some additional
flexoelectric torques which are 7/2 radians out of phase with the main torques re-
sponsible for EHD instability. We present a simple one-dimensional model which
itself brings out this result. We also present a detailed two dimensional model in

which the proper boundary conditions are included, which essentially confirms the
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results of the 1D model. As flexoelectric effect provides the driving mechanism for
this propagating mode, the direction o propagation reverses when the applied field
is reversed. We also present an experimental study which confirms this prediction

of the theory.

2.2 Travelling Wave (TW) Instability

As was mentioned earlier, Penz (1975) obtained for an applied DC field oscillatory
solutions of the EHD equations, for materials with positive dielectric and conduc-
tivity anisotropies. Such solutions exist only at voltages above the Freedericksz
threshold and only for very thin samples. Penz had not included flexoelectric terms
in his analysis. We were interested to check if the latter terms give rise to T W solu-
tions for negative Ae materials. Hence we have extended Penz’s model by including

the flexoelectric terms.

Penz solved the problem by considering the proper boundary conditions. As we
are interested in finding threshold contlitions, at which the amplitudes are expected
to bevery small, welinearise theequations. Thelinearised EHD equations describing
such a system, can be written as follows (see Chapter 1).

1) Poisson equation

ar or, d0 %0

4r@Q) ~ 6”8_:1: Ty Aché—; — 4r(e + eg)a;(—di =0 (2.1)

where e; and e are the flexoelectric cocellicients.

2) Charge conservation equation

aQ 0E, oF, a0 .
W—i—a'lg—kal P +A0E00$ =0 (2.2)



3) Torque balance equation

00 0% 0% ,
’)’la has 1 62 1(15-—5——"[E0 EE]
0E, Ovg Ov,
+ (ex + 63)5 +a av + a al; =0 (2.3)

where K; and I3 are splay and bend elastic constants, and v; = (a3 — a2) where

a; are the Ledlie viscosity coefficients.

4) Iyquations of motion

oP 0% 0*v, 0™,

" 9s g T Ty =0 (24)
and
oP 0% 0*v 0*v
—5—2_+a26m8t+n302+n482+EQ—0 (2.5)

a3z + a4 + ag

where Pis the pressure, 5 =q, T oyt é(m toztag), 9= > ,

Qg4 — @5 — Q3

2
We use the method of Penz and Ford (1972) to solve these equations. We assume

solutions of the form,

Q = Qle.‘(q‘-r”—we); v, = Ulei(zfi'—wt); v, = —Svlei(i'F"w‘);
E, = E @™ W), B= SE @@ g = g Tt
P = Plei(‘i":.—w‘) , (2.6)

where wW=w, —iw;, and S= ¢,/q,. In deriving equation (2.6) we have used the

continuity equation

v, Ov, ‘
Oz + 5% =0 (2.7)
and the Maxwell equation
or, 0L,
— ) (2.8)
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Using the solutions (eqn.2.6) in the EHD equations (2.1) to (2.5), the following
simplified amplitude equations are obtained.

a) After eliminating Q using Poisson equation, the charge conservation equation

becomes

1 (o +0.5%) - E(e + € 52)]E

oot os 1At B

+ [AO’U _ WA e+ 63)5} =0 (2.9)
where U = E,/¢..
b) Torque balance equation
A .
i(og — a3S%) vy, — [E;U —2(ey + 63)8] E,

Ae ., .
+ ¢ (1\'3 + 5% - Z;Ul - z'yl(—;%) 0, =0 (2.10)

c) The x-component of equation of motion,

P
"'%l + (m + n25%) Sy +

z q.’l‘

aswS

6, =0 (2.11)

d) The z-component of equation o motion,

5P U )
“2 b S+ () + e SPE
+ ”w+i%qu>4ﬂq+@ga 0, =0 (2.12)
qx 7f

Equations (2.9) to (2.12) form a set of homogeneous equations in the variables
Py, vy, I2, and 0,. For the existence of non-trivial solutions the determinant of the
coefficients of the variables in tlie above equations should vanish. This condition

yields the following 8th degree polynomial in S

8
Y a;5 =0 (2.13)
=0



The coeflicients of the polynomial are :
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Since equation (2.13) is of the eighth order in S, there are eight possible solutions

for S and the general solutions can be written as, for e.g.,
8

0= g;eloxlatS)-uil (2.13a)
j=1
8 .
and vy = — Z Sjvje;(qz(ﬂsjz)—wt) (2.13D)
j=1

Similar expressions can be written for the other variables. These general solutions
for the variables should also satisfy the following boundary conditions at the two

surfaces of the cell. Assuming strong anchoring at the plates,
0(z = +d/2) = 0 (2.14a)

