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Chapter 1

Introduction

1.1 Liquid Crystals

 Liquid crystals are states of condensed matter whose symmetries lie between

those of 3-dimensionally ordered crystals and completely disordered isotropic liquids.

In the liquid crystalline phase the anisotropic molecules exhibit long range

orientational order. In some liquid crystals an  additional 1-d (one-dimensional) or 2-d

translational order is also observed.  Liquid crystals like crystals exhibit anisotropies

in physical properties such as refractive indices, dielectric constants and diamagnetic

susceptibilities and flow like liquids, and hence get the name liquid crystals.

     Many organic compounds exhibit mesophases as a function of temperature.

Such liquid crystals are called thermotropic liquid crystals. Certain amphiphilic

molecules dissolved in solvents like water form supramolecular assemblies which in

turn exhibit  mesophases. These are termed as lyotropic liquid crystals. As our

interest of study is in the properties of thermotropic liquid crystals we describe only

structures of some thermotropic liquid crystals.

Classification
The liquid crystalline phase is exhibited by shape anisotropic molecules.

Depending on the shape anisotropy of the molecule they are classified into:

♦ Calamitic liquid crystals   made of  rod-like molecules,

♦ Discotic  liquid crystals made of  disc-like molecules,

♦ Banana liquid crystals  made of bent-core molecules.

Friedel classified the thermotropic liquid  crystals made of rod-like molecules into

mainly three  classes based on the symmetry of the medium:

• Nematics

• Cholesterics

• Smectics
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1.2      Nematics
The uniaxial nematic (N) phase is the simplest known phase among all the

mesophases. In the nematic phase the molecules have a long range orientational order

but no translational order.  Usually, nematic liquid crystals made of rod-like

molecules exhibit uniaxial cylindrical symmetry. On an average the long axes of the

molecules are oriented along a particular direction called the director denoted  by n̂  as

shown in Figure 1.1. The director n̂  is a dimensionless apolar unit vector i.e. n̂  and -

n̂  are physically equivalent [1].  Even when the molecules are made of highly polar

end groups the medium is still apolar as the molecules orient such that there is no net

polarisation in the medium.

Figure 1.1: Schematic representation of molecular arrangement in a nematic liquid

crystal, where n̂  represents the director.

1.21 Order Parameter
The order parameter gives a measure of the distribution of the rod-like

molecules about the director. In view of  the apolar nature of the director n�  the

orientational order parameter  characterising the nematic phase  cannot be a vector.

The order parameter is a second rank traceless symmetric tensor and is given by

Qij= S(ninj - δij/3), where i,j = x,y,z. The magnitude of  orientational order parameter is

denoted by 13
2
1 2 −= θcosS , where θ  is the angle between the long axis of the

molecule and the director and < > denote statistical average [1,2]. The order

parameter S = 0 in the isotropic phase and S ≠ 0 in the liquid crystalline phase,

increasing from 0.3  to  0.8 with decreasing  temperature.

n̂
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1.22 Birefringence

 In the case of uniaxial nematic and smectic A liquid crystals the direction of

optic axis is along the director n�.  The anisotropy of nematic liquid crystals  causes a

light beam polarised along the director to propagate at a different velocity than the

one polarised perpendicular to the director. The uniaxial nematic phase has two

principal refractive indices µe and µo.   µe  is the extraordinary refractive index for a

light wave propagating normal to the director n�  with electric vector parallel to n� .  µo

is the ordinary refractive index for a light wave propagating orthogonal to n�  with

electric vector perpendicular to n� . The birefringence is given by ∆µ=(µe-µo). The ∆µ

data can be used to calculate the approximate orientational order parameter S of

nematic liquid crystals using the relation  S≈∆µ/∆µ0, where ∆µ0  is the birefringence

of the medium in the fully aligned state.

Figure 1.2: Refractive index ellipsoid, with the arrows indicating the polarisation

directions of the light beam.

