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Chapter-2 

A Molecular Theory of the Nematic to Nematic Phase 

Transition in Strongly Polar Compounds.  

2.1 Introduction 

As described in the previous chapter, the nematic (N) liquid crystal is 

characterised by a long range orientational order of the long axes of the molecules 

without a long range positional order of their centres of mass (see section 1.2.1, 

chapter-1). The preferred axis of orientation in the nematic liquid crystal, called the 

director, is represented by the unit vector n
^
. The extent of orientational order in a 

cylindrically symmetric nematic liquid crystal is given by the so-called scalar order 

parameter S defined as 

S = 
1

2
3cos

2
i  –1  = P2(cos i)     (2.1) 

where i  is the angle between the long axis of the i
th

 molecule and the director, P2 is 

the second Legendre polynomial and   denote a statistical average. The order 

parameter takes a maximum value equal to 1 when all the rods are perfectly aligned 

and is zero when all the orientations of the long axes are equally probable i.e., in the 

isotropic phase. 

When heated, usually a nematic liquid crystal undergoes a transition to the 

isotropic liquid. Since the nematic liquid crystal differs from the isotropic liquid only 

in an orientational order, one would not normally expect any other variation in the 

transition sequence. However, such variations have been observed in some special 

cases. For example, as described in chapter-1, in case of compounds consisting of 

molecules with polar end groups, when the reentrant nematic liquid crystal is heated, 

it undergoes a transition to the SmAd liquid crystal. In the present chapter, we 

consider an even simpler transition between two nematics without any change in the 

macroscopic symmetry of the medium. Indeed, such transitions are known even in the 

more disordered isotropic phase. For example, water, even though an isotropic liquid, 

due to complex hydrogen bond formation, is known to exhibit a liquid-liquid 

transition associated with a jump in the density [1] in its super cooled state.  
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Some liquid crystal compounds consisting of strongly polar molecules show the 

nematic-nematic (N-N) transition associated with a jump in the order parameter. 

Experimentally, the first example of the N-N transition was found in a binary mixture 

[2] of polar compounds DB8ONO2 and DB10ONO2 where, DBnONO2 denotes the 

homologues of n-alkyloxyphenyl-nitrobenzoyloxybenzoate. The transition was 

discovered by high resolution calorimetric (see figure 2.1a) and X-ray diffraction 

techniques. The X-ray measurements indicated a jump in the short range smectic like 

order associated with the N-N transition. In fact, in the temperature -concentration 

phase diagram, the N-N transition line appears as a continuation of the SmA1-SmAd 

transition line (see figure 2.1b). Hence the transition is denoted as N1-Nd transition. 

Here, the suffix ‘d’ denotes  dimers and the suffix ‘1’ monomers (see section 1.5.2, 

chapter-1) characterising the short range order. 

Figure-2.1. (a) Variation CP for a sample with X = 53.7%, where X is the 

mole percent concentration of DB10ONO2 in DB8ONO2 [2a]. The strong 

peak in the middle corresponds to the Nd-N1 transition and the small peak 

marked by the right arrow corresponds to SmAd-Nd transition and the left 

arrow to SmA1-N1 transition. (b) Detail of the T-X phase diagram for the 

same mixture for X between 51% and 55% [2b]. Filled circles, open circles 

and open squares represent calorimetric, X-ray scattering and optical 

measurements respectively. The dashed curves indicate 2
nd

 order phase 

transitions and the solid curves, 1
st
 order ones. TCP marks the tricritical 

point.  

(a) (b) 
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The N1-Nd transition has been subsequently observed in a single component 

system also [3]. In this experiment, the strongly polar compound p-cyanophenyl p-n 

heptylbenzoate (CP7B) contained in a thin cell was studied optically and a jump in the 

transmitted intensity indicating a jump in the orientational order parameter associated 

with the N1-Nd transition was detected (see figure 2.2). Note that the N1-Nd transition 

in this case is not associated with the smectic phase.  

Figure-2.2. Variation in the transmitted intensity as a function of 

temperature for the compound CP7B for cell thickness of 1.9 m [3]. 

Note the jump around 33
0
 C. 

As explained earlier (see section 1.5.2), the SmA-SmA transition is associated 

with a jump in the layer spacing. This has been successfully explained by the 

phenomenological theory developed by Prost [4, 5] using two coupled smectic order 

parameters corresponding to ‘two competing lengths’ (see section 1.6.4). This theory 

predicts the general phase diagrams showing the N1-Nd transition as a continuation of 

the SmA-SmA transition line (see figure 2.3) in agreement with the experimental 

result of figure 2.1b [2]. Hence it is clear that the N1-Nd transition is also associated 

with the two competing lengths characterising the short range smectic like order. 
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Figure-2.3. General phase diagrams predicted by the dislocation loop 

melting theory of Prost and Toner [4]. A1 and A2 are general variables 

which can be mapped to pressure and temperature or pressure and 

concentration etc. 