Since the plates are conducting, the transverse field £, = 0 at the plates. I-lence

E.(z=4d/2)=0 (2.14b)
As thereis no flow at the plates, it follows that

ve(z =£df2) =0 (2.14¢)
and

v,(z = £d/2) =0 (2.14d)

28



The two boundary conditions at = = +d/2 on v, lead to the following equations

8
) vjeSibemit — (2.15)
=1
where 6 = ¢..d/2, and
8
Z e it = ) (2.16)

where v; are arbitrary coefficients. On adding the equations (2.15) and (2.16) we

get,
8
Y- v;sinS;6=0 (2.17)
=1
and
8
ZvJ cos S;6 = (2.18)

The other boundary conditions lead to similar equations for other variables.
They can be written in terms of the coefficients v; making use of the equations (2.9)
to (2.12). Then we get a set of 8 linear equations in v;. For the existence d solu-
tions satisfying the boundary conditions the determinant of coefficients associated
with these equations should aso vanish. This boundary value determinant can be

symbolically written as
Di;=0; i,j=1,8 | (2.19)

Equations (2.13) and (2.19) form a characteristic value problem and any arbitrary
set of roots of equation (2.13) will not, in general, satisfy equation (2.19). Therefore
in order to obtain the solutions, we have to find a set of values of S; that satisfy
both these equations simultancously. The calculations arc made numerically. or

agiven set of values of the material parameters and a given value d w, we choose



some values of the applied voltage V, and 6 and tlie roots of euation (2.13) arc
obtained. These roots are then substituted in equation (2.19), and the boundary
value determinant (BVD) is evaluated. The value of 6 is varied till BVD reduces
to zero. The calculations are repeated for different values of the voltage. Then the
lowest value of the voltage at which such solutions exist is the threshold voltage Vi,
and the corresponding value o 6 gives the magnitude of the wavevector gq. The
above process is then repeated for a different value of w. Thus for applied fields
greater than or equal to a threshold value (V,), the boundary value problem can

be satisfied only for particular values of w and ¢.(6).

In order to locate the range of existence d solutions corresponding to travelling
wave instability Penz (1975) used a simple method. He took tlie real part of w
(i.e., w,) = 0 and calculated for each value d g, that value of w; (the imaginary
part of w), which satisfies the EHD equations, along with the boundary conditions.
For voltages above the Freedericksz Transition Voltage he found the variation of w;
versus ¢, as shown in figure 21 which is plotted for a lyon thin MBBA sample at
an applied voltage o 2.8 V. A gap isfound in the graph for which no solutions are
found (I'ig.2.1).

However solutions to EHD equations can be found in this gap when w, # 0. This
implies that the solutions in this region arc not stationary. I'he variation of w; as a
function of w, in this gap, for which the boundary value problem is solved with g,
as a parameler, is plotted in figure 2.2. The particular value of tlie voltage used in
the calculations is the threshold voltage for the instability when w; = 0. Sincew, is
noti-zero this threshold is for a TW EIID instability, which travels with a velocity
of w,/q..

As we described earlier, we have included the flexoelectric contribution (equa-
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Fig.2.1: Dispersion relation for al pum thick sample o MBBA. For all the solutions
of w; vs. 2rd/A shown in the graph, w,=0. The gap in solutious indicate that an
oscillatory time-dependence is necessary to solve the boundary value problem in this
gap (Ref. Penz, 1975).
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Fig.2.2: The complex frequencies (w, , w;) of modes in the gap shown in I'ig.2.1 are
plotted as functions of the normalised wavevector. At 2rd/A=1.17, w;=0 and w, =10
rad/sec. Under these conditions a distortion will freely propagate with a velocity of
8.5%107%m/seé in a1l um thick sample (Itef. Penz, 1975).



tions 2.1-2.5) to the EIID equations to study its influence on the TW mode. The
results of our calculations are shown in figure 2.3. The above calculations have been
made using the physical parameters o MBBA listed in table 2.1, except Ae which

is assumed to be positive.