1.23 Dielectric Anisotropy
The dielectric constant ε is a measure of the response of the material to an

external electric field.  It depends on the intrinsic properties of the material like

distribution of charges in the molecules as well as intermolecular interactions. The

dielectric constant depends on temperature as well as frequency of the applied electric

field. For mesogens  with polar molecules in addition to the induced polarisation an

orientational polarisation occurs due to the tendency of the permanent dipole

moments to orient parallel to the electric field. The orientational polarisation in liquid

crystals can contribute significantly to the dielectric constant. On the other hand, in a
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solid crystal the orientational polarisation does not contribute significantly to the

permittivity due to the fixed orientations of the molecules. In liquid crystals, the

dielectric constants ε �  and ε⊥ are measured with electric field parallel and

perpendicular to the director ( n̂ ) respectively.  The dielectric anisotropy is given by

∆ε = ε � - ε⊥.

Using Maier and Meier’s theory the expressions for the dielectric constants [3]

can be written as follows
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where ∆α (=αl -αt) is the anisotropy of polarizability of a perfectly oriented medium,

NA is the Avagadro number, ρ the density, M the molecular weight, ( )12
3

+= ε
εh , is

the cavity field factor and ( )αfF −= 1
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f  is the

reaction field factor for spherical cavity and α , is the average polarizability,  p is the

molecular dipole moment. β is the angle between the direction of dipole moment and

the long axis of the molecule. The average dielectric constant ε  can be obtained from

equations (1.1) and (1.2) as
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The dielectric anisotropy is given by
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The relative magnitude of the two terms within the square brackets of equation (1.4)

determines the sign of ε∆ . When β < 550, the two terms add up and the compound

exhibits a strong positive dielectric anisotropy. For β ~550, the second term vanishes

and only α∆ contributes to ε∆ . For β >550, ε∆ >0 or < 0, depending on whether the

dipolar contribution is less or more than the contribution due to polarizability

anisotropy.
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1.24     Curvature Elasticity
     In  a non-uniformly oriented nematic the orientation of director varies

continuously in space. Any elastic deformation can be written as a combination of the

three basic curvature deformations. They are

• Splay

• Twist

• Bend

The deformation free energy density is defined as

( ) ( ) ( )233222211 ˆ
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ˆˆ
2

ˆ
2

nn
K

nn
K

n
K

Fd ×∇×+×∇⋅+⋅∇=      1.5

where K11, K22 and K33 are the splay, twist and bend elastic constants respectively.

Since n̂  is  a dimensionless unit vector,  the elastic constants K11, K22 and K33 have

units of energy/length  and are of the order of kBTNI/a, where kB is the Boltzmann

constant, TNI is the nematic isotropic transition temperature and a is a typical

molecular length. Usually the order of magnitude of elastic constants is ~10-7 dynes.

The pictorial representation of the three basic curvature deformations are shown in

Figure 1.3.

Figure 1.3: The three basic elastic deformations of the director in a nematic liquid

crystal: (i) Splay (ii) Twist and (iii) Bend.

1.25 Freedericks  Transition
The apolar nature of n̂  also has the consequence that an external electric field

couples to the medium through its dielectric anisotropy ∆ε. The orientational part of

the   energy density Fdiel is given by - ε0∆ε( n̂ . E
&

)2/2, where ε0 is the vacuum dielectric

constant. On application of an external field (electric or magnetic) to an uniformly

0≠̂⋅∇ n ( ) 0ˆˆ ≠×∇⋅ nn ( ) 0ˆˆ ≠×∇× nn
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aligned sample the orienting effect of the boundaries can conflict with the orienting

effect of applied field, and hence a distortion of the original director field takes place.

In a uniformly aligned sample when an electric field is applied transverse to the

director a distortion takes place only when the strength of applied field exceeds a

certain well defined threshold value. This type of transition is called Freedericks

transition.  The threshold voltage is given by (independent of the sample thickness t)

Vth=π[K11 /(ε0∆ε)]1/2 where K11 is the splay elastic constant, relevant to the initial

distortion of the director in a planar aligned cell (Figure 1.4).

Figure 1.4: Schematic representation of the director configuration (a) for V < Vth and

(b) for V >Vth.

