CHAPTER II1

EHD INSTABILITY OF A NEMATIC LIQUID
CRYSTAL UNDER A TRANSVERSE ELECTRIC FIELD

3.1 Introduction

As we have discussed in Chapter |, nematic liquid crystals with negative or weakly
positive dielectric anisotropy and positive conductivity anisotropy exhibit electrohy-
drodynamic (END) instabilities under the action of an external electric field above
a certain threshold value. This phenomenon has been studied extensively with the
standard geometry in which the electric field is applied across the thickness of a ho-
mogeneously aligned nematic liquid crystal (NLC) film. As wasdescribed in chapter
I, the phenomenon is very well understood as arising from the bend fluctuation of
the director field leading to space-charge formation due to conductivity anisotropy.
Under the action o an AC electric field, the phenomenon has two distinct frequency
regimes. At frequencies lower than the typical charge relaxation rate of the san-
ple, the space-charges can follow the frequency of the electric field and we get the
conduction regime. The curvature of the director does not change sign with that
of the field. On the other hand, at higher frequencies it is the director distortion

that oscillates at the frequency o the external electric field, while the space charge
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distribution does not change sign. The latter is referred to as the dielectric regime.
Dubois-Violette et al. (1971) gave a one-dimensional model for the AC instability
in which the boundary conditions are ignored. Later Smith et al. (1975) extended
the theory for squarewave excitation and also approximately included the boundary
effects by using appropriately renormalised values of the physical parameters. Later
Madhusudana et al. (1987, 1988) extended AC calculations by taking into account
theflexoelectric contributions. They have shown that in a range of very low frequen-
cies, the director field develops additional twist distortions leading to the formation

of oblique rolls.

More recently Bodenschatz et al. (1988) have developed a three-dirriensional
model for AC excitation. In their first calculations they neglected the flexoelectric
terms arid have approximately taken into account the boundary conditions by using
the Galerkin approximation to solve the problem. Near the threshold, one can
choose sinusoidal spatial variations along the X direction. The Z-dependence of the
variables should be chosen such that the boundary conditionsat Z = 0 and d are
satisfied. The gross symmetry of different variables can be guessed by the equations.
In the Galerkin approximation, simple trial functions are chosen which satisfy the
boundary conditions but these do not satisfy the differential equations exactly. The
relevant amplitudes are however chosen so that they satisfy the equations which are
appropriately averaged over the thickness of thesample. Later Kramer ef al. (1989)
extended the calculations by taking into account the flexoelectric terms. Their

results arc shown in figures 3.1 and 3.2.
In this chapter wediscuss the EHD instabilities in a different geometry. Were the

electric field is applied in the plane of a homogeneously aligned NLC film, such that

the field is orthogonal to the undistorted director. The observations are made in a
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Fig.3.1: Threshold voltage (V,) as a function of frequency
of a vertical field for MBBA parameters
(Kramer et al., 1989).
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Fig.3.2: Wave number ¢, in units 7/d as a function of
frequency of a vertical field for MBBA parameters
(Kramer et al., 1989).



direction normal to the plates as usual. There have been some early experimental
studies (Williams, 1972, and Chistyakov and Vistin, 1974) on EHD instabilities in
this geometry. However, no theoretical analysis of the problem has hitherto been
reported. We present in this chapter a theoretical analysis of this problem for an
applied AC field. The results of our theory (Figs.3.3 and 3.5) are broadly similar
to the results in the usual geometry (Figs.3.1 and 3.2). Apart from the similari-
ties observed in normal and transverse geometries, there are also some important
differences. We have also conducted some experiments in this geometry which will
be discussed later in this chapter. The experimental phase diagrams (Figs.3.10 and

3.11) are in broad agreement with the theoretical calculations.

3.2 Theoretical Analysis

We consider a nematic liquid crystal film o thickness d and having an infinite
extent in the XY plane. The electric field £, is applied along the Y axis such tliat
it is acting in a transverse direction to the undistorted director n which is along
the X-axis. Above a critical field, the EHD instabilities develop in the medium
resulting in a periodic twist distortion of the director field. Let this distortion be
described by an angle ¢ arid further the wavevector associated with such a distortion
be along the X axis, with convective rolls being along the Y direction. There is an
additional distortion in thedirector field out o the XY plane due to the flexoelectric
contributions and this is described by an angle §. Therefore the distorted director
field is written as n = (cos @ cos ¢, cos @ sin ¢, sin 0). Near the onset of EIID
instability, since the amplitudes are expected to be small, the EHD equations are
lincarised following tlie procedure described in Chapter 1. Using the usual riotation,

we get the following equations.