From figure 2.3 it is clear that theflexoelectric contribution reduces the width of
the gap in which T'W instability occurs. Asthe magnitude of the flexoelectric terrn
(e + e3) isincreasecl, the gap width is progressively reduced. Thus tlie flexoelectric
contribution actually suppresses the TW EHD instability. We have also confirmed
that when Ae = 0 or negative, thereis no TW solutions to the EHI) equation even

when the flexoelectric contribution is incorporated.

2.3 Propagating EHD Instability - One-Dimensional
Treatment

It isnow well established that the technique o rubbing polyimide coated glass plates
toalign a nematic liquid crystal resultsin asmall pre-tilt angle of tlie director at the
bounding plates (Mosley et al.,1987). In thefollowing we study the EHD instability
in nematic liquid crystalsaligned with such a pretilt angle at tliesurfaces. The plates
are assumed to bein a mutually antiparallel orientation so that the nematic director
n is aligned with a constant pretilt angle (4) throughout the cell. We show that
in such a cell, at the threshold of DC excitation, flexoelectric torques which are
7/2 radians out of phase with the torques produced due to other mechanisins come
into play. As a consequence of these out o phase torques, the EHD pattern slowly
propagates normal to the roll axis and in a direction which depends on the sign of
the applied field E,, thetilt angle (8) and the sign of the combination (e; T e3) of

tlie flexoelcctric coeflicients.
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Fig.2.3: The calculated variation of w; with wavevector ¢.(2xd/A). Note that the
gap in the figure corresponding to oscillatory solutions decreases when the magni-
tude of (e, + e3) isincreased.



Table 2.1

Material parameters of MBBA used in the calculations

K; =6.1 X 1077 dyne (1) a; = 6.5cP (3)
K2 = 4.0 x 1077 dyne (2) ay = -77 cP (3)
K3z = 7.3 x 1077 dyne (1) az =-1.2 cP (3)
g = 475 (1) ay = 83 cP (3)
er =525 (1) as = 46 ¢P (3)
oy = 0.1x10~%hm~!cm™! ag = -34 P
”—ﬁ = 15 (1) (cy + eg) = -7 x 10~ es.u. (4)
f—f = 05 (1) (e - e3) =1 X 10~* e.s.u. (5)

O~ wN—

Penz and lord, 1972

Blinov, 1983

de Gennes, 1975

Madhusudana and Durand, 1985
. Dozov et al., 1982.




In order to understand the mechanism o the propagation mode, we first study
the problem in a simple one-dimensional model, ignoring the boundary conditions.

Figure 2.4 shows the geometry o the cell. We make the following simplifications:
1. The dielectric anisotropy o the medium is taken to be zero.

2. The pretilt angle § is assumed to be small (experimentally it is~ 1—2°) and

hence we retain only linear terms in g.

3. We assume that the convective rolls are normal to n, though the flexoelectric
effect tends to produce oblique rolls under DC excitation (Madliusudana et

al., 1987), and

4. From physical considerations (Helfrich, 1969; Orsay Liquid Crystal Group,

1970) ¢, is set equal to n/d where d is the sample thickness.

Under these approximations, using the usual symbols, the linearised EHD equation
can be written as -

1. The Poisson equation

ol, 0%0
4rQ) — ¢ ( o ) + 4w f(e; + 63)5;; =0 (2.20)
2. The charge continuity equation
oQ oF, a0 _ )
(E) +(f” ( 9z ) + AcE, (81‘) =0 (2.21)
3. The torque balance equation
ae Jv, 0% ok, _
ol (a) + oy (—(7:1:_) - K3 [&3} — Bler + e3) 9z 0 (2.22)

4. The equation of motion along the Z-axis

ay ( 0°0 ) +7 (Ozvl) +E,Q =0 (2.23)

Jdz 0t 0z?
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Fig.2.4: The experimental geometry for the propagating mode.
B is the pretilt angle.



(87} + a5 — Q9
2
It is clear that under the approximations made in the present model, only the flex-

where 7 =

oelectric terms couple to the tilt angle. We again assume solutions of the following

form.

0 = alei(q_-,:c—wt) : Q— Qlei(qix—wt) .