Consider a sample with positive  dielectric anisotropy taken between two ITO

(Indium Tin Oxide) coated glass plates aligned homogeneously as shown in Figure

1.4. When an electric field is applied to the sample (Figure 1.4), the molecules tend to

align parallel to the electric field. Beyond the threshold voltage the orientation of the

medium gets distorted near the center of the cell  and molecules make an angle with

respect to the glass substrate. The transmitted intensity from  a sample placed between

crossed polarisers with the optic axis at an angle of 450 with respect to the polariser is

proportional to the optical phase difference of the sample ∆φ=2π µ∆ t/λ, where µ∆  is

the average value of  the birefringence, t is the sample thickness and λ the wavelength

of incident light. The intensity profile as a function of applied voltage at a given

temperature in the nematic range typically looks like that shown in Figure 1.5.  As the

applied voltage is increased the distortion of the orientation in the medium increases

leading to a decrease in the average value of the birefringence. With increase in the

applied voltage the rate of variation of transmitted intensity decreases. At high values

of applied voltages of ~ 5V and above, the intensity profile flattens out (Figure 1.5) as

the average value of the birefringence µ∆  is negligible. Hence  using this method the

absolute value of optical phase difference can be found.

V >  V th π/2-θV <  V th

E
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Figure 1.5: Variation of transmitted intensity as a function of applied voltage,

freq: 4111Hz.

1.3      Cholesterics
The cholesteric phase (N*) is made of optically active or chiral molecules. The

director n
�

 is no longer constant in space but precesses in a helical fashion along the z-

axis as shown in Figure 1.6.  As n̂   is physically equivalent to - n̂ , the periodicity of

medium along helix axis is P/2, where P represents the pitch of the medium.

Figure 1.6: Schematic representation of molecular arrangement in the cholesteric

phase. The arrows indicate the orientation of director n̂ .
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1.4     Smectics
In the smectic phases  along with the orientational order of the molecules there

is a 1-dimensional translational order. This gives rise to a layered structure. In the

layer plane the arrangement of molecules is liquid like.

Figure 1.7: Schematic representation of  molecular arrangement in (a) Smectic A and

(b) Smectic C phases.

In Smectic A (SmA)  the long axes of molecules are parallel on an average to

the layer normal ẑ i.e. n̂  is parallel to ẑ  as shown in Figure 1.7a. The layer thickness

can vary from monomolecular length to twice the molecular length depending on the

nature of molecular interactions.

In Smectic C (SmC) the long axes of the molecules are tilted with respect to

layer normal ẑ as shown in Figure 1.7b. The projection of n̂  onto the plane of layers

is denoted by c
�

, which  is a polar vector. The medium is biaxial in nature.

1.41   Smectic C* Liquid Crystals

 SmC phase made of optically active molecules forms a helical structure. The

helix is formed by precession of the tilt direction about an axis perpendicular to the

layers with a characteristic pitch as shown in Figure 1.8. Depending on the chirality of

the molecule, the helix can be either left-handed or right-handed. The symmetry of the

SmC* layers allows them to be transversely polarized and hence SmC* is also referred

to as a ferroelectric liquid crystal [4].

n
� n�ẑ

N
ẑ

z

θ

(a) (b)
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Figure 1.8: Schematic representation of molecular arrangement in the smectic C*

phase. The tilt direction rotates between successive layers as represented by arrows.

1.42 Biaxial Smectic A Phase
 The liquid crystalline compounds made of molecules with a large bent-core

(with a bend angle of ~1200) are known as banana or bow-shaped liquid crystal

compounds (Figure 1.9). Unlike the rod-like molecules, which rotate freely about

their long axis, the bent–core molecules with a large bend angle cannot rotate freely.

Compounds composed of these molecules exhibit distinctive phases which are usually

denoted by Bi, where i =1, 2, etc.

Cr - 114 0C - B2 - 128.5 0C - I

Figure 1.9: Chemical structure and transition temperatures of the banana shaped

compound BC12 (1,3-phenylene bis[4-(3-methylbenzoyloxy)] 4′-n-dodecylbiphenyl

4′-carboxylate).

Pratibha et al [5] have reported the phase diagram of binary mixtures of the

banana compound BC12 and  a  compound made of rod shaped molecule viz. 4-

biphenylyl 4′′-n-undecyloxybenzoate (BO11) exhibiting interesting phase transitions.
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In the composition range of 4 to 13mol% of the banana compound the binary mixtures

exhibit the phase sequence: I - N - SmA2 - SmA2b [5], where SmA2 and SmA2b

correspond to uniaxial smectic and biaxial smectic phases respectively (with layer

spacing d being twice the molecular length in both the cases). In homeotropically

aligned samples the uniaxial nematic presents a dark field of view between crossed

polarisers. However, strong fluctuations of the director can be observed, which

abruptly cease at the N-SmAd transition point. As the sample is cooled below this

temperature another transition takes place, and the sample exhibits a schlieren texture

between crossed polarisers, in which dark brushes emerge from some points.  The

texture shows that the medium is an orthogonal biaxial smectic liquid crystal [5].

