CHAPTER III

Dielectric Studies in the Vicinity of the
A-C* Transition

3.1 Introduction

Experimental studies on liquid crystals using dielectric!** measurements as a probe
has yielded valuable data which are of great significance from both the fundamental
and applied aspects. Through tliese studies it has been possible to extract informa-
tion regarding the dipolar ordering in the nematic,® polymorphic forins of smectic

A and the smectic C phases®® and the role played by different material parameters.

The shape anisotropy - length to breadth ratio ~ 5 - o the molecules man-
ifests itself in the dielectric permittivity o liquid crystals. There are two principal
dielectric constants parallel (¢) and perpendicular (€1 ) to thedirector. ¢ exhibits a
relaxation in tlie radio frequency region (associated with theflipping of the molecules
around their short axis), while ¢, shows a relaxation in the microwave region repre-
senting the rotation of tlie molecules around their long axis. In addition, of course,
there will be the very high frequency contribution due to the different parts of the

molecules with their own internal degrees d rotation. Thus the measurement of

50



dielectric constant provitles a powerful tool in understanding the static and dy-
namic behaviour of tlie system. The importance of these studies in ferroelectric
liquid crystalline materials lies in tlie fact that it relates macroscopic properties like
spontaneous polarization to microscopic parameters like the dipole moment of the

molecule.

In this chapter we present results of detailed investigations on the influence of

various parameters on the dielectric properties in I'LCs.

It may be recalled that tlie A — C* transition is not driven by tlie spontaneous
polarisation P;, but the molecular tilt 0.° But as the two are effectively coupled, P,
also goes to zero at the transition to A phase. Hence in analogy with the paraelectric-
ferroelectric transition in solid ferroelectrics tlie transition temperature 7, at which
P, goes to zero isreferred to as the Curie point. In fact dielectric measurements near
the A — C™ transition reveal some o tlie features exhibited by the solid ferroelectrics

(wliere Ps is the primary order parameter) near tlie Curie point.

Earlier dielectric studies’"?° on FLCs have established the following:

1. Just like their achiral analogues, there is a low frequency relaxation mode
associated with the flipping o tlie molecules around their short axis. This is
observed as a dispersion in the ¢ the dielectric constant along the layer normal

direction.

2. ¢; shows two low frequency director relaxation modes, viz., the soft mode
(SM) and the Goldstone mode (GM). The former appears both in C* and the

A phases close to T., but the latter exists only in tlie C* phase.

Several stuclies have been made to characterise these modes by measuring €, as

a function o temperature and frequency,”™'? applied field strength,’ thickness of



the sample!®16 and DC bias field %% across the A — C* transition. However there
are hardly any reports on the effect o the magnitude of Py, alkyl chain length, etc.,
on the static and dispersion behaviour of ¢;. The studies presented in this chapter
describes the influence of these parameters. Further the results are discussed in the
light of the predictions of the generalized Landau model?!-?> which has been quite

successful in explaining the behaviour of many other ferroelectric properties.

Experiments carried out on a homologues series of compounds help in under-
standing the role played by the elastic torque and the associated viscosity in de-
termining tlie relaxation parameters. A novel method o analysing tlie SM results
using which two important Landau coefficients can be calculated, is also presented.

We will start with a general introduction to tlie dielectric studies in FLCs.

3.1.1 Dielectric spectra of ferroelectric liquid crystals

As mentioned earlier the behaviour o ¢, the dielectric constant parallel to the di-
rector, is very similar in both chiral and achiral systems. On the other hand, the
transverse dielectric constant e; exhibits drastically different behaviour in chiral
systems. Figure 3.1 is a schematic representation?® of the different types of relax-
ationsseen in ¢ and €, for a FLC. ¢ has ttvo high frequency rel axations® - one due
to the molecular rotation around the short axis (frequency range 10%-10” Hz) and
the other due to the molecular reorientation around the short axis (frequency range
108 - 10'° Hz). For ¢, there is one dispersion due to molecular rotations around
thelong axis (frequency range 10%-10'® Hz) and the other due to the intramolecular
rotation at still higher frequency range. At lower frequencies (frequency range of
102-10° Hz) the spectra contains two more modes identified to he director relaxation

modes. These are referred to as soft mode (SM) arid tlie Coldstone mode (GM)
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Fig.3.1. Frequency dependence of the perpendicular, €, and parallel, ¢, compo-
nents of the complex dielectric permittivity in the A and C* phases, con-
nected to the collective and non-collective molecular mechanisms (From

ref.23).



relaxations.1%2% While both the modes are present in C* pliase only SM is observed

in the A phase.

The characteristic feature of FLC is the helical distribution of the permanent
dipoles of the molecules. When a measuring electric field is applied in a direction
parallel to the layers anti perpendicular to the helix, the field will disturb the helix
in two ways. First, it induces an additional tilt (due to the electroclinic effect?®
described in Chapter 1) and thus changes the amplitude of tlie tilt. Secondly, the
azimuthal direction of the tilt changes (thus changing the pliase) enabling tlie dipole
to orient in the field direction. Ience tlie disturbance of the equilibrium order
parameters due to an applied electric field can be divided into two parts; amplitude
and phase parts.2” As we shall see presently these are denoted as soft mode and
Goldstone mode respectively.