E, = Elei(‘hx_Wt) and v, = vyeilgzz-wt) (2.24)

The amplitude equations corresponding to equations (2.20) to (2.23) are:

Qu =M Bley + ex)rg? = 0 (2.25)
Qiw — oylb1q. — Ao ly0hq: =0 (2.20)
(K3q2 — imw)by + igzaavy —ig.B(ey + e3)Ey =0 (2.27)
and
E,Qh + awq. 0y — 7)(1201 =0 (2.28)

Eliminating @; from equations (2.25) and (2.26) we get,

(2.29)

26_(41) [AUEO - :Bw(el + 63)(]21 01
in (aﬁ + 22

16m2

El = (U” +
Eliminating v; from equations (2.27) and (2.28)

[a'ZU”Eo - wnﬂ(el + 83)(133]El
4+ [—inKswg: — pnw? — a2w? + a E2Ac]8, = 0 (2.30)

Now eliminating £ and 0, from equations (2.29) and (2.30), we get

o + iew [AGE, — Buw(ey + €3)qz)[az0) E, — wnBley + €3)q:)
4n

; 2,2
+ [~iqwKzg® — rinw?® — adw? + ap EXAo] <0|2| + fg%) =0 (2.31)
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The real part o the above equation leads to

A 2 2
dnK3q> + Eleay (—E) _ (71 - %) =0 (2.32)
naj y

From the imaginary part o equation (2.31) along with equation (2.32), we get
ﬂ(el + CS)QIEO(AZ + gz)

w = — 7 (2.33)
(m—2) 1+ F)

where the charge relaxation frequency

-1 = 470 (2.34)

and tlie director relaxation frequency

2
T = —K”—O— (2.35)
(i —32)

If w = 0, equation (2.32) reduces to the threshold condition obtained by Ilelfrich
(1969) for the onset o stationary EHD instability. Further, since the third term in
equation (2.32) has a negative sign, the propagating solution with a non-zerow has
a lower threshold (FE,) than the threshold obtained for stationary instability with
B = 0. The equation for w (2.33) contains tlie terrn F, in it. In order to calculate
E,, we assume w which is a small quantity to be zero. From equation (2.32) tlie

threshold electric field becomes

E - —47r[s3ncr||qr (2.36)
V' earAo

Now substituting for E, from equation (2.36) in the equation (2.33), we calculatew
and hence the velocity of propagation v.

/47rK377rf||
w =
eay Ao

Bler + ea)g2(82 + 22)

a?

(m =21+ 7F)




Bler + ea) (82 +

P a

W 47!‘1\3?]0'” 4 n
V=—= ( A ) ol

e VD eenBo T (g -1 4 5)

From equation (2.37), we find that the velocity of propagation v is proportional to

)

(2.37)

gz. Further for a given sign o B8 and (e; T e3), the sign of w depends on the sign
of F,, i.e., the propagation reverses its direction when the applied electric field is
1

reversed. As we have to assume ¢, = % in the one dimensional analysis, v 4, i.e.,

velocity of propagation decreases in thicker samples.

Thesum (e;+e3) of theflexoelectric coefficients arises from the aligned quadrupoles
of the molecules and has a non-zero value in general (Prost and Mercerou, 1977).
Therefore it is clear from equation (2.33) that the convective rolls obtained at the
threshold of theinstability should propagate normal to their axes. For the standard
MBBA values o the material parameters (table 2.1) the velocity of propagation

calculated using equation (2.37) is of the order of 0.1um/sec.

The physical mechanism responsiblefor the propagating instability can be under-
stood by referring to figure 2.5. The transverse electric field gradient in the medium
is large in the region where the charge density is high. When g = 0 (I'ig.2.5a)
this cannot produce any torque on the quadrupoles of the medium. On the other
hand, when 8 # 0 (Fig.2.5b), the field gradient produces aEtorque on the direc-
tor. This torque is spatially =/2 radians out of phase with the torques produced by
other physical mechanisms. Further, when 8 #°0, the flexoelectric polarisation has
a divergence, which gives rise to space charge densities which are also =/2 radians
out of phase with those collected by the coupling of the conductivity anisotropy
with the curvature in the medium. The force produced by £, on these additional

charges gives rise to hydrodynamic torques, which are again «/2 radians out of phase

with the main contributions responsible for the EHD instability. As a consequence
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Fig.2.5: (a) =0, the space charges (shown in full circles) arising from the conduc-
tivity anisotropy cause EHD instability. (b) When g #0, the quadrupoles develop
an out o phase torque due to the horizontal field gradients and additional charges
(in dotted circles) are collected due to divergence o the flexoelectric polarisation P.



of these out of phase torques, we get a slow propagation o the instability in the
medium. Since the coupling responsiblefor the propagation is flexoelectricin origin,
thedirection of propagation dependson thesign of the applied field. Thusit isclear
that this mechanism cannot explain travelling wave EHD instability which has been

experimentally observed for AC fields (Rehberg et al., 1988, 1989).

