
CHAPTER I11 

EHD INSTABILITY OF A NEMATIC LIQUID 

CRYSTAL UNDER A TRANSVERSE ELECTRIC FIELD 

3.1 Introduction 

As we have discussed in Chapter I, nematic liquid crystals with negative or weakly 

positive dielectric anisotropy and positive conductivity anisotropy exhibit electrohy- 

drody~lamic (END) instabilities under the action of an external electric field above 

a certain threshold value. This phenomenon has been studied extensively with the 

standard geometry in which the electric field is applied across the thickness of a ho- 

mogeneously aligned nematic liquid crystal (NLC) film. As was described in chapter 

I, the phenomenon is very well understood as arising from the bend fluctuation of 

the director field leading to space-charge formation due to collductivity anisotropy. 

Under the action of an AC electric field, the phenomenon has two distinct frequency 

regimes. At frequencies lower than the typical charge relaxation rate of the sain- 

ple, the space-charges can follow the frequency of the electric field and we get the 

conduction I-egime. The curvature of the director does not change sign with that 

of the field. On the other hand, at higher frequencies it is the director distortion 

that oscillates at the frequency of the external electric field, while the space charge 



distribution does not change sign. The latter is referred to as the dielectric regime. 

Dubois-Violette et al. (1971) gave a one-dimensional model for the AC instability 

in which the boundary conditions are ignored. Later Smith et al. (1975) extended 

the theory for squarewave excitation and also approximately included the boundary 

effects by using appropriately renormalised values of the physical parameters. Later 

Madhusudana et al. (1987, 1988) extended AC calculations by taking into account 

the flexoelectric contributions. They have shown that in a range of very low frequen- 

cies, the director field develops additional twist distortions leading to the formation 

of oblique rolls. 

More recently Bodenschatz et al. (1988) have developed a three-dirriensional 

model for AC excitation. In their first calculations they neglected the flexoelectric 

tcrms arid have approximately taken into account the boundary coriditio~is by usirlg 

the Galerkin approximation to solve the problem. Near the threshold, one can 

choose sinusoidal spatial variations along the X direction. The 2-dependence of the 

variables should be chosen such that the boundary conditionsat Z = 0 and d are 

satisfied. The gross syrnmetry of different variables can be guessed by tlie equations. 

In the Galerkin approximation, simple trial functions are chosen which satisfy the 

boundary conditions but these do not satisfy the differential equations exactly. The 

relevant amplitudes are however chosen so that they satisfy the equations which are 

al)propriatcly averaged over the thickness of the sample. Later I<ra~iicr ct al. (1989) 

extended the calculations by taking into account the flexoelectric terms. Their 

rcs~llls arc sllow11 i l l  figures 3.1 i ~ l i c l  3.2. 

In this chapter we discuss the EHD instabilities in a different geometry. Were the 

electric field is applied in the plane of a homogeneously aligned NLC film, sucli that 

the field is orthogonal to the undistorted director. The observations are made in a 



Fig.3.1: Threshold voltage (V,)  as a function of frequency 
of a vertical field for MBBA parameters 

(Krarner et al. ,  1989). 

Fig.3.2: Wave number q, in units ~ / d  as a function of 
frequency of a vertical field for MBBA parameters 

(Icramer et al., 1989). 



direction normal to  the plates as usual. There have been some early experimental 

studies (Williams, 1972, and Chistyakov and Vistin, 1974) on EHD instabilities in 

this geometry. However, no theoretical analysis of the problem has hit herto been 

reported. We present in this chapter a theoretical analysis of this problem for an 

applied AC field. The results of our theory (Figs.3.3 and 3.5) are broadly similar 

to  the results in the usual geometry (Figs.3.1 and 3.2). Apart from the  sinlilari- 

ties observed in normal and transverse geometries, there are also some important 

differences. We have also conducted some experiments in this geometry which will 

be discussed later in this chapter. The experimental phase diagrams (Figs.3.10 and 

3.11) are in broad agreement with the theoretical calculations. 