Recently there are reports [6] of pure banana compounds exhibiting biaxial smectic A

phase.

 Pratibha et al [7] have also studied another system of binary mixtures of the

banana compound BC12 with  a different rod-shaped molecule viz., 4-cyano-4-

octyloxy biphenyl (8OCB). This system of binary mixtures in a concentration range

of 10 to 15 mol% of BC12 exhibits the  following phase sequence:  I - N - SmAd -

SmAdb  [7]. We have studied the effect of pressure on this phase sequence in a binary

mixture with 14 mol% of BC12 which will be reported in chapter 5.

1.5 Reentrant Nematic Phase
The normal expectation is that with decreasing temperature the symmetry of

the lower temperature phase is lower than that of the higher temperature phase. Hence

the SmA phase which has a lower symmetry than the nematic phase is expected to

occur at lower temperatures. Indeed most of the liquid crystals exhibit this phase

sequence. However, Cladis in 1975 [8] discovered that a certain mixture of polar

mesogens exhibits the following phase sequence with decreasing temperature:

Isotropic (I) - N - SmA – re-entrant nematic (Nr)- Crystal (Cr).  The lower

temperature nematic phase (Nr) has been named as the re-entrant  nematic phase.

Subsequently, in 1977 Cladis et al [9] found that a polar mesogen viz. 8OCB at

elevated pressures, shows a similar phase sequence. Later pure compounds [10-11]

were found which exhibited the re-entrant nematic phase even at atmospheric

pressure. Some experiments on such systems will be reported in chapters 5 and 6.
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1.6 Twist Grain Boundary Phases

Figure 1.10: Schematic representation of the structure of TGBA phase, where ld is the

distance between two dislocations and lb the distance between two grain boundaries.

The twist grain boundary (TGB) phase is formed by the competing interaction

between the smectic like order and chiral interaction between the molecules giving

rise to a twisted structure. The TGB phase is  analogous to the vortex state in a type II

superconductor under a strong magnetic field.  This analogy was pointed out by

de Gennes [12]. The detailed structure of TGB phase was theoretically predicted by

Renn and Lubensky [13]. The TGBA phase consists of a regular twisted arrangement

of SmA blocks separated by grain boundaries made of arrays of screw dislocations.

Goodby et al [14] reported the first observation of TGB phase in some highly chiral

liquid crystals. Depending on the local smectic order,  the TGB phases are classified

as TGBA, TGBC, TGBC
* etc. A schematic representation of a TGBA phase is shown in

Figure 1.10.

 Pramod et al [15] in 1997 reported a new defect phase called Undulating

Twist Grain Boundary (UTGBC
*) phase with SmC* like block structure in a binary

mixture of a chiral compound and a nonchiral compound. A schematic representation

of the structure of UTGBC
* phase is shown in Figure 1.11.  In addition to a helical

structure within the smectic blocks, this phase is also characterised by a two-

dimensional undulation of the grain boundaries orthogonal to the TGB twist axis. This

structure has twist deformation along all the three mutually orthogonal directions.

High pressure studies on this system will be described in chapter 5.

ld

lb
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X
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Figure 1.11: Schematic representation of the structure of UTGBC
* phase. The smectic

layer normals (large arrows) rotate from block to block. Within each block the Frank

director precesses along the layer normal direction as represented by the nails (from

reference 15).

1.7     Cell Preparation

1.71 Alignment of Liquid Crystals

      In an unaligned sample, the director n̂  varies from point to point. For

measuring the anisotropic physical properties like birefringence ∆µ one needs a

monodomain sample of the liquid crystal in which director n̂  is uniform throughout

the sample.  Generally  either a planar or homeotropic alignment is used. A planar or

homogeneous sample is one in which the director is unidirectional and is parallel to

the enclosing surfaces. On the other hand, in a homeotropically aligned sample the

director is perpendicular to the enclosing surfaces. A review on different alignment

techniques is given by Cognard [16]. A schematic representation of both the orienting

geometries is given in Figure 1.12.