2.4 Propagating EHD instability - two-dimensional
calculations including the boundary conditions

We have confirmed the above result of the one-dimensional analysis by a more
rigourous calculation using the appropriate boundary conditions. Under the same
approximations made in one-dimensional cal culations except for including the bound-

ary conditions (see § 2.3), the linearised equations can be written as follows.

1. The Poisson equation

- E, d*0
w - (GG - A

Jz 0z
0 0% )

+ 47P(es + €3) (&:‘2 iewl 0 (2.38)

2. The charge conservation equation

0Q ﬁE oL, + Aok, — 00 + 20A0 (

(2.39)

Oz °9

oLk, 80) 0
8t oz 0z °dz

3. The torque balance equation

00 0% 0% 0F, Ov, Ov,
Ny ~sgg — K t(atea)grtays —ay

0E, O0F, d%0 dv,
+,8 {(61 + 63) ( Z E) (I(l 1{3) aza 2"72 av =0 (240)

where v, = (ay + 03)
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4. The equation of motion: X component

0P + d?4 v, v,

Tdx o 88t +mfr +mgs

5 - 0% 0%, 0%*v,
n” Ozt + s 922 e 0z?

where p; = [al + o5 + M%L%] N (23_45.92:39) ;

Ns = (2(11 + 205 - 06) and e = a3 + asg.
5. The equation of motion: z component

__5_7_12 4 0%0 N 32vz+ 82UZ+EQ
0z Y ozot T M agr T g ?

%0 0%v, 0%v,

9201 Vo2 T2 | =

+ Bl

(2:41)

(2.42)

where 77 = (o + as — 2a5). In order to solve these equations we follow the same

procedure outlined in section 2.2 of this chapter. Using solutions given by equation

(2.6) in the above, we get the following amplitude equations

Ql - 4L7rqu(s2 + I)El + (61 + cS)qi[(Sz . I)IB + S]ol -0

Substituting for @; from equation (2.43) in equation (2.39) we get

E, [52 <al + 28A0 — E—L—U—e) + oy — %]
4 47

+ ¢[{(S* = 1)B+ S}(er + e3)w + 2BAcU + AcU}0, =0

EI[B(S2 - 1)+ S]i(el +e3) + 0 [1{1‘1::52 +20(K3 — K1)g.S + K3q, —

- iv,[ag.5'2 '—2’725 - CYQ] =0

1Py — 01(a3S — 128w — 01(77253 + T]sﬂS?' +mS —n6P)g: =0
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(2.44)

W

x

(2.45)

(2.46)



— ASPy+0i[~U(er + e3)a {B(S + 1) + S} + (1285 + az)u]

U
+o1[ae S — 13S? + 78S — na] + ’4—75(52 +1)g. By =0 (2.47)
Eliminating P, from the equations (2.46) and (2.47)) we get

U
ByS0u(S? 4 1) 4 Oy~ {o + Uley + e2)q28)5” + (2 — Uler + ea)g?} S
+ w—Ule, + es)ﬂqil + ’)1["77254 + (a6 — 775)ﬂ53

- (m+ 7]3)52 + (6 +17)BS + 168 — 4] =0 (2.48)

For the existence of non-trivial solutions the determinant of the coefficients of vari-

ables, namely E;, v; and 6, in the equations (2.44), (2.45) and (2.48) should vanish

(A,S% 4+ Ay) 0 (A3S? + A4S + As) |
(B152 + BQS - B]) (B(;Sz + B7S + Bg) (B:;:S2 + B4S + B5) = 0
(CoS? + Cy) (C4ST + CsS3 + CeSt + C1S + Cg) (C18% 4 C38 + C3) |
(2.49)
where , e
we
Ar=(00+2B00 - 2=); Av=o0)— 4= Ag=(er T es)wfys ;