3.2 Theoretical Analysis 

We consider a nematic liquid crystal film of thickness d and having an i~ifi~iite 

extent in the XY plane. The electric field E, is applied along the Y axis such tliat 

it is acting in a transverse direction to the undistorted director 7i which is along 

the X-axis. Above a critical field, the EHD instabilities develop in the  mediurn 

resulting in a periodic twist distortion of the director field. Let this distortion be 

described by an angle q5 arid further the wavevector associated wit11 such a distortion 

be along the X axis, with convective rolls being along the Y direction. There is an 

additional distortion in the director field out of the XY plane due to the flexoelectric 

contributions and this is described by an angle 6. Therefore the distorted director 

ficld is writtell as ?z = (cos 0 cos 4, cos 0 sin q5, sin 0). Near thc o~ise t  of EIIL) 

instability, since the amplitudes are expected to be small, the EHD equations are 

lincariscd following tlie procedure described in Chapter 1. Usilig tlie usual riotation, 

we get the following equations. 



a) The Poisson equation 

v.d = 4 i ~ Q  

4 

where D = €12 + Ar(s B) 6 + 47rP, and P is the flexoelectric polarisation. 

?'his leatls to 

where el and e3 are the flexoelectric coefficients of the medium, E, and E, arise from 

space charge densities. 

8Q -., b) The charge conservation equation - + V . J = 0 gives rise to 
at  

c) 'l'lie torque balance equation along Y and Z axes are given by 

(94 3EX a E  + ( e l  - e3)Ey-  + e l-  + e 3 2  = 0 
d z  d z  d x  

d) 'l'lie x cornponent of equation of motion is 

1 a2v,  
- - ( a 4  + a g + ~ g ) -  - 

d 2  0 
2 

a3- = o  
a z 2  d z d t  



e) The Y component of equation of motion is given by 

1 d 2v y 1 d2v 
-(a4 + ag - a2)- + - a 4 2  

a2 4 
2 8x2 2 822 

+ ~ 2 -  + E y Q  = 0 
d x d t  

f )  The Z-component of equation of motion becomes 

- d 2  vz  d 2 0 
aq- - a2- = 0 

dz2 dxd t  

where P is the pressure. In the above three equations of motion, the inertial terms 

are negligible at the frequencies of interest and hence are neglected (Dubois-Violette 

et al., 1971). 

g) Assu~ning the NLC nlediu~n to Le incompressible we can write V . v' = 0 and 

hence 

11) From the Maxwell relation, V x E = 0, we get, 

Eliminating pressure term P from equations (3.5) and (3.7)  we get, 



The boundary conditions to be corlsitleretl in solving these equatio~is are, at Z = 0 

and d (at the two surfaces of NLC film) 

The X-dependence of these quantities in the above equations can be satisfied by 

sinusoidal functions of the type sin qx. Following the earlier work of Bodenschatz 

et al. (1988) and I<ramer et al. (1989) the Z-dependences are taken into account in 

a Ga.lerkin approximation by chosing trial function solutions. By inspection of the 

above equations (3.1-3.10) the following solutions are assumed for the variables: 

$ = $ ( t )  sin qx sin pz; Q = Q ( t )  cos qx sin pz ; 

E,  = E,(t) sin qx sin pz ; v, = v x ( t )  sin qx sin yz ; 

v ,  = vy(2)  cos qx sin yz ; 0 = O(t) sin qx sit1 2pz ; 

15, = E,( t )  cos qx sin 2pz; v, = v z ( t )  cos 9x sin 2pz (3.1 1 )  

where p = n/d .  

We now use the Galerkine approximation, i.e., we integrate equations (3.1-3.10) 

after substituting the above functional forms for the solutions and we average over 

the cell thickness d in order to get the following equations 

where 

~ , d  si 11 112 cos 2pz dz 
I l  = ~ , d  sin2 pz dz 

Equation (3.2) gives rise to 



Equation (3.3) is modified into 

Equation (3.4) leads to 

86' 
71 - + a3pI2vZ - a 2 q V z  + (k3q2 + 4kip2 )0 

at 

+ (el - e3)Eyp124 + elp12Ex - e3qEZ = 0 . (3.16) 

where 
J,d sin 2pr cos pz dr 

I2 = J,d sin2 2pz dz 

Equation (3.10) reduces to 

Equation (3.6) becomes 

Equation (3.8) is modified as 

Equation (3.9) reduces to 

9E.z t pI2Ex = 0 . 



From equation (3.19) 

where 77 = ad + 0 5  - ~ 2 .  

From equation (3.20) 

v ,  = -2S11v, 

where S = p l q .  

From equation (3.21) 

E ,  = -S12E, . 