Soft mode

Raman and Nedungadi?® were the first to observe the existence of soft modes in a
structural phase transition. Using Raman scattering, they found that the frequency
of atotally symmetric optical phonon decreases (softens) as the « — £ transition in
quartz is approached. In a similar fashion in FLCs, the elastic forces controlling the
tilt fluctuations become soft as the A— C* transition isapproached from the A phase,
owing to this the amplitude of thetilt fluctuation (see Fig.3.2a) increases drastically
and its susceptibility diverges at 7, and its frequency tends to zero. For this reason
this tilt amplitude fluctuation mode is called the soft mode (SM). The SM exists
in non-cliiral liquid crystalline system also, however tlie amplitude would be very
small. Since near T, the molecules are susceptible for tilt fluctuations even a weak
electric field applied in a direction perpendicular to the director can easily perturb

the equilibrium director orientation. For non-chiral smectic A phase tlie induced
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Fig.3.2. Schematic diagram illustrating the director fluctuation rnodes in the C*

phase: (@) Soft mode, (b) Goldstone mode.



dipole moment due to the applied field is too small to be detected by dielectric
measurements. However, the tilt fluctuations in these systems can be studied by
light scattering.?® In FLCs the chirality enhances the induced dipole moment due
to the electroclinic effect thus permitting the study of SM by dielectric methods.?®
Goldstone Mode

One o tlie characteristic features of A — C* transition is that C* phase has lower
symmetry than the high temperature A phase, i.e., A — C* transition involves the
breaking of a continuous symmetry group. According to the Goldstone theorem3°
a symmetry recovering order fluctuation mode - tlie Goldstone mode - will appear
below T, in addition to the soft mode. In A phase, the molecules are along tlie
layer normal and hence the phase is uniaxial. In the C* phase the molecules are
tilted which breaks tlie uniaxial symmetry o the molecule and makes it biaxial.
However the existence o the helicoidal structure alows the C* phase to recover
tlie macroscopic uniaxial syminetry. As such the symmetry recovering relaxation
mode - referred to as tlie Goldstone mode (GM) should be related to the helix
or equivalently to the phase changes o the tilt order parameter (see Fig. 3.2b).
When an AC electric field is applied, tlie helix gets distorted and tlie process of tlie
restoring of the distorted helix is described by the relaxation of GM.'° Owing to the
macroscopic dimension o the helix (~ pm), the GM relaxation frequency turns out

to be quite low (10? ~ 10 Hz) for the same reason tlie strength of GM is large.

3.1.2 Thermodynamic model

Attempts have been made to explain various thermodynamic properties of Sm C*

22231 jhvolving @ Landau free energy

phase in terms o phenomenological models
expansion. These models are based on tlie idea that the freeenergy can be expanded

in terms of a Taylor series in the order parameter reflecting the symmetry properties
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of themedium. It isimportant to note that thetilt of the molecules drives the A—C*
transition, and, as pointed out in earlier chapters, the appearance of P,, which arises

only as an associated effect, is the secondary order parameter.

Just as in tlie non-chiral C phase the tilt is described by a complex order pa
rameter which can be resolved into a niagnitude part and a phase part represented
by the polar angle § arid the azimuthal angle ¢ respectively. Geometrically, the
tilt vector E: ({},{2) is tlie projection of tlie director 7 on to the smectic planes.
The existence of non-zero tilt breaks the axial symmetry around the long molecular
axis. If the substance is chiral this induces an ill-plane polarization P = (I:',,Isy)
perpendicular to the tilt direction (seeFig.3.3). (Here P, and P, are the orthogonal
components of P in the smectic plane.) For a general description of the C* phase,
along with these order parameter terms one has to include terms accounting for the
helicoidal structure of the phase. As there are two order parameters one of them
being secondary, it is natural to include coupling terms between them. Two sirnplest
types of coupling terms are:

Piezoelectric.

The lowest order coupling term o this type isgiven by C(P.{; — P,&), C is caled
the bilinear coupling constant.

Flexoelectric.

At the molecular level, flexoelectricity exists clue to special shapes of the con-
stituent molecules. But in tlie C* phase this is caused by the macroscopic heli-

coidal structure The distortion of thedirector gives rise to contribution of tlie type

96,
1 (Pr e

for an nnwound sample.

—=), i being flexoelectric coefficient. Notice that this term vanishes
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Putting together the various terms, the free energy expansion can be written as®

d&, d e\ | (de)’
9(z) = %@H{b+?@+5V‘M@f‘&£9+§%[&%>+(£g}

dz

1 2 2 dél (162 .
+;U%Hﬂ—u@ﬁg+&a-+ﬂﬂ&—&m (3.1)

where ¢ and b are the usual Landau coeflicients and it is assumed that'a’ isthe only
temperature dependent coefficient with a = a(T - T,), where T, is the transition
temperature for the racemic mixtures (without helix arid A = C = 0), K3 an elastic

constant, A the Lifshitz invariant, ¢ is the high temperature dielectric constant.