A= As/B; As=—A4+ 20000 + AcU; By =if(er + €3) ;
By =i(ey+e3); Bs=Kiq; By=28(K;— K1)gy ;
Bs = Kag. — “I; Bs = —iay; By =2y, Bs=ion;
Cr = —{aaw + U(er + €3)Bg2}; Co =2mPw — Uley + e3)q?;
Cs = aaw — Uler + €3)B¢%; Co=—12; Cs = (ag —1ns)f;

iUe

Co=—(m+m); Cr=(s+n)B; Co=nef —ma; Co="57¢

Equation (2.49) yields the following 8th degree polynomial in S

8
S 4,5 = 0 (2.50)
7=0



where S7 is the j** power of S and «; is the corresponding coefficient. The roots
d equation (2.50) can be determined using the eight boundary conditions that tlie
variables 0, I, v, and v, have to satisfy at tlie two surfaces of the cell. These

boundary conditions are

0(z = xd/2) = B, the pretilt angle; E.(z =+d/2) =0;

ve(z = £d/2) =0 v,(z = £d/2) =0 (2.51)

As before, using these boundary conditions wewrite the boundary value determinant
(BVD)
D,’j = 0; l,] = 1,8 (252)

This boundary value problem was solved by the method used in section (2.2) of this

chapter.

Using the standard MBBA vaues of the material parameters, we have calcu-
lated tlie threshold voltage and the frequency w as functions of tlie pre-tilt angle 3
(Fig.2.6). For the range of 3 values shown, the wavevector q = 4/d. The linear
variation of w with g is in agreement with the prediction o the one-dimensional
model, viz., equation (2.33). The threshold voltage is also ailmost independent of
B which is assumed to be small. Further the direction of propagation is found to
depend upon the signs of the applied electric field E,, the pretilt angle 8 and the
sign of (e; + e3).

2.5 Experimental
2.5.1 Construction of the cell

The cell is made of two indium tin oxide coated glass plates with their conducting

surfaces treated with polyimide. The plates are rubbed unidirectionally and a sand-
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Fig.2.6: Variation of V,, and w with pretilt angle 8 obtained from calculations
including the boundary conditions. Ac¢=0 and other material parameters have the
MBBA values at 303 K. Thickness of the cel = 15 um.



wich cell is prepared by placing two such glass plates with their rubbing directions
opposing each other (Fig.2.7). Mylar spacers are used between the glass plates to
control the thickness of the cell which is sealed at the edges using an epoxy corn-
pound. The cell isfilled with a room temperature nematic liquid crystal mixture,
whose composition is described later in this section. If a standard 3% polyimide
solution is used to get the alignment, the EHD patterns obtained under DC exci -
tation are rather patchy and further the threshold varied considerably with time.
Presumably a dense coating of polyimide acts as an insulating layer which reduces
the field in the sample as ions collect near these layers (sec Blinov, 1983). However
on reducing the concentration of the polyimide to about 1/20th of the standard
value, we get better EHD pattern under DC excitation. This is probably due to
a porous coating o the polymer. The alignment obtained under these conditions

remain satisfactory.

The cel thickness is measured using an optical interferometric technique. The
light reflected normally from the two glass surfaces bounding the air gap correspond-
ing to the cell thickness is made to fall on a constant deviation spectroscope (Adam
and Hilger Ltd.). A spectrum with alternate dark and bright fringes is seen due to
interference o light reflected from the two surfaces of the cell forming the air film.

The cell thickness is calculated using the expression,
Ap X A n-—m
d — m n
(/\m - A71,) 8 < 2 )

where \,, and ), are the wavelengths corresponding to m** and n'" dark fringes

respectively.
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Fig.2.7: The cross-section of the cell with the antiparallel arrangement of
unidirectionally rubbed polyimide coated glass plates. The nematic
director n though tilted is uniformly aligned in the cell.

Fig.2.8: Cross scction of a liquid crystal cell showing the pretilt angle B and ¢ the
angle of incidence of the light beam.



2.5.2 Measurement of pre-tilt angle

To measure the low pre-tilt angle accurately we have used the crystal-rotation

method (Baur et al., 1976 and Nakano et al., 1980).