Substituting for v,, v ,  and E,, equation (3.12) becomes, 

From equation (3.18) we get, 

where 

P = (a4 + a6 + a 3 ) S 4 ~ 1  12 + 2(a4 - a6 + a 3 ) S 2  - 2 ( a l  + a6 + :)S211 + 
Using equations (3.22) to (3.26), we can eli~~unate other variables in favour of Q, 4 

and 0 and rewrite equations (3.14) to (3.16) as 



and 

Equations (3.27-3.29) are simplified to read as follows: 

8Q 1 - + -Q +alJEgq$  - A6 = 0 
at 7 



where 

These equations (3.30 - 3.32) form a set of ordinary differential equations in Q, 4 

and 0. In order to simplify the problem we solved the above set of equations for the 

case of square wave excitation (Smith et al., 1975). Assuming solutions of the form 

Q = Q'eXt, 4 = 4'e'X' and 0 = OleX', the existence of riori-trivial solutions rccli~isc 

that the determinant of the coefficients of the amplitudes Q', 4' and 8' should vanish, 

( A + : )  O,Eyq - A - 

-BEy ( A + # - )  PIlGlE, 

U -12C2Ey ( A  + &) - 

= O  (3.33) 

5 7 



Expanding this determinant we get, 

In the conduction regime we can write, 

The general form of Q is written as, 

Then using equation (3.35) we can write 

and 



Equation (3 .31 )  becomes, 

and equation (3 .32 )  becomes, 

Eliminating Q; from the equations (3 .40)  and (3 .41 )  we get, 

where 

Further equation (3 .30 )  becomes, 

where 

Using equations (3 .42)  and (3 .44)  in equations (3 .37 )  and (3 .38 )  we get 

The determinant of the coefficients of 11, g2andd3 in the above equations should 

also vanish 

- g l ( l  + eXlTJ2)  g2(1 + eA2T/2) g 3 ( l  + e A 3 T / 2  1 -  

I l ( l  + eXlTt2) t 2 ( 1  + eXZTt2) t 3 ( l  + eX3T/2 )  

( 1  - eAlT12) ( 1  - eXzT/2) ( 1  - eA3T/2) - 

= 0 ( 3 . 4 6 )  



For a given set of values of the material parameters (Table 2.1) and for a given value 

of the applied field E,, equation (3.34) is first solved to obtain X i .  'I'hese values of 

X i  are then substit,uted in equation (3.46). The value E ,  for which equation (3.46) 

is satisfied, gives the threshold field, Eth of the instability in the conduction regime. 

In the dielectric regime, the boundary conditions are, 

Using these boundary conditions the equations (3.37) to (3.39) becomes, 

C giq5i(l - eAiTlz) = o 
C t i ~ , ( i  - ehTI2) = 0 and 

C d i ( l  + c " ~ / ~ )  = 0 . (3 .48 )  

Then the determinant of the coefficients of d 2  and h is written as 

The threshold of dielectric regime is determined using the same procedure as above. 

Another possible set of solutions of equations (3.1) to (3.10) are obtained by replac- 

ing sin pz by sin 2 pz and vice versa in (3.11) 

4 = d ( t )  sin qx sin 2pz ;  Q = Q ( t )  cos q x  sin 2 p z ;  

Ex = E,(t) sin qx sin 2pz ; v, = v,(t) sin qx sin 2pz ; 

v ,  = v,( t )  cos qx sin 2pz ; 0 = B(t) sin qx sin pz ; 

E ,  = E,(t)  cos qx sin p z ;  v ,  = v , ( t )  cos qx sin pz (3.50) 



Then proceeding as before using the equations (3.1) to (3.10) and eliminating v,, E, 

and V,, we get the following equations : 

80 1 
- + -0 - 211CiEy$ + D'Q = 0 
a t  

(3.53) 
T,' 

where 

and all other parameters are as defined after the equation (3.32).  Equations (3.51) 

to (3.53) are solved as in the previous case. 

6 1 



Figure 3.3 shows the critical voltage (Vth) for the onset of the instability cal- 

culated for M1313A parameters (Table 3.1) as a fuliction of the rcduccd frequency 

( j c  = ?) . The solid lines correspond to the solution Set 1 and the  dashed lines 
f c  

to Set 2. 

In the dielectric regime the voltage corresponding to  the threshold for Set 2 is 

only marginally greater than that for Set 1. In the conduction regime O is negligible 

due to its flexoelectric origin, except at the lowest frequencies of the applied field. 