a) The Poisson equation

vV.D = 47Q)
whereD=¢, £+ Ae(n - E) + 47 P, and P is the flexoelectric polarisation.
This leads to
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where e; and e are the flexoelectric coefficients of the medium, F, and E, arise from

space charge densities.

b) The charge conservation equation —iQ~ +V.3=0 givesrise to
OQ 0F, OF, a¢
En + 0 52 % + AaEyé;— =0 (3.2)

c) The torque balance equation along Y and 7 axes are given by
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d) The x component o equation d motion is
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e) The Y component o equation d motion is given by

1 d>vy . 1 d% 024
5(04 + Qg — 02)673 + §a4 azzy + (62} dth + EyQ =0 (36)

f) The Z-component of equation of motion becomes
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aagr ~ Crgygr =0 (3.7)

where P is the pressure. In the above three equations o motion, the inertial terms
are negligible at the frequenciesd interest and hence are neglected (Dubois-Violette

et al., 1971).

g) Assuming the NLC mediumn to be incompressible we can write V. ¢ = 0 and

hence
dv, + dv,
oz 0z

=0 (3.8)

h) From the Maxwell relation, V X E = 0, we get,

0B, OE, _
0z dr

0 (3.9)

Eliminating pressure term P from equations (3.5) and (3.7) we get,

P05
52201 3 5220t

Q4 + Qg — ag)] 83'0_1;

B [al tast ( 2 0z20z

n (014 — ag + 03) %, _ (04 + ag + aa) Pu,
"2 Jzxdz? 2 023

. 3
+ (“‘“‘5 a2) v _ g (3.10)

2 0x3



The boundary conditions to be considered in solving these equations are, at Z =0

and d (at the two surfacesdf NLC film)

(0’ $,Q, Es, E,, v, Vy, ’Uz) =0

The X-dependence of these quantities in the above equations can be satisfied by
sinusoidal functions o the type sin gx. Following the earlier work of Bodenschatz
et a. (1988) and Kramer et a. (1989) the Z-dependences are taken into account in
a Galerkin approximation by chosing trial function solutions. By inspection of the

above equations (3.1-3.10) the following solutions are assumed for the variables:

¢ = ¢(t)singx sinpz; Q=Q(¢) cosgx sin pz;

E: = E;(t)singx sinpz; V, =uv.(t) singx sin pz;

v, = v(l) cosgx sinpz; 6 =40(t) sin qx sin 2pz;

E, = E,() cosqx sin 2pz; V, =w,(t) cosqz sin 2pz (3.11)
where p=7/d.

We now use the Galerkine approximation, i.e., we integrate equations (3.1-3.10)
after substituting the above functional forms for the solutions and we average over

the cell thickness d in order to get the following equations

€19E; + 2¢, plh E, + AeEyqd + 8m(ey + €3)pgl10 — 47 = 0 (3.12)

where
I = fod sin pz cos 2pz dz (3.13)
' fod sin? pz dz .
Equation (3.2) gives rise to
9Q
- toygl: + 20, phE,+ AcEyqp =0 . (3.14)

ot
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Equation (3.3) is modified into

0 B a A€
WS ey, o+ Kot Ko — DB + I, E)
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Equation (3.4) leads to

a0
71—5 + aaplv, — azqu, + (k3q2 + 4k1P2)9

+ (el —e3)Eyplyé + ewplhE, —e3qFE, =0,

where
_ J*sin 2pz cos pzdr

I
: J4sin? 2pz dz

Equation (3.10) reduces to
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Equation (3.6) becomes
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Equation (3.8) is modified as
quz + 2pliv, =0

Equation (3.9) reduces to
qF. t phE: =0 .

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



From equation (3.19)
_ 2E,Q + aquQ .0t)

V. =
v asp? + nq?

where g = a4 + as — as.
From equation (3.20)
VvV, = —2511’02

where S= p/q.
From equation (3.21)
E,=-SLE, .

Substituting for v,,Vv, and E,, equation (3.12) becomes,

ez — 2e, pSHLLE; + AeEyqd + 8n(ey + e3)pgl10 —47Q =0

_4nQ — AeEyqp —8r(ey + e3)pgl1d

E,
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From equation (3.18) we get,

v, = Qo — 40352 @
‘ Bq ot

where

B=(astost a)S'L 1 T2y — ag + @5)S? — 2(ay T ag T 1)S2 1 T 1n.