A simple model to explain the molecular origin of the ‘two lengths’ assumed in 

the Prost’s phenomenological model was proposed by Madhusudana and Jyothsna 

Rajan [6]. The basic concept in this model is that the molecular pairs can change over 

from anti-parallel (A) to parallel (P) configuration as the intermolecular separation (r) 

is reduced due to cooling or due to increase of pressure. The medium is treated as an 

equilibrium mixture of the A and P types of pairs. Recent experiments [7] showing the 

presence of polar short range order at low temperatures support this model. In this 

chapter, we extend this model to develop a molecular theory of the N1-Nd transition. 

We begin with a description of this model. 

2.2 Model for molecular pairs with parallel dipole moments at low 

temperatures 

In the model proposed by Madhusudana and Jyothsna Rajan [6], the origin of the 

two incommensurate lengths is explained as follows: the permanent dipolar 

interaction favours an antiparallel arrangement between the neighbouring mesogenic 

molecules [8]. However, the aromatic part of the antiparallel neighbours overlap due 
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to the strong dispersion interaction between them leading to the partial bilayer 

arrangement (see figure 2.4a below and text in section 1.6.5 of chapter-1). In this 

configuration, the alkyl chains of the two molecules, which lie on opposite sides of 

the core region, do not have a  significant interaction. 

On the other hand, if the molecules are parallel, the permanent dipolar interaction 

is repulsive. However, the aromatic cores have strong polarizabilities and the induced 

dipole moment due to a neighbouring polar molecule would weaken the net dipole 

moment of any given molecule in this configuration (see figure 2.4b). Further, the 

chains of the two neighbours are now in close proximity and the dispersion interaction 

between them would favour this arrangement. The repulsive dipolar interaction is 

1/r
3
 where r is the intermolecular separation, while both the dipole-induced dipole 

and the dispersion interactions are 1/r
6
 and are attractive in nature. Hence there can 

be a change from the antiparallel to the parallel configuration as the intermolecular 

separation is decreased below some value as the density is increased due to a lowering 

of temperature or an increase of pressure. 

Figure-2.4. Schematic diagram showing (a) the antiparallel configuration 

of two molecules favoured at intermediate molecular separations and (b) 

the parallel configuration favoured at relatively low values of 

intermolecular separation. The arrow with a solid line represents the 

permanent dipole moment and the one with a dotted line, the induced 

one. (For the sake of clarity, the relative separation in (a) is exaggerated). 

The following calculations show that the change over from the A-type 

configuration to the P-type configuration occurs for reasonable values of the 

(b)(a)
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molecular parameters. Considering an antiparallel pair (see figure 2.4a), the induced 

dipole moment in a molecule is given by  

p i =  E
  

      (2.2) 

where  is the longitudinal component of the polarisability of the part of the core 

which is close to the dipole of the neighbour which generates an electric field E
  

 . We 

have, for short dipoles, 

E
  

 = 
1

4 0
 
(p+p i)

r
3      (2.3) 

where 0 is the absolute permittivity of free space, p  is the permanent dipole moment, 

(p+p i) is the net dipole moment of one of the molecules in the A-type configuration 

(see figure2.4a) and r is the intermolecular separation.  From equations 2.2 and 2.3, 

we have  

(p+p i) = 
p

 1  
4 0r

3

               (2.4) 

The pairing energy for an antiparallel pair is given by 

EA =  
1

4 0
 
(p +pi)

2
 

r
3  

      =  
1

4 0r
3  

p
 2

 1  
4 0r

3

2            (2.5) 

For a P-type of pair (see figure 2.4b), the pairing energy is 

EP = + 
1

4 0r
3  

p
 2

 1+ 
4 0r

3

2      
Kc

2

r
6    (2.6) 

where K is the chain-chain interaction parameter and c is the chain length. We do not 

explicitly include the energy due to the dispersion interaction between the cores as it 

is supposed to be the same in the A and P configurations. 

To evaluate EA and EP, the following typical values [6] are used: 
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  p  = 4 Debye = 4/3 10
29

C m, /(4 0) = 20  10
30

 m
3
,  Kc

2
 = 6.6  10

76
  SI 

units. The pairing energy difference 

 E = EA EP        (2.7) 

is calculated for various values of r. A graph of E against r is shown in figure 2.5. 