The solution Set 2 consists of larger 4 distortion and larger viscous dissipation which 

leads to a larger threshold voltage. On the other hand in the dielectric regime, a 

larger 4 distortion can lead to a larger relaxation frequency 1/T4. The threshold 

of the dielectric regime is determined by the condition that the frequency of the 

a.l)plied field Î l/'l>. 'l'liis 1ila.y be tllc rea.soll for t t ~ c  ttlrcsltolds Tor solutioll Scts 1 

and 2 to have nea.rly equal values in this regime. 

The variation of the critical wavevector ( q l p )  as a function of the reduced fre- 

quency (f If,) is shown in figure 3.4. From these figures it is clear that  the general 

features of transverse instability are similar to those in the case with E along the 

Z-axis. However, we must note that in the case of the vertical field, the  flexoelectric 

effect destroys the symmetry of the variables about the niidplane of tlie sample. 

3.3 Experimental Studies 

The cell is made of ordinary glass plates which are coated with polyi~nide and mi- 

directionally rubbed to  get homogeneous alignment of the director. Stainless steel 

,, wires of 50 / i r n  diameter are used to apply the transverse electric field. I hey also 

serve as spacers (Fig.3.5). The lateral separation between these wires is about 

400 pnz. The thickness of the cell is measured by usirig the technique of chan- 



Table 3.1 

Material parameters of MBBA used in the calculations 

= 6.1 x dyne (1) = 6.5 cP (3) 

I<2 = 4.0 x dyne (2) Q:! = -77 cP (3) 

= 7.3 x dyne (1) a3 = -1.2 CP (3) 

€ 1 1  = 4.75 (1) a 4  = 83 cP (3) 

€1 = 5.25 (1) CIS = 46 CP (3) 

011 = 0.1 x 10-lOohm-lcm-l a6 = -34 CP 

9 = 1.5 (1) (el + e3) = -7 x e.s.u. (4) 
0.L 

A 0  
- = 0.5 (1) (el - e3) = 1 x 10-4 e.s.u. (5) 
01 

- 

1. Penz and Ford, 1972 
2. Blinov, 1983 
3. de Gennes, 1975 
4. Madhusudana and Durand, 1985 
5. Dozov et al., 1982. 



Reduced frequency 

Fig.3.3: Variation of the threshold voltage with reduced frequency obtained from 
a 1011 tlie calculations using MBBA parameters. d=50 ptn. Lateral separ t '  

between the electrodes is 60 pm. The cut off frequency f, = 2 a l l / c l l .  

0 . 0  
0 . 0  2 . 0  3.0 

Reduced frequency 

Fig.3.4: Variatio~l of the reduced wavevector ( q / p )  with reduced frequency ( f / f c )  

obtained from tlie calculations using M13BA parameters for the cell particulars 
used in Fig.3.3. Here q  = 2 7 ~ / X ,  X being the wavelength of domains and p = r / d .  



L 

Upper glass plate 
I 

___) SO Lower glasspiate 

Fig.3.5: The geometry of the cell used in the experiment. 



nel spectrum (as described in Chapter 11). The material used in the experi~nents 

is a room temperature nematic mixture containing 49% (2-mct11ylphenyl)-bis-4-n- 

butylbenzoate (RO-CE-1700) and 51 % 1-n-propyl-4[4-n-ethoxyphenyl]cyclohexane 

(PCII-302), both of which were obtained from EIoffmann-La ltoclle Company. 'l'lie 

structural formulae of the compounds are shown in figure 3.6. 

The cell is placed on the stage of a Leitz polarizing microscope (Orthoplan). 

A Mettler hot stage (FP82) is used to regulate the temperature of the sample. 

A Hewlett Packard two channel synthesiser (Model No.3326A) is used to  apply 

the AC field. The EHD instability pattern is observed on a video monitor (Soliy- 

'l'ItINIrI'ItON) using a CCD video camera (Sony). The voltage at whicli the EIII) 

pattern first appears gives the threshold voltage (Vth). A block diagram of the ex- 

perimental set up is shown in figure 3.7. Some photographs of the EIIL) pattern 

under transverse field at  different frequencies are shown in figure 3.8. Note the dc- 

crease of wavelength of the domains as the frequency of the applied field is increased. 

The photographs taken at voltage much above are shown in figure 3.9. As has 

been noted by earlier workers (Chistyakov and Vistin, 1974) in this geometry, dark 

bands corresponding to neighbouring roles start from opposite electrodes even with 

an applied AC field. Our present model does not explain this phenomenon. 