To simplify eqn. (3.1) the values o &;,¢; and P,, P, have to he found. Figure

3.3 shows the components £, §; and P, P,. For small tilt angles,
£, =0cosgp and & =0sing

where ¢ = @¢(z) is the azimuthal angle determining tlie orientation of the director 7
with respect to z-axis, i.e., normal to the srnectic layers. If ¢ isthe wavevector of the
helix then ¢ = ¢z. Similarly, P, = —P,sin¢ and P, = P, cos¢ are the components
of P, dlong x and y axes. Substituting the vaues of &;,¢; and Py, P, in eqn.(3.1),

we get

1 1 1 1
9(2) =g, + §a02 + Zbﬁ" — Agh? + i]&'3q202 + 5;1’2 — uPqgl — CPO (3.2)

Expressionsfor the A—C* transition temperature T, the temperature dependence of
thetilt angle 0, pitch of the helix and polarisation P, can he obtained by minimising

eqn. (3.2) with respect to 4, I' and qg.

1
T. = T,+ 5[6672 + (K5 — e,u2)q2] (3.3)
a

0 =1

(T. - T))'7 (3.4)
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q

P, = ¢(pqg+0C)0 (3.6)

Since al the quantities on the RHS of (3.5) are constants pitch p and hence the
ratio /,/0 from (3.6) are independent of temperature. This means that the coupling
between P, and 6 is strictly linear. Contrary to this, experiments showed that
P, /0 ratio is weakly dependent on temperature away from 1, but has a precipitous
drop near it. The temperature dependence d helical pitch is also seen to have an
anamalous variation close to 7.. In orcler to explain these factors Carlsson etal., 2!
liave proposed a more generalized mean field (GMF) model which included a 6th

order term in tilt and a biquadratic coupling term. Then egn. (3.2) becomes

&

1 1 1 1
) = §a02 + ZbO“ + —cl® — Agh? + = K3¢%0% + iP2 — nqPo

g( 5 5

1 1

Here c is the Landau coefficient of the 6th order term, €} tlie biquadratic coupling
coefficient, d the higher order Lifshitz invariant included to account for the anomaly
in the temperature variation o pitch. The predictions of the generalised model liave
found to he in good agreement with tlie experimentally observed features. Now let
us see what this model expects for the thermal variation & SM and GM in tlie A

and C* phases.32:33:17

In smectic A phase,

e’ C?

oA s = .
0 T (T —T0) + (s — ei®)l]

(3.8)
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In the same paper? the authors present a few theoretically expected curvesin terms
1/2CV~
Ui €

OL/2
tance of the biquadratic coupling term ). Larger the value of g smaller will be §2.

o a dimensionless parameter 3 where = the value of 3 shows the impor-

And $=1 corresponds to the classical case. 3 is expressed in terms of P, and 6 as

PPe(1-0HP-pB6=0 (3.14)

where P = P/P*,0 = 0/0 and P* and 6 are the normalising constants. We have
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used this equation to evaluate the value of 3 (see results section). The theoretical
plots of Aeg, fg, and f, for different valuesd 3 are shown in figures 4.4a and 4.4b.

At a later stage we compare our data with these theoretical curves.

3.2 EXxperimental

The experimental set up consists of the sample cell, temperature controlled heater
and tlie dielectric measuring set up which includes an impedance analyses and a

microcomputer.

3.2.1 Sample cell and alignment of the sample

Tlie method o preparations of the sample cell was exactly similar to the one de-
scribed in Chapter II. The combined effect of polymer coating and magnetic field
(2.4T) applied, along the rubbing direction, while cooling tlie sample from isotropic

to A phase, was utilized to obtain uniform planar alignment of the samples.

A detailed description of the heater assembly and the temperature control and
measurement system is given in Chapter Il. Since the frequcricy sweep in tlie dis-
persion studies took about. 2 minutes, it was necessary to keep the temperature
constant over this period. The large thermal capacity of the system enabled to keep

the temperature constant at any desired value to within £ 5 mk.

3.2.2 Measurement of dielectric constant

Tlie dielectric constants were determined by measuring the sample capacitance and
dielectric loss factor. A versatile variable frequency Impedance Analyser (Hewlett
Packard 3192A) with a measuring frequency range of 5 Hz - 13 MHz was employed

for this purpose. In fact tliis instrument can be used to measure as many as eleven
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impedance associated parameters such as capacitance C, conductance G, suscep-
tance B, dissipation or diclectric loss factor D, etc., with a basic accuracy of 0.1%
throughout the range of measurement. In addition, the measuring voltage can be
varied over a wide range from 5 mV to 1 V rms. The principle of capacitance mea-
surement function is based on vector-voltage-current ratio measurement method.
The capacitance measuring range is 0.1 pF to 100 mF and that of the dielectric loss
factor is 0.0001 to 19.999. Experiments were clone in the four probe configuration
which eliminates errors due to residual impedance of test leads. The analyses has
a built-in DC bias supply (providing a maximum £35 V DC voltage) which can be
superimposed on the probing AC measuring field. Interfacing to a computer was
established through the IEEE 488 bus. Thus all the functions could be controlled

and monitored by the computer which also handled the data acquisition.