Note that the energy of two dipoles of strength 1D each separated by a distance of 1Å 

i.e., 1D
2
/Å

3
 in CGS units is equal to 10

19
 J in SI units.   

It can be seen that, for r  5.47 Å,  E >0, i.e., EP<EA or the P-type configuration 

has lower energy than the A-type of configuration. This clearly shows that, as the 

intermolecular separation is decreased, the P-type configuration is favoured over the 

A-type configuration. 

For simplicity, the above calculations are carried out restricting the interaction to 

two near neighbours. In the liquid crystal medium, many near neighbours interact. 

More than two molecules can have an all-parallel configuration, whereas many near 

neighbours can not be mutually antiparallel. In reference [6], as an example, 

molecules arranged in a two dimensional hexagonal lattice is considered for 

calculation of EA, EP and E. The resulting graph of E against  r is very similar to 

that shown in figure 2.5.  

Figure-2.5. The pairing energy difference E= EA EP (in 10
19

J) between 

the antiparallel and parallel configurations plotted as a function of the 

intermolecular separation r (in Å). 
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Even though more than two near neighbours can have parallel configuration, for 

simplicity, as in reference [6], we consider the medium to be a mixture of A and P 

types of pairs. Incorporating these ideas, we develop a molecular theory for the 

nematic-nematic transition. For this, we extend the Maier-Saupe theory of nematic 

liquid crystals to develop a theory of nematic mixtures. In the next section we give a 

brief review of the Maier-Saupe theory. 

2.3 Maier-Saupe theory for the N-I transition 

Maier and Saupe (MS) [9] developed a molecular mean field theory of the 

nematic phase. In the theory, each molecule is assumed to be in an average orienting 

field due to its environment, but otherwise uncorrelated with its neighbours. MS 

assumed that the anisotropic dispersion forces are entirely responsible for the 

orientational order and ignored the shape anisotropy of the molecules. Using the mean 

field approximation, MS wrote the single particle potential for the i
th

 molecule as  

Ui =   U0 S P2(cos i)         (2.8)  

where U0 is an interaction parameter and S is the nematic order parameter defined in 

equation 2.1 above. The parameter U0 depends on the structural details of the 

constituent molecules and the molar volume of the compound. The molar internal 

energy is given by 

 U =  
N

2
 Ui  =  

N

2
U0S

2
     (2.9) 

where N is the Avogadro number and   denote a statistical average. The factor (1/2) 

arises since each molecule is counted twice while finding the average. The molar 

entropy is  

 S  = NkB ln f(cos )      (2.10) 

where kB is the Boltzmann constant and f(cos ) is the normalised orientational 

distribution function. The molar Helmholtz free energy is written as 

 F = U  TS.                     (2.11) 

The orientational distribution function found by minimising F is given by 

 f(cos ) = Z
1
exp( Ui/kBT)    (2.12) 
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where Z is the normalising integral. The orientational order parameter is calculated 

using 

 S = 
0

1

d(cos ) f(cos )P2(cos ).    (2.13) 

It can be verified that minimising the free energy with respect to S also leads to the 

same expression for S. Using equations 2.10 to 2.13, the free energy per particle can 

be written in the dimensionless form as  

 
F

NkBT
 = + 

U0

2kBT
S

2
 lnZ.             (2.14) 

For a given value of (U0/kBT), equation 2.13 is solved for self consistency and the free 

energy is calculated using equation 2.14. This represents the excess free energy over 

that of the isotropic phase, due to the onset of orientational order. Hence, the solutions 

resulting in F<0 correspond to the stable nematic phase. This procedure is repeated 

for different values of (U0/kBT). The nematic-isotropic transition occurs when the 

calculated free energy becomes zero. MS showed that the calculations lead to a first 

order N-I transition at SNI = 0.4292 and found that  

U0/kBTNI = 4.541     (2.15) 

where TNI is the N-I transition temperature. 

 We now extend the MS theory to develop the theory for nematic-nematic 

transition in strongly polar compounds.  

2.4 Nematic-nematic transition in strongly polar compounds 

2.4.1 Theoretical model 

2.4.1.1 Assumptions 

 In order to simplify the calculations, the following assumptions are made. 

 (1) For the sake of simplicity and in view of our earlier discussions regarding the 

dependence of the mutual  configuration of near neighbours on the intermolecular 

separation, we assume that the medium consists of pairs of molecules which have 

either an antiparallel (A) or parallel (P) configuration. In the former case, frustration 
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in the orientation of a third molecule can be expected to favour the formation of pairs. 

On the other hand, we may expect a  large number of molecules to be associated in a 

P-type configuration. A statistical mechanical description of the latter becomes quite 

complex and for the sake of simplicity, we assume that even the P-type configurations 

have only effective pairs, as in the reference [6].  