The NLC is confined between the cell plates, whose rubbing directions are an-
tiparallel. We have then a uniaxial medium with its optic axis at an angle # with
respect to the plane of the plates (Fig.2.8). Let ¢ be the angle of incidence of the
light beam. Then the nematic director 2 and the wave normal Sof the incident

beam is defined by the vectors,

n = (cosP,0,sinp) 0° < B <90°
S = (sing,0,cosd) —90" < ¢ < 90"

Thetransmission of light through such a uniaxial medium placed between parallel
polarisers and with the plane of polarisation of the incident light making an angle
of 45" with the projection o the director on cell walls, is given by (Nakano et a.,

1980)

nd (none n2(f) — sin’ ¢ B
n?(p)

- °sinﬂcosﬂsin¢> 1 (2.53)

L]
=
N

where A is the wavelength o the incident radiation, n, and n. are the ordinary and

extraordinary refractive indices o the nematic liquid crystal respectively, and

n(B) = \/&coszﬂ'knz sin? 3 (2.54)



The intensity vs. ¢ curve obtained from equation (2.53) for typical valucs o
ne, N, are given in figure 2.9. Equation (2.53) is differentiated to get the followirig

condition for minimum in the intensity o transmitted liglit

9

(% —sin? g0/ = 25 (n2(6) - ¢z):’2 [ sn 6.
= ";;(’ﬂ';f’ sin f3 cos 3 (2.55)

Assuming that g is very small, cquation (2.55) can be approximated as follows,
—2sNn ¢,
(no + ne)\/l - (sin qﬁz/no)?

This minimum corresponds to that shown by the dotted line about which the inter-

sin2g = (2.56)

ference pattern is approximately symmetric (Fig.2.9).

In the experiment, the angle ¢ is measured using a goniometer Spectrometer
(Freiberger). The cell is mounted vertically on the prism table, such that the plane
of thecell isat right angles to the plane of the prism table. The cell isrotated about
an axis which is perpendicular to the rubbing direction (Fig.2.10). We have used
the CGS unitsin all the theoretical calculations though presenting our experimental
results we have consistently used the S.I. units. The incident light from a sodiurn
source is passed through the collimator and is polarised at an angle of 45° with
respect to the rubbing direction. The light intensity is measured using a photodiode
(Centronics). ¢ is varied from +60° to -60°. The transmitted intensity is plotted
against the angle of incidence in figure 2.11. From the graph, the angle ¢, at which
the transmittance curve has a minimum is noted. Then from equation (2.56) the

pretilt angle g is calculated.

We used a room temperature nematic liquid crystalline mixture consisting of
46 mole % (2-methylphenyl)-bis-4-n-butylbenzoate (RO-CE 1700), 50 rnole % 1-n-

propyl-4[4-ethoxyphenyl}-cyclohexane (PCH-302) and 4 mole % 4'-n-pentyl-4-cyano-
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Fig.2.9: Angular dependence of intensity of transmitted light
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Fig.2.10: Schematic representation of the experimental set up used

to measure tilt angles.
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biphenyl (5CB). These are commercial compounds obtained from Hoffman La Roche
and are chemically stable. The structural formulae and transition temperatures of
these compounds are given in figure 2.12. This mixture has alow negative dielectric
anisotropy. We have aso added about 0.1% of ionic impurities such as tetrabuty-
lammonium bromide (TBAB), to increase the conductivity of the mixture to about
10-7 ohm ~! m~!. The refractive indices n, and n. of this mixture were measured
by an independent experiment using an Abbe refractometer. The values obtained
were n, = 1.501 and n, = 1.639. For the cdll used in our experiment g was found

to be 1.2".

2.5.3 Experimental study of propagating mode

For observing the propagating EHD instabilities, the liquid crystal cell is mounted
on the stage d a Leitz polarising microscope (Orthoplan). A Mettler hot stage
(FFP82) is used to regulate the temperature o the cell. At room temperature the
pattern observed at the threshold under DC excitation consisted o propagating
oblique rolls whose propagation direction reversed when the field was reversed.
On increasing the temperature, the obliquity of the rolls decreased and at about
333 K amost normal rolls were obtained. In order to minimise the influence of the
moving boundaries between domains o opposite tilts of the rolls on the propagation
o the rolls themselves, we have made all the detailed observations at about 333 K.
Preliminary video-prints (Fig.2.13) clearly show the propagating modes. In order to
make more quantitative measurements we used better samples and the EID pattern
isrecorded using a CCD video camera (Sony) mounted on the microscope. The video
output, which is digitised with a resolution o 512 x 512 pixels o 256 grey levels,

is fed to an IBM Personal Computer with a frame grabber (Fig.2.14). The frame
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Fig.2.12: Structural formulae and transition temperature of the compounds used
in the mixture.