• Homogeneous or Planar Alignment
The sample cell is prepared using Indium Tin Oxide (ITO) coated glass plates,

which serve as transparent electrodes. The ITO plate is coated with polyimide and

cured at 280 0C for about an hour. And then the plate is rubbed unidirectionally using
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a soft tissue. The cell is prepared such that the rubbing directions of both the plates

are parallel to each other giving a planar alignment.

Figure 1.12: Schematic diagram of the (a) homogeneous and (b) homeotropic

alignment of the molecules, where n̂  represents the director.

• Homeotropic Alignment
For homeotropic alignment of the molecules  the ITO coated glass plate is coated

with  a surfactant like  octadecyl triethoxy silane (ODSE) and cured at 150 0C for

about an hour. ODSE is a long chained molecule which is amphiphilic in nature

having a polar group and an aliphatic chain. The polar end group is attracted to the

surface of the glass plate and the long aliphatic chain interacts with the alkyl chain of

the liquid crystal molecules thus giving rise to perpendicular orientation of the

director with respect to the glass plate.

1.72 Preparation of Liquid Crystal Cell
The glass plates which  are pretreated for the required alignment are placed

one above the other such that pretreated surfaces face each other. A little gap is left at

both  the ends so that in required cases electrical connections to apply the electric

field can be made (Figure 1.13). The sides are sealed using a special kind of glue viz.

epoxy glue meant for liquid crystal displays (LCD) which does not react with liquid

crystals. The thickness of the cell is fixed using  either mylar spacers or glass beads.

The sealed cell is cured for about an hour at 150 0C.

(a) (b)
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Figure 1.13: Schematic representation of a  liquid crystal sample cell (top view). The

central rectangular region is the effective electrode area.

1.73   Measurement of Cell Thickness
The thickness of an empty cell is measured using an interferometric technique.

The schematic diagram of the setup is shown in Figure 1.14.  The miniature fiber

optic spectrometer (Ocean Optics) is controlled through a computer. The illuminating

and read fibers are made of optical fibers. The reflection probe consists of 7 optical

fibers, out of which the central fiber is the read fiber and the surrounding 6 fibers are

the illuminating fibers. The light incident on the cell  through the 6 illuminating fibers

will get reflected back from the cell to the read fiber of the reflection probe and the

signal is sensed through the spectrometer (Ocean Optics model S 2000) which in turn

will display the interference pattern on the screen of the computer monitor. The light

reflected by the  two internal glass surfaces interfere to produce the interference

pattern. We use this interferometer to make precise measurements of cell thickness at

various positions.

Figure 1.14:  Schematic diagram of the setup used for measuring the thickness of the

empty cell.
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 The interference pattern consists of maxima and minima corresponding to

constructive and destructive interference. The thickness of the cell ‘t’ is calculated by

measuring the air gap between the two glass plates of the cell using the formula given

below.

( ) ( )
( )nm

nmnm
t

λλ
λλ

−
×−=

2  1.7

where λm and λn are wavelengths corresponding to mth and nth minima or maxima.

1.8     Theoretical Background

1.81 Landau Theory of Phase Transitions
The Landau theory is a phenomenological theory originally developed for

describing second order phase transitions. The order parameter increases continuously

across the transition point, and close to the transition point the order parameter is very

small. Landau, speculated that near the second order phase transition the free energy

density F can be expanded in powers of order parameter S which characterises the

lower symmetry phase [17].

                                        ( ) 432
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where F0  is the free energy density when S = 0. The absence of the linear term in S

(equation 1.8) ensures the stability of the higher temperature phase. In the lower

symmetric phase occurring at low temperatures (S ≠  0), the minimum in F is ensured

by assuming A < 0 and in the higher symmetric phase (S = 0 ) the minimum in F is

ensured by assuming A > 0. Landau assumed that ( )∗−= TTA α  and T* is the second

order transition temperature and   α, B, C are constants which do not depend on

temperature. For a system in which F is independent of the sign of order parameter S

(e.g. ferromagnetic system) i.e. F(S) = F(-S)  and the cubic and the higher odd powers

of  S are not allowed. Thus B = 0, and with C >0 a second order phase transition takes

place between the states S = 0 and S ≠0 at the temperature T = T*. The  free energy

density is

                                   ( ) ( ) 42
0 42

,, S
C

STTFSTPF +−+= ∗α
                                    1.9

The equilibrium value of the order parameter is found by using 0=′F  and 0>′′F

(each prime denotes a differentiation with respect to S).
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The order parameter profile is continuous with temperature for the second order phase

transition.