(2) As we described earlier, the A-type (P-type) configuration is favoured at 

lower (higher) densities. Hence, E should be expressed as a function of density. 

Developing the model with such an expression requires the inclusion of hard rod 

features of the interactions as well as the effect of excluded volume. These are 

included in a hybrid model which is described in chapter-5. In the present 

calculations, for  the sake of simplicity, the density and hence the intermolecular 

separation are assumed to be monotonic functions of temperature. Hence, as in 

reference [6], the energy difference between the two configurations is written in the 

following form:  

E =  EA EP  = R1 kBTNI  
R2 

TR
 1                                 (2.16) 

where kB is the Boltzmann constant, EA and EP are the configurational energies of the 

A-type and P-type pairs respectively, TNI is the nematic-isotropic transition 

temperature of the A-type of pairs, R1kBTNI is an interaction parameter and TR = T/TNI 

is the reduced  temperature. R2 is the reduced temperature at which the density of the 

medium is such that E  becomes zero. For TR > R2 , the A-type configuration has the 

lower energy. 

 (3) It is clear from figure 2.4 that the geometrical parameters of the two 

configurations are different. Hence we assume that the orientational potential for A-

type of pairs (UAA) and P-type of pairs (UPP) to be different. We write,   

UPP = Y UAA                                                   (2.17) 

and the mutual interaction potential 

UAP  = UPA = P UAA UPP   

=  P Y UAA          (2.18) 

where  P  1 indicates a deviation from the  geometric mean (GM) approximation for 

the mutual interaction and (P 1) is a measure of this deviation. 
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2.4.1.2 Expressions for the free energy and the order parameters 

As mentioned earlier, the medium is assumed to consist of a mixture of A-type 

and P-type pairs. Following the method of Humphries  et al. [10] for the mean field 

molecular theory of mixtures, we write the orientational potential energy for the  i
th

 A-

type pair as 

 UAi =   UAA XA SA P2 (cos Ai)  UAP XP SP P2 (cos Ai)  (2.19) 

where UAA is the mean field interaction potential between A-type pairs, UAP that 

between A-type and P-type pairs, XA, Xp  and SA, SP are the mole fractions and the 

orientational order parameters of the A and P types of pairs respectively and P2 is the 

second Legendre polynomial. 

Similarly for a P-type pair, 

UPj =   UPP XP SP P2 (cos Pj)  UPA XA SA P2 (cos Pj)  (2.20) 

where UPP  is the interaction potential between P-type pairs and the mutual interaction 

potential UPA = UAP. 

As usual, we have,  

XA+XP = 1     (2.21) 

We can now write the internal energy of one mole of pairs by averaging over the 

distribution functions as 

2U = 
 NXA 

 2 
 UAi  + 

 NXP 

 2 
 UPj   NXP E       

 =  
N

2
 [UAA XA

2
 SA

2
 + UPP XP

2
 SP

2
 +2UAP XA XP SA SP]  NXP E     (2.22) 

where N is the Avogadro number,   indicate statistical averages and the factor 2 on 

the left hand side reminds that we have a mole of pairs. The last term is the 

concentration dependent part of the configurational energy.  

The molar entropy is given by 

2S  =  N kB [ XA d(cos Ai) fAi ln fAi + XP d(cos Pj) fPj ln fPj ] 

                      N kB ( XA ln XA  + XP ln XP )                                                 (2.23) 
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where the last term is the entropy of mixing and  fA and fP are the normalised 

distribution functions of A and P types of pairs respectively. The Helmholtz free 

energy is given by: 

F = U  TS .                                                         (2.24)  

The distribution functions fA and fP and also XA are found by minimising F. The 

normalized orientational distribution functions of the  A and P types of pairs are, 

respectively, 

fAi(cos ) = 
1

 ZA
exp( UAi/kBT)    (2.25) 

 

fPj(cos ) = 
1

 ZP
exp( UPj/kBT)    (2.26) 

and 

  XA = 
1

1 + 
ZP

ZA
exp( E/kBT)

     (2.27) 

where ZA and ZP are the appropriate normalising integrals. The expressions for the 

order parameters are, 

 SA =  P2(cos Ai)  = 
0

1

d(cos i) fAi(cos )P2(cos Ai)  (2.28) 

 SP =  P2(cos Pj)  = 
0

1

d(cos j) fPj(cos )P2(cos Pj).  (2.29) 

 