3.2.3 Static didglectric constant measur ement

The block diagram of the experimental set-up used is shown in figure 3.5. Both the
impedance analyses and the temperature reading digital multimeter (KKeithley 181)
were interfaced with acomputer. At any desired frequency, tlie sample temperature
was varied uniformly at a slow rate of ~ 5°/ /hour away from the transition and
~ 2°K /hour close to it. The capacitance and temperature readings were contin-
uously collected by the computer. For static measurements with a bias field, the
required DC bias voltage was applied ancl the capacitance was measured at different

temperatures.
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3.2.4 Dispersion measurements

The set-up used is the same as for static nieasurernents. For the frequency depen-
dent dielectric constant measurements, the sample temperature was stabilized at the
desired value and the microcomputer handled the frequency sweep by varying the
frequency over the rarige of interest at a desired step value. The capacitance and
the dissipation factor were measured as a function of the set frequency. Through-
out the frequency sweep, tlie temperature was continuously monitored. The sweep

measurements could also be carried out in the presence of a bias voltage.

The impedance analyser can he used up to a frequency of 13 MHz. But we have
limited &l our experiments to a maximum frequency of 600 KHz, as beyond this
frequency the RC constant of the cell (dueto the I'TO layer) starts contributing to

the measured dielectric values.

3.3 Results and Discussion
3.3.1 Static dielectric constant

Figure 3.6 isa plot of tlie temperature variation of €; measured at different frequen-
cies for the compound C,q (see Table 3.1). As seen from the figure, in the A phase,
€, does not, vary much with temperature. But, close to T, it increases drastically
with decreasing temperature. The pretransitional increase in the value of €, (in the
A phase) shows the existence of SM. In tlie C* phase tlie rapid increasein €, below
T,, confirms presence of GM. In the frequency range studied the behaviour on the
C* side, i.e., GM, is strongly dependent on the frequency so much so that at 10
kHz ¢, value would be reduced to SM contribution only. One may observe similar

effects with the application of a bias field and thisisseen clearly in the figure 3.7. It



300

240 "\

180 |~ 0.4kHz

120~ 0.5KkHz e M
60 - .::'::."

Fig.3.6. Influence o the frequency d measurement on the dielectric constant of

compound C)g.



T-Tc (°C)

Fig.3.7. Effect o bias field on tlie static dielectric constant of compound Cio.



is evitlent from tliese figures that the effects observed as a function of frequency or
DC bias voltage is caused by tlie GM relaxation. Another notable feature in tliese
figures is that, there is a maximum in the dielectric constant at tlie transition when
measured either at high frequency or with a high bias voltage implying that the
contribution of SM reaches a maximum at 7,. To conclude, the thermal variation
of dielectric constant measured at a few selected frequencies show the existence of
SM and GM in a FLC. To have better understanding of these two director relax-
ation modes, we have carried detailed dispersion measurements on three compounds
(listed in table 0.1) and the cffccton both SM and GM caused by subtle molecular
changes which, as seen in results of Chapter I, affects the magnitude o F,. Thus
these studies will also reveal, albeit in an indirect fashion, the effect of P, on the

behaviour of SM and GM.

3.3.2 Dispersion Studies

Before presenting the resultslet usrecall tlie equations for the frequency dependence
of the complex dielectric constant (¢*). ¢* can be written in terms of itsreal (¢') and
imaginary (¢) components as'

Ae

—_— 3.15
1 4+ jwr ( )

(f)=¢€¢ —je' = e +

Here Ae(= eg—€) is thestrength of the mode whose relaxation timeist = %Lfn fr
being the relaxation frequency. ¢, and €., are the values of tlie dielectric constant at
frequencies far below and far above fg respectively. w(= 27 f) is the measuring field
frequency. A convenient method to determine tlie two characteristic parameters of
the mode, Ae and fg, isto plot an Argand diagram of €’ vs. e*. Theplot (Fig. 3.8a)
will be a seniicircle (corresponding to the positive values of €¢”). Since eqn. (3.15)

represents a Debye type relaxation, this semicircle is called a Debye semicircle, using
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Fig.3.8. Plot o r' vs. ¢ showing (a) a pure Debye type o relaxation, (b) a

modified Debye, Cole-Cole, relaxation.



Table 3.1

Compounds used and their P, values at T,-T =10° C

Cl CH3

c H1SO@CH CHCOO ~@—OOCCH CHCH,CH

K 61.5 C* 68.5 A 88.0 CH 95.0 1 Ps =1500 pC[m?

ol CHj
|

I
C1OH2]O—@—- cH=CHcoo_@—ooch CHCHCH3

2
K 69.0 C* 78.0 A 92.5 1 Py = 720PC/’“

Cl CHj3
|

|
C1yH230—<O)—CH=CHc00 —O)—C00CH, CH CH CHCH

K 62.5 C* 68.5 A 88.0 I R, =370 pC/[m?
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which one can find Ae = 2 x¢”

‘maxr

and fr= [ X g with 22 and v defined as in figure
3.8a. However in the case o materials (like I'LCs) which show abroader dispersion
curve arid lower maximum loss than would be expected from Debye relation, tlie ¢’
vs. € curve fals within the Debye semicircle (see Fig. 3.8b). For such cases Cole
and Cole™" suggested a modified form of tlie Debye equation

Ae

€(w) =€ —j' = €y +

where h is a constant called the distribution parameter with O < h < 1. When n =
0 eqn. (3.16) reduces to a pure Debye type o relaxation. When h is non-zero, the
centre of the Cole-Cole arc lies in the negative ¢’ region, as shown in figure 3.8b.