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Using equations (3.22) to (3.26), we can eliminate other variables in favour o @, 4

and 0 and rewrite equations (3.14)to (3.16) as
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Equations (3.27-3.29) are smplified to read as follows:

3}
0?-'- Q-{-O’]{Eyq¢ A6 = 0 (330)
d¢
(’)t+ d) BE,Q+2LCiEH = 0 (3.31)
6 1
%+—o LCE$+DQ = 0 (3.32)
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where
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These equations (3.30 - 3.32) form a set of ordinary differential equationsin Q, ¢
and 0. In order to simplify the problem we solved the above set of equations for the
case of square wave excitation (Smith et a., 1975). Assuming solutions o the form
Q = Q'eM, ¢ = ¢’ and 0 = (e, the existence of non-trivial solutions require

that the determinant o thecoefficients of the amplitudes @’, ¢’ and 8’ should vanish,

[ (A+1) onFEyq - A
—BE, (A+7;) 2LGiE, | =g (3.33)
D —LGE, (A+2)

57



Expanding this determinant we get,

1 1 1
JCIIRP LY .
* [T0+T¢+T}

1/1 1 1
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+ 20yCiDIgE} + — =0. (3.34)
T,

In the conduction regime we can write,

QU=0) = —Qt="1/2)
0t =0) = —b(t=T/2)
Ht=0) = $(t=T/2). (3.35)

The general form of Q is written as,
3
Q=) QM. (3.36)
1=1

Then using equation (3.35) we can write

3

S Qi(1+eM?) =0, (3.37)

i=1

Similarly we can write
3
0,1+ eNT?) =0 (3.38)
=1

and

3

S i1 - e =0 (3.39)

i=1



Equation (3.31) becomes,
(A + T¢) ¢i ~ BL,Q; 4+ 21,C E,0; =0 (3.40)
and equation (3.32) becomes,
1
(A + o ) 0: — LGy Eybi + DQ; = 0 . (3.41)
[}
Eliminating ¢; from the equations (3.40) and (3.41) we get,

0; = Lig; (3.42)
ILBCE? — D(A; + L)
BE,(X + )+21101DE
Further equation (3.30) becomes,

where ;=

(,\i + %) Qi + (onfyq— At =0 (3.43)
or
Qi = gid (3.44)
where gi = Al — by /\: i’f"’q

Using equations (3.42) and (3.44)in equations (3.37) and (3.38) we get

Y ¢igi(1+ X777 = 0
Z¢iti l+e’\‘T/2) = 0 and ’
Yo di(l—eTh = 0 / (3.45)

The determinant d the coefficients d ¢y, ¢;and¢g3 in the above equations should

also vanish
D (14 M) g (1 Ty go(1 + 772) |

(1 + e,\,T/Z) ta(1 + er\2T/2) ta(l + eXaTﬂ) 0 (3.46)

(1 _ eA,T/Z) (1 _ e)qT/?) (1 _ eAgT/z) i



For agiven set of valuesdf the material parameters (Table 2.1) and for a given value

of the applied field I, equation (3.34) is first solved to obtain A;. These values of

A; are then substituted in equation (3.46). The value E, for which equation (3.46)

is satisfied, gives the threshold field, £, of the instability in the conduction regime.

In the dielectric regime, the boundary conditions are,
QUt=T/2)
6(t=0) = 6(t=1T/2)
Bt=0) = ~4(t=T/2)

O
—
o~
Il
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Using these boundary conditions the equations (3.37) to (3.39) becomes,
S gidi(1 el = 0
Zt;q&i(l - e’\‘T/2) = 0 and
Zqﬁ;(l + eA‘le) = 0.
Then the determinant o the coefficients of ¢, ¢, and ¢3 is written as
[ 91(1 - e'\lTﬂ) g2(1 — e/\zTﬂ) g3(1 — e/\sTﬂ) ]

(1 = eMT/2) (1 — e T/2) ty(1 —eMT/2) | = 0.

| (1 +e)\]T/2) (1 +6A2T/2) (1 + 6/\3T/2)

(3.47)

(3.48)

(3.49)

The threshold of dielectric regime is determined using the same procedure as above.