2.4.1.3 Specific heat at constant volume 

The molar specific heat at constant volume is given by 

CV = 
U

 T V
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 =  
NUAA

2
 

XA

 T
{ XA  SA

2
  YXP SP

2
  + P Y  SA SP (XP  XA)}  

   + 
SA

 T
{ XA

2
  SA +P Y  XAXP SP} + 

SP

 T
{YXP

2
  SP +P Y  XAXP SA}  

   + 
XA

 T
 N E.                         (2.30)

where we have used equations 2.17 and 2.18. Note that in the above expression, we 

have not differentiated E  with respect to T. As we discussed in the introduction, E 

is truly a function of intermolecular separation, or equivalently, the volume of the 

system. It is purely for the sake of convenience in calculation that E is written as a 

function of temperature. As such in calculating CV, in which the volume is held fixed, 

we do not differentiate E with respect to temperature. Expressions for the derivatives 

of XA, SA and SP are obtained by differentiating the relevant parameters in the 

equations  2.27, 2.28 and 2.29 respectively, with respect to T. We get,  

   
XA

 T
  

UAA

kBT
(  SA

2
  YSP

2
  +2P Y SA SP ) + 

1

XAXP
  

+ 
SA

 T
 

UAA

kBT
 ( P Y XA SP  XA SA)  + 

SP

 T
 

UAA

kBT
 (YXP SP  P Y  XP SA)   

+ 
UAA

kBT
2 [XA  SA

2
  YXP SP

2
  + P Y  SA SP (XP  XA)]  

E

 kBT
2 = 0.         (2.31) 

   
XA

 T
  

UAA

kBT
( SA  P Y SP)  + 

SA

 T
 

UAA

kBT
 XA  

1

A
 + 

SP

 T
 

UAA

kBT
 P Y  XP   

 
UAA

kBT
2 [XA  SA + P Y XP SP]  = 0.             (2.32) 

    
XA

T

UAA

kBT
(P YSA  YSP)  + 

SA

T
 

UAA

kBT
 P Y  XA  + 

SP

 T
 

UAA

kBT
 YXP  

1

P
  

 
UAA

kBT
2 [YXP  SP + P Y XA SA]  = 0.             (2.33) 

where, we have used, 

A =  [P2(cos A)]
2 

 SA
2
 

and  P  =  [P2(cos p)]
2 

 Sp
2
.             (2.34) 
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The relevant derivatives are obtained by solving the three simultaneous equations 

2.31, 2.32 and 2.33 and hence CV is calculated.   

2.4.2 Method of calculation 

All the temperatures are referred to the N-I transition temperature of the A-type 

of pairs i.e., we use the reduced temperature TR = T/(TNI)A. The parameter UAA is 

eliminated using the MS condition given by equation 2.15 with (TNI)A, i.e., we write 

UAA/kB(TNI)A = 4.541. The four  independent parameters of the model are R1, R2, Y 

and P. We have used R2 = 0.6. The value of R1 is estimated as follows. For TR  0.55, 

we have from equation 2.16, E = 0.1 R1kBTNI. Taking TNI = (TNI)A = 500K, we get  

E  R1 7 10
22 

J. At TR  0.55, if the intermolecular separation r is taken to be 5Å, 

then, from figure 2.5, we have E  0.1 10
19 

J. Hence, we take R1 = 15. We use 

values of Y between 0.8 and 2, and P between 0.5 to 1. The significance of Y 1 and 

P 1 will be discussed in the next section. At any reduced temperature TR, for the 

assumed set of the four parameters of the problem, consistent  values of SA and Sp are 

found using equations 2.28 and 2.29 for each XA which is varied from 0 to 1. The free 

energy is calculated in each case. Near the minimum of F with respect to XA, equation 

2.27 is used to find the consistent value of XA. We usually get more than one set of 

self consistent values of XA , SA and Sp. The stable solution corresponds to the one 

with the lowest value of F. Equation 2.24 gives the free energy of the nematic phase 

(FN) with SA 0 and Sp 0. Note that in the isotropic phase, SA = Sp = 0, ZA = ZP =1 

(see equations 2.25 and 2.26) while in general XA  XP (see equation 2.27). Hence, 

equation 2.24 gives the free energy of the isotropic phase (FI) with SA = SP = 0. The 

nematic phase is stable if F = FN  FI is negative. The average orientational order 

parameter is calculated as 

S  = XASA + XPSP     (2.35) 

The necessary integrals have been evaluated numerically using a 32 point 

Gaussian quadrature method in double precision. In the next section, we present the 

results and compare them with experiments and other theoretical models.  