Rationalising eqn. (3.16), one gets,

e Al + (wr)!= sin(Zh)] T (3.17)

14 (wr)20-1 4 2(wr)!-* sin(

Ae(wr)!h cos(%’l)

1 4 (wr)200-h) 4 2(wr)l-h sin(l,;l)

¢ = € +

(3.18)

Equation (3.17) or (3.18) can be used to determine the valuesof Ae and fr. Except
near tlie transition in tlie C* phase, eqn. (3.17) or (3.18) is sufficient to describe the
relaxation behaviour. However, close to tlie transition, both GM and SM contribute
to the dielectric constant. In such cases, it has been shown?’ that ¢* can be written
as a linear combination of the two modes involved.

AéG Aés
- + -
1 4+ (jwrg)t-ho L4 (Jwr)l—hs

(f)=¢ —j" =ex + (3.19)

where A¢; (i = SM and GM) represents the strength, r; the relaxation time and h;
the distribution parameters of the modes. Rationalisation of eqn. (3.19) leads to
equations similar to equations 3.17 arid 3.18.

We have fitted our experimental data of (¢*(f) f)in the A phase and C* phase

(far below T.) to eqn. (3.17), to obtain the dielectric strength, relaxation frequency



o SM and Ghl relaxations respectively and (¢e,,). The(e*(f), f ) datain the C* phase
close to T, has been fitted to a rationalised expression of eqn. (3.19) to separate out
tlic relaxation parameter o the two modes. The fitting has been carried out using
a non-linear "least squares” program based on the Marquardt algorithm by floating
al tlic parameters involved. In all the cases tlic distribution parameter h; was found

to be quite small (= 0.1).

Figures 3.9a-c show representative Cole-Cole diagrams obtained for the com-
pound C; figures 3.9a in tlie A phase, 3.9b in the C* phase close to 7. and 3.9c in
the C* phase away from T.. The solid line in tlie figures is tlie fit to eqn. (3.18).
Plots in figures 3.9a and 3.9c exhibit single relaxation behaviour due to SM arid GM
respectively. When the temperature is close to 7, in tlie C* phase, tlie Cole-Cole
plot (I'ig.3.9b) shows tlie simultaneous existence of both the relaxations (tlie solid
line is fit to eqn. (3.19)). Normally it is difficult to, except very close to tlie tran-
sition, separate out the two modes. This is because, as scen from the figure, the
strength of SM is much smaller compared to that of GM. Also the strength of the
SM decreases rapidly as 1. — T is increased. However, owing to the large value of
P, in D; we have been able to resolve the two over a temperature range of 0.8°C' in
the C* phase, which is alarger temperature 1ange (in the absence of the bias field)
than in any other previous report.!” For tlic same reason the SM could he studied
up to 3°C in the A phase. In fact this point is quite clear when we note that for
the three compounds these ranges are 0.8°; 3.0" for D;, 0.5; 1.5° for Co and 0.07;

0.5°C for By, respectively.
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3.3.3 Soft mode relaxation

Figures 3.10-3.12 are tlie plots of inverse soft mode strength 1/Ae¢, and relaxation
frequency f, for tlie three compounds. The salient features observed in the figures
are (1) In tlie A phase f, varies linearly with temperature while 1/Ae, isnon linear.
2) In tlie C* phase botli f, and 1/A¢, are linear with temperature. Most of the earlier
experiments have also shown tlie linear behaviour of f,, but only a few observations
o non linear variation of 1/Ae, exist. 3)At T, botli f, and 1/Ae, reach a lion-zero
minimum (i.e., the SM strength has a finite maximum). The minima being non-zero
is as cxpectcd for improper ferroelectrics. f,, the value of f, at T, is different for
compounds D7, Cyo and By, — [,(D7) > f,(Cio) > fo(B11) - and appears to depend
on tlie magnitude of P, In tlie following we shall attempt to explain tlie beliaviour
o botli f, and 1/Ae¢, with the help of equations 3.8-3.11 given by tlie generalised
mean field model. According to eqn.(3.9) f, has a linear temperature dependence if
W is independent or weakly dependent on temperature.®® The

non-linear thermal variation of 1/Ae, may be due to tlie temperature dependence of

theratio of

tlieelastic torque (/3 — en?)q? and bilinear coefficient C (seeeqn.(3.8)). However it
may be recalled that the coeflicient C isshown to be independent of temperature for

low as well as high P, materials.*® Thus one reason for the 11011-linearbehaviour of

(K3 — en)ql
€22

with temperature (wesee later that this is true in the C* phase). Due to these

1/Ae¢, could he that the twist to piezo energy ratio may be changing
reasons the product Ae¢, X f, should also be non-linear close to T,. This is indeed
the case as seen from the plots (figures 3.13-3.15) of Ae,sfs vs. T' = T, for tlie three
compounds. Following Gouda et al.,>” we have tried to describe this behaviour of
Ae, fs in the A phase with a power law of the type Ac,f, x (T'—1.)?. The values of

p for the threc compounds are 0.45, 0.37 and 0.2 respectively for Dz, Cio and I3y;.

66



0.2 o ‘—-160
o‘...
o - ...
0151 o .o' o 0-120
— o .. C)OO N
'ul)n 01+ ° o’ o® - 80 gc:
4 o / ooo__> :-T”
° Ooo
0.05} A o® - 40
o
OOoOoo
0 ' ] | 0
-1.0 0 1.0 2.0 3.0
T-Tc (°C)

Fig.3.10 Temperature dependence of soft mode relaxation frequency (f,) arid in-

verse dielectric strength (1/A¢,) for compound &.