At the onset of the instability the director field develops twist clistortioti. Ijrlt 

this cannot be detected in view of the Mauguin criterion (1911). However, a t  slightly 

higher voltages, observations clearly indicate that the twist distortion is quite pre- 

dominant, with the neighbouring convective cells having twist of opposite sense (see 

the video prints in Fig. 3.10). The high frequency dielectric regime could not be 

observed as an irregular flow developed in the cell at  the very high voltages required 

a t  these frequencies. 1 



2-  Methylphenyl - bis-4-n - butyl benzoate 

1-n-propyl-4 (4-n-ethoxyphenyl) cyclohexane 

Fig.3.6: Structural formuale of the compounds used in the nematic mixture. 

Fig.3.7: 13lock diagram of the cxpcsinlcntal set-up usctl to rccorcl the transverse 
E11D pattern. 
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Fig.3.8: Transverse EHD pattern observed at different frequencies. (a)  77 IIz (24.5 V), 
(b)  177 IIz (22.7 V),  (c) 577 I1z (24.1 V ) ,  (d) 1177 IIz (35.4 V) ,  a i c l  (e) 1577 
1Iz (48.9 V ) .  The cell has a thickness d=12.1 p17x and interelectrode space 54.2 
~ I I - L .  The position of the electrodes is on top and bottorll sides of each st1 ip 
with the ne~natic director parallel to the electrodes. These obscrvat,iolis are 
Iliad(? with crossed polarisers. 



Fig.3.9: Transverse EHD pattern observed in the same cell shown in F1g.3.8 at  fre- 
quency = 111 1-Iz. The voltage is 45.5 V which is well above the thrcsl~olcl 
voltage of 34 V. 'l'he pliotograpli (a) is taker1 with tlie polariscr parallel to t,hc 
director and the analyses crossed with respect to it. T h e  pliotogsaph (11) is 
taken with both the polarises and the analyser parallel to the nematic direcl,or. 



Fig.3.10: Videographs taken a t  17 IIz with 10.0 volts with (a )  polariser and analyses 
mutually crossed and (b) angle between polariser and analyser is 115 O .  d=50 
pin and interelectrode space = 65 ~ L I ~ Z .  



Figures 3.11 and 3.12 show the threshold voltage (Vth) and reduced wave vector 

( q l y )  i11 tlie conduction regime as functions of frequency of tlie applied field. 'l'lie 

experimental trends agree with the theoretical ones (Figures 3.3 and 3.4). In figure 

3.11 there is an initial decrease in the threshold voltage as the frequency of the 

applied field increases. This may possibly arise from a screening of the applied field 

at  very low frequencies by impurity ions present in the sample. In the experimental 

curve we see a steep rise of Vth at frequencies above 800 Hz and hence for the purpose 

of comparing the experimental numbers with the theoretical ones, we estimate tliat 

the cut of frequency (f,) is =lo00 Hz. The calculated value of Kh a t  f / fc=O.l is 

5.0 volt for a cell with an interelectrode space of 60 pm. This corresponds to an 

electric field of 830 V/cm. From the experimental curve (Fig. 3.11) obtained for 

a cell with an interelectrode space of 400 pm, Kh = 34 volt at  the same reduced 

frequency. This is equivalent to an electric field of 850 V/cm which is quite closc 

to the theoretical value. The ratio of Kh calculated at  the reduced frequelicies 

(fl f,) of 0.1 and 0.8 is 0.5 from the theoretical curve (Fig.3.3) and is 0.57 from the 

experimental curve (Fig.3.9). Further the ratio of the w&vevectors at  f /  fc  = 0.1 
i 

and 0.8 is 0.57 from the theroetical curve (Fig. 3.4) and it is 0.42 from experi~nental 

curve (Fig.3.12). Bearing in mind that all the calculations have been made using 

MBBA parameters, while the experiments have been conducted on a mixture for 

wliich many of the physical parameters are not known, the comparison between 

calculatetl and experimental data is quite adequate. 



Frequency / Hz 

Fig.3.11: Experime~ltally observed variation of the threshold voltage (%) 
with frequency, for a cell of d=50 pm with interelectrode 

space = 4 O G  11111 at a t c ~ ~ i p ~ r a t u r c  of 303 I<. 

Frequency / Hz 

Fig.3.12: Experimentally observed variation of the reduced wavevector with 
frequency for tlie same cell as in Fig.3.11. 
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