 

 



Chapter-2 

 

-46- 

2.4.3 Results and discussion 

2.4.3.1 First order N1-Nd transition ending in a critical point 

We denote the nematic phase with a relatively larger value of XA as the Nd phase 

and the one with a relatively smaller value of XA as the N1 phase. Since the N1 and the 

Nd phases have the same symmetry, we can expect a first order N1-Nd transition or a 

continuous evolution of N1 to Nd beyond a critical point. For some values of the 

model parameters and in a narrow range of temperatures, the free energy has two 

minima with respect to XA. The presence of two minima indicates the existence of two 

different nematic phases with different values of XA. Indeed, by a careful numerical 

calculation we find that, at some temperature, the two minima in the free energy 

become equal. This implies a first order transition between the two nematic phases 

associated with a jump in XA. We illustrate this trend for Y =1.4 in figure 2.6. Note 

that the calculations are made in a very narrow range of TR values and it is rather easy 

to miss this transition in the calculations.  

Figure-2.6. Molar Helmholtz free energy difference F = Fnematic Fisotropic 

plotted as a function of the relative concentration of the A-type of pairs 

(XA) for Y = 1.4 and P = 0.6954, at three temperatures near the N1-Nd 

transition point, (a) TR = 0.62659436 at which the Nd phase has lower free 

energy, (b) TR = 0.62659386 at which the free energy of the Nd phase is 

equal to that of the N1 phase and (c) TR = 0.62659340 at which the N1 

phase has a lower free energy. 
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Sine the N1-Nd transition is a result of the change of the pair configuration from 

P-type to A-type, naturally we can expect the transition to take place at TR  R2. 

Indeed, for Y 1, we get the N1-Nd transition at TR  0.6, for P <0.573.  

We have found that a significant negative deviation from the geometric mean 

(GM) approximation for the mutual interaction (i.e., P <1 in equation 2.18) is 

necessary to get the N1-Nd transition. The significance of the negative deviation will 

be discussed in the next subsection. As the deviation becomes smaller (i.e., as P is 

increased keeping all other parameters fixed), the jump in XA decreases, until a critical 

point is reached beyond which there is no phase transition separating the two nematic 

phases (see figure 2.7). 

Figure-2.7. Relative concentration of the A-type of pairs (XA) plotted as a 

function of the reduced temperature T/TNI for Y = 1.4 for different values 

of P. (a) P = 0.6954, (b) P = 0.6956, (c) P = 0.6957, (d) P = 0.6958. 

We have also evaluated the heat of the N1-Nd transition (i.e., U, see figure 2.8). 

The transition is found to be very much weaker than the N-I transition. In the range of 

our calculations, the highest heat of transition is ~ 50joule/mol, i.e., an order of 

magnitude smaller than the corresponding value at the N-I transition. Consequently, 
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the specific heat shows a strong peak as the transition point is approached from either 

side (see figure 2.9) as in the experimental diagram (figure 2.1a). As the critical point 

is approached, the sharpness of the peak increases further. We have shown the 

temperature variations of the order parameters SA, SP and S  near the N1- Nd transition 

point in figures 2.10 to 2.12 respectively. Since XA has a positive jump at the N1- Nd 

transition, the corresponding jump in SA is positive while that in SP is negative. 

However, note that SP>SA since we have used Y>1. Thus the variation of S is similar 

to that of SP. The diagram showing the jump in SA resembles the trend in the 

experimental diagram shown in figure 2.2. For the sake of comparison, we have 

plotted in figure 2.13 jumps in the various parameters like XA, SA, SP, S and U
~

 = 

2U/(NkBT) as functions of P for Y =1.4. All these jumps decrease continuously to zero 

as P  approaches Pcr  0.69573. 

Figure-2.8. Internal energy per mole of pairs (2U) plotted as a function of 

T/TNI for Y = 1.4, for different values of P. (a), (b), (c) and (d) have the 

same significance as in figure 2.7. 
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Figure-2.9. Specific heat at constant volume per mole of pairs (2Cv) 

plotted as a function of T/TNI for Y = 1.4, for different values of P. (a), (b), 

(c) and (d) have the same significance as in figure 2.7. 

Figure- 2.10. Order parameter of the A-type of species (SA) plotted as a 

function of T/TNI for Y = 1.4, for different values of P. (a), (b), (c) and (d) 

have the same significance as in figure 2.7. 
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Figure-2.11. Order parameter of the P-type of species (SP) plotted as a 

function of T/TNI for Y = 1.4, for different values of P. (a), (b), (c) and (d) 

have the same significance as in figure 2.7. 

Figure-2.12. Averaged order parameter (S
–

) plotted as a function of T/TNI 

for Y = 1.4, for different values of P. (a), (b), (c) and (d) have the same 

significance as in figure 2.7. 
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Figure-2.13. Variations of the jumps in XA, SA, SP, S
–

 and U
~

 = 2U/(NkBT) 

at the N1-Nd transition point as functions of P for Y = 1.4. Note that the 

jumps in SP and S
–

 are negative. The jumps decrease continuously to 

zero as P approaches Pcr = 0.69573. The light dashed lines are 

etrapolated from lower P values. 