0.16

—e—1 200

| ° —150

— ® PY —100

° 00
OOOo &

l 1 | L l
-0.5 0 0.5 1.0 1.5

T-Tc (°C)

Fig.3.11. Thermal variation o f, and 1/Ae¢, for compound Cjq.

fs(kHz)



24

0.3 o o ©
-
® —18
0.2 *
| . | o 0 O —12
TV ° ©
w | ] @)
<] 01 o ° o —"6
o o
0_9 oOoo —0
| ] | | |

-0.1 0 0.1 0.2 0.3 0.4 0.5
T-T¢ (°C)

Fig.3.12. Thermal variation d [, and 1/Ae; for compound 3y;.

fs(kHz)



0.8
0.6 OoO °
"-: 00°°
@ 00°
\% 0.4+ ooooO
o
e o)
)
q 0.2_0@0000
%
o)
0 | | | .
-1.0 0 1.0 2.0 3.0
T"‘TC (OC)

Fig.3.13. Plot of the product Ae,f, vs. temperature for compound D7.



1.00

NEtg (sec™)

O

i

=

T_TC (OC)

5 | (@)
OO
O

50 - °

ocsfp’oo

O
5 00d

(@)
0 | | l 1 1

~0.5 0 05 10 15

Fig.3.14. Temperature dependence o Ae,f, for compound Chy.




AE gfg(sec

0.06
0.04 o ©
o © ©
o
o
002 o
5 © ©
o
0
| | | | |
-0.1 0 0.1 0.2 0.3 0.4
T-Te (°C)

Fig.3.15. Plot o Ae,f, vs. temperature for compound Bi;.

0.5



3.3.4 Goldstone mode relaxation

The thermal variation of Aeg and f; for the three compounds are shown in figures

3.16-3.18. Some notable {catures arc -

1. fs isobserved to be weakly dependent on temperature away from the transi-

tion, but varies strongly very close to T..
2. The minimum o fg isnot at T, but slightly below it.

3. The actual value of f; scems to be directly related with the magnitude of P,

i.e., fa(D7) > fc(Cro) > fo(Bu)-

4. Aeg iszeroat T, arid increases rapidly in tlie C* phase. For Cyg it appears to
stabilise away from T.. Whereas D; and B;; show variation of A¢g even away

from T,.

According to Legrand and Parncix®® the relative twist to piezo energy ratio

: Kq? . . : :

parameter Q2 is defined as Q2 = q2’ where K is the renormalized twist elastic
Xoo€
constant and y,, = f(ﬁoo —1). These authors give a more practical definition for
T
2mx _

Q?as Q= A/\Oo Using this relation we have calculated Q? for the compound

€G

Cio at two different temperatures. The values are 0.004 at 7. — 1" = 6°C arid
0.09 at. T, — T = 0.02°C. These numbers may be compared with the value of Q?
= 0.2 for DOBAMBCY (P, ~ 30pC/m?) and @* = 0.003 for a material®® with
P, = 500pC'/m? away from 1.. This appears to suggest that tlie value of Q? is
inversely proportional to P,. Also tlie values o Q? calculated show that Q? varies

substantially with temperature.
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3.3.5 Effect of bias field on the soft mode

As mentioned earlier the main problem in studying the SM in the C* phase is that
tlie dielectric strength of the Ghl drowns that due to the Shl even slightly away from
T.. One well known technique!®193° to overcome this problem is to apply a DC bias
field high enough to unwind the helica structure. We have used this method to
study the SM relaxation in one material, viz., Cy. Figures 3.19 and 3.20 are the
plotsof 1/A¢, and f, as a function of temperature obtained using a bias voltage of
20 kV/cm; for the sake of coinparison the zero bias values are also plotted. While
zero bias data show sharp minima at the transition, tlie minimum is broad in the
presence of a bias voltage. Also, the values of Ae¢, arid f, at the transition are
different in the two cases: (A¢;)g=o = 43.5 and (A¢;)p=20 = 5.8 and (f;)g=0 = 3.8
kHz and (f,)g=20 = 53.7 kHz. Here E denotes the bias field applied. The higher f,
value in the presence of bias field may he due to the reason that the high bias field
rigidly holds the dipoles (molecules) in the direction of the field and this additional
rigidity increases tlievalue o f,. For the samereason At, for the bias case issmaller

than that for zero bias.

3.3.6 Effectofchainlengthonthedielectricproperties

The length of the alkyl chain plays a crucial role in liquid crystals. In general this
parameter affects the transition temperatures and stability of different mesophases.
In FLCs, tlie alkyl chain length alters, as seen in Chapter I, the magnitude and
nature of thermal variation of P;. Results presented in Chapter 1V also show that
even the rotational viscosity v, is influenced by this. Thus, it would he interesting

to study the correlation between this parameter and the behaviour of GM and SM.

For this purpose dielectric measurements were carried out on three homologues n
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= 6to8df tlieseries(S]-4"-(2-chloro-4-methyl pentanoyloxy)phenyl {rans-4”-n-alkoxy
cinnamates (C, series, n = 6-8). The transition temperatures and the molecular

structure of the compounds is already given in Table 2.3.