Another possible set of solutions of equations (3.1) to (3.10) are obtained by replac-

ing sin pz by sin2pz and vice versa in (3.11)

¢ = é(t)singx sin2pz; Q =Q(t) cosqx sin 2pz;
E, = E.(t)singx sin2pz; Vv, =uv.(t)sin gz sin 2pz;
= wv,(t) cosgx sin 2pz; 6 =6(t)sinqx sin pz;

E, = E,(t) cosqgx sin pz; Vv, =v,(t) cosqgx sin pz

(3.50)



Then proceeding as before using the equations (3.1) to (3.10) and eliminating v, £,

and V, we get the following equations :

%_? + %Q +ouE,qp— A0=0 (3.51)
%?+ %¢—R&Q+ah&0=0 (3.52)
o4 7_%59_ 21,C4E$+D Q=0 (3.53)
where
A = 4:j°(cl +ea)pala; 1y = v — T dasS? +2:j452 ;B = (mn +2:;452 + %) ;1‘:‘,??
C = ;% {———Ae(elf D) (e, - 63)} = = (22 dsSZ)(CZ,JF 23S )

(04 — Qg + 03)52
2

—2<al+as+g)

ﬂ' = 4(a4+a6+a3)541112+

g{ ’ 87!'(61 -+ 63)511

G = r T D' = 1
2 M2 ! €12
1 2 2¢2
= -q—’— ["3 + I"15’2 _ 87‘-(81 + 63) S 1112
Ty n2 €e
1 AeE?¢,(1 —282 2
— = (K344K,8 - AcEjer(1-25h1D)) ¢°
s in ¢ Ce m

S, + 1

2

and all other parameters are as defined after the equation (3.32). Equations (3.51)

to (3.53) are solved as in the previous case.
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Figure 3.3 shows the critical voltage (V) for the onset of the instability cal-
culated for MBBA parameters (Table 3.1) as a function of the reduced frequency

2
i (fc = -%) Thesolid lines correspond to the solution Set 1 and the dashed lines

fe
to Set 2.

In the dielectric regime the voltage corresponding to the threshold for Set 2 is
only marginally greater than that for Set 1. In the conduction regime ¢ is negligible
due to its flexoelectric origin, except at the lowest frequencies of the applied field.
Thesolution Set 2 consists o larger ¢ distortion and larger viscous dissipation which
leads to a larger threshold voltage. On the other hand in the dielectric regime, a
larger ¢ distortion can lead to a larger relaxation frequency 1/T4. The threshold
of the dielectric regime is determined by the condition that the frequency of the
applicd fidd ~ 1/T4. This may be the reason for the thresholds for solution Sets 1

and 2 to have nearly equal values in this regime.

The variation o the critical wavevector (¢/p) as a function of the reduced fre-
quency (f/f.) is shown in figure 3.4. From these figures it is clear that the general
features of transverse instability are similar to those in the case with E along the
Z-axis. However, we must note that in the case of the vertical field, the flexoelectric

effect destroys the symmetry o the variables about the midplane of tlie sample.

3.3 Experimental Studies

The cell is made of ordinary glass plates which are coated with polyimide and uni-
directionally rubbed to get homogeneous alignment o the director. Stainless steel
wires of 50 sm diameter are used to apply the transverse electric field. They also
serve as spacers (Fig.3.5). The lateral separation between these wires is about

400 pm. The thickness o the cell is measured by using the technique of chan-



Table 3.1

Material parameters o MBBA used in the calculations

K; = 6.1 x 107 dyne (1) o = 65 cP (3)
Kz = 4.0 x 1077 dyne (2) ag = -77 cP (3)
Ks = 7.3 x 10~7 dyne (1) as =-1.2 cP (3)
g = 475 (1) as =83 cP (3)
e, = 525 (1) as = 46 ¢P (3)
o = 0.1x10""ohm™cm™* ag = -34 cP
% =15 (1) (e + eg) = -7 x 107" esau. (4)
%9 = 0.5 (1) (e1-e3) =1 x 107 es.u. (5)
1

s wN R

. Penz and Ford, 1972
. Blinov, 1983
. de Gennes, 1975

Madhusudana and Durand, 1985

. Dozov et al., 1982.
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Fig.3.5: The geometry of the cell used in the experiment.



nel spectrum (as described in Chapter II). The material used in the experiments
is a room temperature nematic mixture containing 49% (2-methylphenyl)-bis-4-n-
butylbenzoate (RO-CE-1700) and 51% I-n-propyl-4[4-n-ethoxyphenyl]cyclohexane
(PCIH-302), both of which were obtained from Hoffmann-La Roche Company. The

structural formulae of the compounds are shown in figure 3.6.