2.4.3.2 Significance of negative deviation from the GM approximation 

It is interesting to compare these results on N1-Nd transition with some earlier 

models of the N-I transition. As in most theories of mixtures, Humphries et al.[10] 

used the well-known geometric mean approximation for the mutual interaction (i.e, P 

= 1 in equation 2.18), since it is mathematically convenient and can be justified if only 

the dispersion interaction is relevant. In most binary mixtures of nematogens, the N-I 

transition curve is concave towards the isotropic phase in the temperature - 

concentration phase diagram. In other words, the N-I transition temperatures of the 

mixtures have a negative deviation from the linear dependence on the relative 

concentration. Humphries and Luckhurst [11] have shown that, these results can be 
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theoretically explained by assuming that the mutual attractive interaction between the 

two components is less than that given by the geometric mean value of the interaction 

energies of the pure components. Also, a comparison with the experimental data 

shows that this negative deviation from the GM approximation increases as the 

molecular structures of the two components become more dissimilar [11]. Later, 

Nakagawa and Akahane [12] have extended the molecular mean field theory of 

nematic mixtures developed by Humphries et.al. [10], by introducing an effective 

repulsive potential which depends on the average excluded volume. They have shown 

that, even if the GM approximation is assumed to hold good for the attractive part of 

the mutual interaction, the concave shape of the N-I transition curve naturally follows 

from the hard core interactions. In fact, assuming the GM approximation to hold 

good, hard rod theories of mixtures of rods with two different  length to breadth ratios 

[12, 13, 14] give rise to phase boundaries which would correspond to  P < 1 in the 

context of the theory of Humphries et al [10].  

Palffy-Muhoray et al. [15] have extended the Humphries  et al. model by taking 

into account the volume dependence of the potential functions. Apart from getting a 

nematic-isotropic coexistence range, they have also found a nematic-nematic 

coexistence at sufficiently low temperatures when the TNI values of the two 

components differ considerably. Indeed, experiments on mixtures of two very 

dissimilar chemical species have shown such a coexistence [16, 17] of two nematic 

phases. However, due to the shape factor alone, the N1-Nd transition is not found 

either theoretically or experimentally. 

In chapter-5, we develop a hybrid model including the hard rod features of the 

interactions and get the N1-Nd transition without assuming any deviation from the GM 

approximation for the attractive interaction i.e., the hard rod effects alone are 

sufficient to give rise to the N1-Nd transition. We also show in chapter-5, in agreement 

with Nakagawa et.al. [12], that neglecting the hard core interaction is equivalent to a 

negative deviation in the geometric mean approximation for the effective mutual 

attractive interaction between A and P types of pairs and this deviation increases as 

the two components become structurally more dissimilar. In our present calculations, 

the medium is assumed to be a mixture of A and P types of pairs and the hard rod 

effects have not been taken into account. Hence, the negative deviation from the GM 

approximation reflects the excluded volume effects.  



Chapter-2 

 

-53- 

2.4.3.3 Effect of variation of the parameter Y: 

Since the P-type of pairs are shorter than the A-type of pairs, we may expect that 

UPP <UAA i.e., Y <1 (see equation 2.17). In this case, the P-type component will have a 

lower TNI value than the A-type component. However, as we discussed in the 

introduction, the A-type configuration may actually occur as pairs due to frustration 

effects. The frustration effect may also effectively reduce the orientational potential 

between the neigbouring A-type pairs. On the other hand, the P-type configuration 

should favour the formation of large clusters which can enhance the orientational 

potential of the effective pairs used in our model. Thus, even though the P-type 

configuration is favoured to occur at lower temperatures, it is quite possible that the 

orientational potential UPP may be considerably higher than UAA of the A-type 

species, which are favoured to occur at higher temperatures. This is equivalent to 

taking Y >1 in equation 2.17. Hence, we have carried out the calculations for Y 1 and 

also for Y >1.  

When  Y= 0.9, we get Pcr  0.531. When Y= 0.999, Pcr increases to about 0.5732. 

When Y >1, we get the N1-Nd transition for still higher values of P. For example, 

when Y=2, Pcr 0.82. The increase of Pcr with Y can be interpreted as follows. 

For a given value of Y, we have UAP  P (see equation 2.18). When P<Pcr, UAP is 

sufficiently low to make the ‘middle’ values of XA relatively less favoured. This 

causes a ‘hump’ in the variation of the free energy (F) with respect to XA at XA 0.5 

resulting in two minima in F as in figure 2.6. As mentioned earlier, the N1-Nd 

transition occurs at a temperature (TNN) at which these two minima have equal values 

(see figure 2.6). As the N1-Nd critical point is approached, i.e., as P is increased, UAP 

becomes larger, the hump in the free energy decreases and finally vanishes at P=Pcr. 