The above model has been extended to describe weakly first order phase

transitions. One way of obtaining a first order phase transition is to have a third order

term. If the symmetry of the system prevents the presence of a third order term i.e.

B = 0, then a first order transition can be obtained by having C < 0. In that case a

stabilising sixth order term with co-efficient E > 0 is required.

1.82 Landau-de Gennes Theory for the Nematic to Isotropic (N-I)

Phase Transition
The Landau theory for the nematic isotropic phase transition has been

reviewed in detail by Gramsbergen et al [18]. The orientational order parameter of

nematic liquid crystal is defined as 1cos3
2
1 2 −= θS  where θ is the angle between

the long axes of the molecules  and the director n̂ . The order parameter S can take

any value between 1 to –1/2. The two extreme values of S describe two distinct

physical situations of the system. The first one corresponds to a situation with 0=θ

and the second one with 2/πθ = . The positive and negative values of S arise in

general from different distribution functions, and hence F(S) ≠ F(-S). Thus the free

energy density of the nematic phase must include the cubic power of S and  is given

by

( ) ( ) 432*
0 432

,, S
C

S
B

STTFSTPF +−−+= α
                    1.11

where T* is now the hypothetical second order transition temperature below which the

isotropic phase cannot be supercooled. The negative sign of the cubic term has been

assumed to get a lower free energy for .0>S
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Minimising  equation 1.11 with respect to S we get three solutions

         S = 0

and            
( )

C
TTCB

C
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4
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           1.12

S= 0 corresponds to the isotropic phase. S- corresponds to a maximum in the free

energy density and hence not an acceptable solution. S+  corresponds to a minimum in

the free energy and hence is a stable solution characterising the nematic phase. The

nematic-isotropic transition temperature TNI can be calculated by equating the free

energy density in the nematic phase to that of the isotropic phase i.e. ( ) 0,, FSTpF = ,

which gives

                                ( ) 0
432

432* =+−− NINININI S
C

S
B

STT
α

                         1.13

where SNI  is the order parameter at the transition point. The equilibrium condition

yields

                                                    ( ) 032* =+−− CSBSSTTα                               1.14

Equation 1.14 is also valid at TNI, where S = SNI.

From equations (1.13) and (1.14) at T = TNI, we get

                                                   
C
B

S NI 3
2=             1.15

and

                                                    
C

B
TTNI α9

2 2
* +=                                              1.16

Equation 1.14  has a real solution only when ( ) 04 *2 >−− TTCB α , leading to

an upper temperature limit above which the nematic phase cannot exist. This

temperature T** is given by

                    *
2
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4
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Figure 1.15: Variation of the free energy density as a function of order parameter S at

various temperatures near the nematic-isotropic transition point.

The variations of the free energy density as functions of order parameter for

various   temperatures are  shown in  Figure 1.15. For temperatures T >T**  there is

only one minimum in the free energy curve corresponding to S=0, i.e. the isotropic

phase. At  temperature  T=T** an inflection is observed in the free energy density

curve. For TNI < T < T** there are two minima one of which corresponds to the

isotropic phase with S=0 and the other one corresponds to the superheated nematic

phase. There are two minima of equal energy density at T=TNI. Thus a first order

phase transition takes place from S=0 to S=SNI. For T* < T < TNI there are again two

minima, the absolute minimum corresponds to the nematic phase i.e. S > 0. Below

temperature T* the isotropic phase can not be supercooled. At T=T* there is only one

minimum corresponding to S  > SNI and an inflection point at S=0. For temperatures

T < T*,  there is a second minimum for S < 0,  but the corresponding energy is higher

than that for S > 0. Thus the inclusion of non - zero third order term explains a first

order phase transition observed  in all nematogens. Typically the corresponding jump

in the order parameter SNI  is  ~ 0.3.  However from a thermodynamical point of view

NI transition is a weakly first order transition as the heat of transition ∆H and the

volume change ∆V occurring at the NI transition are very small in comparison to

those at  a crystal melting transition.
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