The cell is placed on the stage o a Leitz polarizing microscope (Orthoplan).
A Mettler hot stage (FP82) is used to regulate the temperature of the sample.
A Hewlett Packard two channel synthesiser (Model No.3326A) is used to apply
the AC field. The EHD instability pattern is observed on a video monitor (Sony-
TRINITRON) using a CCD video camera (Sony). The voltage at which the 1D
pattern first appears gives the threshold voltage (V). A block diagram o the ex-
perimental set up is shown in figure 3.7. Some photographs of the EHD pattern
under transverse field at different frequencies are shown in figure 3.8. Note the de-
creasedf wavelength of the domains as thefrequency o the applied field is increased.
The photographs taken at voltage much above V;;, are shown in figure 3.9. As has
been noted by earlier workers (Chistyakov and Vistin, 1974) in this geometry, dark
bands corresponding to neighbouring roles start from opposite electrodes even with

an applied AC field. Our present model does not explain this phenomenon.

At the onset o the instability the director field develops twist distortion. But
this cannot be detected in view of the Mauguin criterion (1911). However, at slightly
higher voltages, observations clearly indicate that the twist distortion is quite pre-
dominant, with the neighbouring convective cells having twist of opposite sense (see
the video prints in Fig. 3.10). The high frequency dielectric regime could not be
observed as an irregular flow developed in the cell at the very high voltages required

at these frequencies. {
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Fig.3.6: Structural formuale d the compounds used in the nematic mixture.
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Fig.3.7: Block diagram of the experimental set-up used to record the transverse
EHD pattern.



(a)

(b)

(d)

(e)

Fig.3.8: Transverse EHD pattern observed at different frequencies. (a) 77 Hz (24.5 V),
(b) 177 Hz (22.7 V), (c) 577 iz (24.1V) ,(d) 1177 Hz (35.4 V), and (e) 1577
Hz (48.9V) .The cell has a thickness d=12.1 ym and interelectrode space 54.2
wm. The position of the electrodes is on top and bottom sides o each stiip
with the nematic director parallel to the electrodes. These observations are
made with crossed polarisers.



Fig.3.9: Transverse EHD pattern observed in the same cell shown in Fig.3.8 at fre
quency = 111 Hz. The voltage is 45.5 V which is well above the threshold
voltage of 34 V. The photograph(a) is taken with tlie polariscr parallel to the
director and the analyses crossed with respect to it. The photograph (b) is
taken with both the polarises and the analyser parallel to the nematic director.



Fig.3.10: Videographs taken at 17 Hz with 10.0 volts with (a) polariser and analyser
mutually crossed and (b) angle between polariser and analyser is 115 °. d=50
pin and interelectrode space = 65 pm.



Figures 3.11 and 3.12 show the threshold voltage (V) and reduced wave vector
(¢/p) in the conduction regime as functions of frequency o tlie applied field. The
experimental trends agree with the theoretical ones (Figures 3.3 and 3.4). In figure
3.11 there is an initial decrease in the threshold voltage as the frequency o the
applied field increases. This may possibly arise from a screening of the applied field
at very low frequencies by impurity ions present in the sample. In the experimental
curve weseeasteep risedf Vy, at frequencies above 800 Hz and hencefor the purpose
o comparing the experimental numbers with the theoretical ones, we estimate that
the cut of frequency (f.) is ~1000 Hz. The calculated value of Vi, at f/f.=0.1 is
5.0 volt for a cell with an interelectrode space of 60 um. This corresponds to an
electric field of 830 V/cm. From the experimental curve (Fig. 3.11) obtained for
a cell with an interelectrode space o 400 um, V,, = 34 volt at the same reduced
frequency. This is equivalent to an electric fidd of 850 V/cm which is quite close
to the theoretical value. The ratio o V,, calculated at the reduced frequencies
(f/f.) o 0.1 and 0.8 is 0.5 from the theoretical curve (Fig.3.3) and is 0.57 from the
experimental curve (Fig.3.9). Further the ratio o the wavevectors at f/f. = 0.1
and 0.8 is0.57 from the theroetical curve (Fig. 3.4) and it is 0.42 from experglnexltal
curve (Fig.3.12). Bearing in mind that all the calculations have been made using
MBBA parameters, while the experiments have been conducted on a mixture for
which many of the physical parameters are not known, the comparison between

calculatetl and experimental data is quite adequate.
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Fig.3.11: Experimentally observed variation of the threshold voltage (Vir)
with frequency, for a céll of d=50 pm with interelectrode
space = 400 yon at a temperature of 303 K.
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Fig.3.12: Experimentally observed variation of the reduced wavevector with
frequency for the same cdl asin Fig.3.11.
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