As UPP  Y and UAP  P Y (see equations 2.17 and 2.18), if Y is increased, UAP 

grows more slowly than UPP. Therefore, in the variation of F vs XA, the minimum 

with smaller value of XA becomes deeper than the other minimum, i.e., N1 phase 

becomes stable as in figure 2.6(c) and TNN increases. To make the hump vanish again, 

a higher value of Pcr is required. It can be seen from figure 2.14 that, Pcr varies 

roughly linearly with Y for higher values of Y. 
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Figure -2.14. The critical value of P plotted as a function of Y. 

Irrespective of the value of Y, the N1-Nd critical point is approached as P is 

increased. On the other hand, the variation of TNN with respect to P depends on the 

value of Y. For Y = 1, UAA=UPP, and XA, SA, SP values in the N1 phase are the same as 

XP, SP, SA respectively in the Nd phase. This makes S
–
 independent of XA and there is 

no jump in S
–
 at the transition. Also, TNN/TNI = R2=0.6, and does not vary with P. For 

Y>1, the P-type pairs are more favoured than the A-type pairs leading to TNN/TNI>R2, 

i.e., as Y is increased, XA decreases. For example, in figure 2.15(d), at the critical 

point, XA 0.54 for Y=0.9, whereas XA 0.47 for Y=1.4 in figure 2.7(d). Therefore, a 

decrease in the value of P(<Pcr) with Y>1 leads to a greater stability of the N1 phase. 

To bring about the N1-Nd transition, a higher value of TNN is required. This trend is 

seen, for example in figure 2.7 (d) to (a). On the other hand, for Y<1, the trend is 

opposite as seen in figure 2.15 (d) to (a). Also, a decrease in the value of Y decreases 

both UPP and UAP. Thus, S
–
 at the critical point decreases with Y as can be seen from 

figures 2.12(d) and 2.16(d). Note that, with Y=0.9, as the temperature is increased, the 

average order parameter S
–
 increases in a small range of temperatures near the N-N 

transition (figure 2.16). We have calculated S
–
 over a wider range of temperatures to 

verify that, away from TNN, S
–
 decreases in general as the temperature is increased. The 

variation of S
–
 with temperature is shown in figure 2.17 for Y =1.4 and 0.9.  
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Experimentally it is found that the jump shown in figure 2.2 corresponds to a 

downward jump in S
–

 as the temperature is increased. This suggests that, it is 

reasonable to take Y >1 in equation 2.17, as was argued earlier. 

Figure-2.15. Relative concentration of the A-type of pairs (XA) plotted as 

a function of the reduced temperature T/TNI with Y = 0.9 for different 

values of P. (a) P = 0.5307, (b) P = 0.5308, (c) P = 0.5309, (d) P = 0.5310. 

Figure-2.16. The jump in S
–

 plotted as a function of the reduced 

temperature T/TNI for Y = 0.9 and different values of P. (a), (b), (c) and 

(d) have the same significance as in figure 2.15. 
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Figure-2.17. Variation of SA, SP and S
–

 plotted as a function of the 

reduced temperature T/TNI over a wider range of temperatures for 

(a) Y =1.4 and P = 0.695 which is just below Pcr and (b) Y =0.9 and P 

= 0.53  

 

 

 

 

(a) 

(b) 



Chapter-2 

 

-57- 

2.5 Conclusions 

A simple molecular theory of strongly polar compounds has been proposed by 

Madhusudana and Jyothsna Rajan to explain the phenomenon of double reentrance 

exhibited by such compounds. We have extended it to develop a molecular theory of 

the nematic-nematic (N1-Nd) transition. We assume the medium to be a mixture of 

pairs having either parallel (P) or antiparallel (A) near neighbour configurations. We 

have extended the Maier-Saupe theory of nematic liquid crystals to develop a theory 

of such mixtures. We have shown that the N1-Nd transition is a weak first order 

transition and which disappears above a critical  point [18]. The N1-Nd transition is 

associated with a jump in the relative concentration of the A and P types of pairs. We 

have also calculated the specific heat anomaly around the transition region. Usually, 

the effective mutual interaction between the two different species in a mixture is 

assumed to be the geometric mean of the interaction of the pure species. The 

consequence of a deviation from this approximation is discussed. We have shown that 

a negative deviation from the geometric mean approximation is required to get the N1-

Nd transition. The theoretical results are discussed in comparison with the available 

experimental data. In the next chapter, we extend the model to include the layering 

interactions and develop a model describing the smectic liquid crystals. 
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