Plots of tliethermal variation of Aeg and f; for the three compounds are shown

in figures 3.21 and 3.22. The salient features seen arc -

1. The value o Aeg increases with increasing chain length, but not strictly pro-
portional to it, for e.g., tlie difference in Aeg between C7 and Cy islarger than

that between Cg and C5.

2. The trend in f; (figure 3.22) is different. fs for C; is much greater than
those for (s and Cg so much so that a sort of odd-even effect is observed.
The product Aegfi aso shows tliis type of behaviour. One reason for tliis
could be tlie odd-even behaviour in tlic pitch.*® But that were to be tlic sole
factor it should have been manifested in tlie Aeg behaviour also; but figure
3.21 does not support this idea. In fact, this possibility can he ruled out as the

product Aeg fe which isindependent of pitch also shows the odd-even effect.

. K3q? :
We notice from eqn.(3.13) that fo = 5 9 Thus the odd-even nature in fc
216
K3q°

may be due to the alternation in tlie value of theratio with chain length.

G
To verify this we have calculated the value of K3¢® by using tlie expression

for Aeg (details are given in next section) and obtained tlie value of 45 from
the Diamant method*! (described in the next chapter). The calculated values
1\’3(]2

TG
Cs), 3170 (for C7) and 2850 (for Cs), i.e., non-monotonic with chain length.

of the ratio

at 7. — T = 5°C for the three compounds are: 2470 (for

Hence this must be the reason for the alternation in the value of f; for the
three homologues. The ratio of the quantities (1/0)? and 5 aso shows such

an alternation and accounts for the odd-even behaviour seen in Aeg fo.
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While looking at, the predictions of the generalised mean field theory,®? we
find a remarkable similarity between tlie experimental data of figures 3.21
and 3.22 and the theoretical curves obtained for different values of 3 (see
figures 3.4a and 3.4b); here g is the effective P — 8 coupling constant defined
in the earlier section. In particular, as the chain length is varied, drastic
changes in the magnitude of Aeg and fg, presence or absence of a pronounced
minimum in fg, etc., arc scen. Thus for the compounds Cs — Cy one should
expect the g values to change significantly with increase in chain length. We
have determined the 3 values by fitting the data of P, (obtained by Diamant
method) and ¢ (obtained by X-ray diffraction method) to eqn. (3.14). The
parameters P* §* and # obtained for the three cornpounds are listed in the
Table 3.2. In contrast to the theoretical expectations, the # values are the
same, within tlie experimental errors, for all the three homologues. Thus one
can conclude that the experimentally observed features are not brought about

by any changes in 8 and hence tlie bilinear to biquadratic coupling effects.

In figures 3.23 and 3.24 we present the results of Ae, and f, for the three
homologues. Notice that, in contrast to GM frequency fg, both Ae, and
fs monotonically increase with increasing chain length without any odd-even

behaviour.

3.3.7 Determination of Landau coefficients by dielec-
tric method

In this section, we present a novel method of determining Landau coeflicients
by analysing the dielectric data of the soft mode and Goldstone mode for the
compound (g described in the previous sections. The soft mode viscosity (7y,)

is also calculated and seen to be influencing the thermal variation of f.



Table 3.2

Values of P* ,0* and 3

for the three homologues o the C, series

Compound  P* (Cm™?) 0* (radi) B

Cs 3.1 x 1073 0.66 0.53
C 1.6 x 1073 0.54 0.51
Cq 1.3 x 1073 0.48 0.50

71




Ae,

30

+0
. A
+
[
A
20- s
" N
. +AA
D+ AA
A
10- Tor  Shaaa,
+ 4 A
mD[_‘+ + A A A A A A
T U D+ MR TN
- S0 on ) : N N
IR I
0 v : ‘
0 0.5 1 1.5
T-T, (K)

Fig.3.23. Temperature dependence of Ae, for C¢ (O), C7 (+) and Cs( A)




100

A
]
O A
a
801 O A
= A
o A
O A
/\60“ 0O A
':E O A
X | A
o m N a ™
40+ DDD AA . - ]
O A -
Od A = -.
) AA . " =
201 DD A .
DAA .--. am®
-
oeﬁ"
0 0.5 1 1.5 2
T-T.(K)

Fig.3.24. Temperature dependence d f, for Cg (M); C; (A) and Cs (D).



Figures 3.25 and 3.26 show the temperature variation of f, and Ac, for the
compound Cg. Since this mode is associated with the order parameter fluc-
tuations (in this case tilt fluctuations), the pretransitional critical behaviour
o f, and Ae, are governed by the tilt susceptibility exponent v wtiose value
is 1.0 in the mean fidd (MF) limit and 1.315 if the transition belongs to
XY universality class. Tilt angle"” and heat capacity*® measurements have
shown that this transition is MF like. Early work on the electroclinic effect
by Garoff arid Meyer?® gave a value o 1.11 for tlie susceptibility exponent,
which isinconsistent with either MIY or XY class values. However more recent
measurements**** are in agreement with the mean field description. With tliis
in mind, we have fitted the [, and A¢; versus temperature data to power law

equations of the type

fs = constant x (T —T,)” (3.20)
Ac, = constant X (T-1T,)™" (3.21)