Fig.2.13: Video prints of propagating electroconvection in a nematic mixture under
DC excitation in a cell of d=80 . Starting from the top, the video recordings
correspond to (i) t = 0, (ii) t = 120 sec. for V, = $2.4 V, (iii)t = 0 and t = 120
sec. for V,=-2.4V. Each optical domain contains two rolls of opposite vorticity. The
sensitivity of the DC instability to local surface conditions causes the deviations

from straight rolls. (magnification X 70).
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Fig.2.14: Schematic representation of the experimental set-up used to observe
propagating EHD instability.



grabber is programmed to grab a video frame at intervals of 2 sec. Then successive
intensity profiles along a line normal to the roll axis are sequentially plotted as
shown in figure 2.15. In the absence of any propagation the line joining tlie peaks
of the successive profiles would remain vertical. But when there is propagation of
domains, theline joining tlieintensity peaks form an angle with the vertical as shown
in figure 2.15. With the reversal o the applied field, this line takes the opposite

slope indicating the reversal o the direction o propagation of EHD pattern.

In order to illustrate the phenomenon and also bring out the problems connected
with a DC experiment, wefirst describe the results on a cell of thickness 17.5 ym at
333 I{. The velocity of propagation is also found to be sornewhat different for tlie
two signs of the voltage,viz., 0.9um/sec for positive voltage slightly above threshold
and -0.5pum/sec for negative voltage. Under AC excitation the EHD pattern was
found to drift with a velocity of about +0.2 um/sec just above the threshold. Hence
the difference in the propagating velocity for positive and negative voltages could
arise from a small thickness gradient present in the cell which leads to a drift of
the pattern in a particular direction independent o the sign of the voltage. We
have also observed that the threshold voltages are slightly different for positive and
negative applied voltages (Fig.2.16). This is probably due to some assymmetry in

the coating on the two electrodes.

We have also studied the thickness dependence of tlie velocity of the propagating
mode (Fig.2.17). The velocities measured using two cells of thickness 12.7 um
and 53.0 um are 1.4 um/sec and 0.5 um/sec respcctivcly at 3f|33 K. The velocity
approximately goes as 1/d. In view o the inherent problems associated with DC
fields, the errors in these mcasurcments are relatively high. From figure 2.6 wc sce

that for a pretilt of 1.2" the propagation velocity obtained from the theory for Ae = 0
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Fig.2.15: The light intensity profiles along a line normal to the rolls recorded at
intervals of 2 secs. plotted on top of one another. (a) V=-8.9 volt , (b) V=+48.9
volt (V;,=8.5 volt). Note that tlie rolls propagate in opposite directions for
opposite signs of the voltage. Thickness of the cell = 15 um,
temperature = 333 K.
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and for MBBA values of other material parametersat 303 K isabout 0.5 pm/sec for
a cell with d=15 pm. Thus the observed propagation velocity is comparable to that
obtained from the theory. We have determined the sign of (e, + e3) for this mixture
to be negative (see Chapter V). For the experimental configuration used (Fig.2.5),
the theory predicts that the direction of propagation isalong the positive X-axis for
positive F,. This direction agrees with the observations (taking into account the
image inversion in the microscope).

We have repeated these experiments at different temperatures, and made the
following observations. The threshold voltage decreases with increase in temperature
(Fig.2.16) whereas the velocity of propagation increases with increase in temperature
(Fig.2.18). From the equation for threshold field (eqn.2.36) it is clear that the
decrease of threshold voltage is due to the decrease o K3 with temperature. I'rom
equation (2.37), velocity o propagation is % Therefore the velocity of propagation

is expected to decrease with increase of temperature.

2.6 Conclusion

The oscillatory solutions of the EHD equations which were found by Penz to exist
over a narrow Vvoltage range above the Freedericksz thresholld for a nematic with
positive Ae in a planar aligned cells are suppressed by the flexoelectric effect. How-
ever if the nematic is aligned with a small pretilt of the director at the bounding
surfaces, the flexoelectricity of the medium leads to a propagating EHD instability
under DC excitation. The results of our experiments on the propagating instability

are in qualitative agreement with the theoretical predictions.
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