Equations (3.20) and (3.21) appear to describe the data well (solid lines in
figures 3.25 and 3.26) but tlie exponents obtained, 1.19 and 0.88 for f, and
Ace, respectively, are different from the MF value of 1.0. In order to understand
this discrepancy, we consider eqns. (3.S)arid (3.9) given by generalized mean
field model arid instead of assuming the exponents to be equal to 1, introduce

two unknown constants v, and 7, as tlie exponents and write the equation as

fo= grla(T = T + Ragl) (3.22)

2w,
(€,6C)?
a(T —T.)? + K3¢2

€ol\e; = (3.23)
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In these equations tlie term ¢p?, which is known to be very small*® compared

to /i3 has been neglected. From equation (3.22) we see that for f, to be linear
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Fig.3.25. Temperature variation of the soft mode relaxation frequency fs for Cé.

(O) data,and (--) fit to eqn. 3.20.



Fig.3.26. Thermal variation d the soft mode strength Ae, for Cs. (O) data and
(—) fit to eq. 3.2L.



with temperature (with v, = 1), 5, should have no or very weak tempera-
ture dependence. But experiments indicate that 7, is temperature dependent.
Hence in the absence o information regarding the temperature dependence of
17, the exponent ; cannot he extractetl from eqn. (3.22). However, the Ae,

data will riot liave such a constraint. Equation (3.23) can he rewritten as

L ar-ry+ B (3.24)
€s
where
a K3q? ‘
= { = —2 3.25
A () and B (O ( )

Figure 3.27 shows thefit toeqn. (3.24). It isseen that this expression describes
the data extremely wdl (solid line in tlie figure) and the exponent obtained
(0.97) is very close to the mean field value. One major advantage of employing
eqn. (3.24) isthat the constants A and B can be used to calculate tlie Landau
coefficientsa and C and the SM viscosity 7,. For this purpose, we proceed as

follows.

The egn. (3.12) for GM, can be rewritten as

Kaq? = (=)? (3.26)

The value d 3¢ has been determined by measuring the thermal variation
o I' and 0 (seefigures 3.28 and 3.29) and using the Ae¢; data (figure 3.21).
This is plotted as a function of temperature in figure 3.31. In order to liave
an independent confirmation, we liave also used eqn. (3.13) to calculate the
value o Ki¢? as

Ksq? =2m 06 fa (3.27)
1 has been obtained by tlie Diamant method* (described in Chapter V).

This method gives 5,, the viscosity associated with the motion of the molecule
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around the smectic €' cone. The thermal variation of 54 is given in figure 3.30.
This semi-log plot shows that away from T, 7, has arrlienius type of behaviour
but deviates significantly from it on approaching 7T.. However, 74 is only an
effective viscosity arid the relevant viscosity of interest in present case is 7q,
given by*”

NG = N/ sin® 0 (3.28)

A plot of ¢ as a function of temperature is also shown in figure 3.30. It is
observed that 55 shows arrhenius behaviour over the entire temperature range

o measurements.

Figure 3.31 shows the temperature dependence of K3¢* calculated from both
eqns. (3.28) and (3.29). Note tliat three different kinds of measurements P,,
X-ray tilt angle and dielectric methods areinvolved in the calculations arid the
K3q? values obtained using the two equations differ by less than 5% through-
out the temperature range o measurement. The extrapolated value of I3¢®

at T, yields IX3¢*. Substituting this in the expressions for A arid B, we get,

L K
¢= (60623)

and
a = =g’
B 3q0
Tlie values d a and C obtained are given in table 3.3 and are comparable to
tlie values a = 0.89 x 10° and C = 0.86 x 10® got*® from electroclinic tilt angle

measurements on MCP7OB, a compound with high value of P;.

Knowing the value o C' from eqns. (3.32) and (3.23) tlie SM viscosity value
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Table 3.3

Exponents and Landau coefficients obtained for Ce

Exponent y (from f; fit)

72 (from 1/Ae, fit)

T =72

Exponent x (from n; fit)

I\';qu

1.19

0.97

0.22

0.27

4300 Nm~?

3.03

1.24 x 10° Jm3K~! rad~?

1.07 x 108 JC~'m~! rad™!




15 can be extracted rising tlie relation

co(cC)?

1= 9rhAel,
in thelimitof vy, =y, =vy=1
The temperature variation of 7, is shown in figure 3.32. We have tried to
express 1, data by a power law type of equation considering the usual arrlienius
background contribution by an equation o tlie form

B
T)

s = A(T — To)" + noexp(
Here A arid B are constants and tlie second term on tlie R.H.S represent the
arrhenius background contribution. This expression fits tlie data well with x =
-0.27, which isin fair agreement with tlie value of -0.25 obtained®” for another
compound. Earlier, by considering 5, to be independent of temperature, the
exponent for tlie thermal variation of f,, v was found to be 1.19 which is much
higher than the mean field value of 1. However, from egn. (3.23), where the
GMF relation for Ac¢, was considered, we got v, = 0.97. Significantly, the
difference between y and v, (= 0.22) is approximately tlie same as tlie value

x obtained. Thus the divergence in 7, on approaching tlie transition appears

to be largely responsible for tlie difference between tlie exponents v and ;.
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