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Chapter-3 

A Molecular Theory for Phase Diagrams Involving Smectic 

and Nematic Phases Exhibited by Strongly Polar  

Compounds.  

3.1 Introduction  

As described in chapter-1 (see section 1.2), in the uniaxial nematic (N) liquid 

crystal composed of rod like molecules, the long axes of the rods tend to be aligned 

along the director represented by the unit vector n
^
 (see figure 1.1, chapter-1). The 

extent of orientational order is represented by the order parameter S defined as  

S = 
1

2
3cos

2
i  –1  = P2(cos i)     (3.1) 

where i  is the angle between the long axis of the i
th

 molecule and the director, P2 is 

the second Legendre polynomial and   denote a statistical average.  

In smectic liquid crystals, the centres of mass of the rods have an additional quasi 

long range one dimensional periodic order. The resulting density modulation, on 

Fourier analysis, can be expressed in a series of sinusoidal functions. Of these, the 

dominant one is the first harmonic. Hence, the smectic density wave can be 

represented by   

z cos(qz)]     (3.2) 

where  is the average density of the medium, q  is the wave vector along the layer 

normal with q = |q | =2 /d and d is the average spacing of the layers. We choose the 

laboratory frame of reference with the Z-axis along the layer normal. The extent of 

layering (smectic) order is measured by the normalised amplitude of this density wave, 

called the smectic order parameter , given by  

cos(2 zi/d )             (3.3) 

where, zi is the z coordinate of the centre of mass of the  i
th

 molecule. When there is no 

layering order,  = 0 and the medium has uniform density o corresponding to the 
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nematic or the isotropic phase. Different variations of layering and inlayer order are 

possible leading to different types of smectic liquid crystals. If q n
^
, i.e., the director is 

normal to the layers, it is termed as the smectic A (SmA) liquid crystal (see figure 1.2, 

chapter-1). In this chapter, we describe various phase transitions involving SmA and 

nematic liquid crystals in highly polar compounds. We begin with a review of the 

experimental results. 

3.1.1 The SmA-N transition 

As explained in chapter-1 (see section 1.4), on cooling mesogenic compounds 

from the isotropic (I) phase, before transforming into a solid crystal (K), the shorter 

homologues exhibit the nematic (N) phase while the longer homologues exhibit the 

smectic A phase also. i.e., the usual sequences of phase transitions are:  I  N  K or  I 

 N  SmA  K or I  SmA  K. Often, the shorter homologues of the smectogens 

exhibit a second order SmA-N transition at which the order parameter  continuously 

goes to zero. As the chain length is increased, the nature of the transition changes over 

to first order and also the temperature range of the N phase decreases and finally 

vanishes. Very long homologues exhibit a first order SmA-I transition. A typical phase 

diagram illustrating the vanishing of the N phase for higher homologues is shown in 

figure 3.1. 

Figure - 3.1. Plot of liquid crystal transition temperatures against the 

number of carbon atoms (n) in the chain for n-alkoxy benzylidene amino 

biphenyls [1]. , ,  and represent N-I, SmA-N, SmA-I and C-N or C-
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SmA transition respectively, where C denotes the solid crystal. The two 

branches in the N-I transition curve correspond to the odd (lower 

branch) and even (upper branch) values of n.  

Liquid crystals made of strongly polar molecules exhibit some unusual phase 

sequences. We describe these in the next few sections. 

3.1.2 Nematic reentrance 

 The structural formula of the strongly polar compound n-alkoxy cyano 

biphenyl (nOCB), where n stands for the number of carbon atoms in the alkoxy chain, 

is shown below. 

 

The sequence of phase transitions is I (78) N (56) K for 6OCB and I (79.5) N (67) 

SmA (54) K for 8OCB, where the numbers in the parenthesis represent the transition 

temperatures in 
0
C.  

Cladis  [2] found that mixtures of certain compounds with strongly polar cyano or 

nitro end groups, on cooling from the isotropic phase, exhibit  the sequence of  

transitions: I  N  SmA  NR  K. The second nematic phase that occurs at 

temperatures lower than the range of occurrence of smectic phase is called the re-

entrant nematic (NR) phase (eg, 6OCB and 8OCB mixture, figure 3.2a). A similar 

phenomenon was found later on in pure compounds under elevated pressures 

(eg.,8OCB) [3] (figure 3.2b). Subsequently such a phase sequence has been found in 

some pure compounds at normal pressures also, for  eg., in Octyloxybenzyloxy-

benzylidene-cyanoaniline (OBBC) [4]. 

3.1.3 Double reentrance 

On cooling further, below the NR phase, another smectic phase re-enters in some 

pure compounds or binary mixtures leading to the sequence: I  N  SmAd   NR  

SmA1  K. This phenomenon is called  double re-entrance. The lower temperature re-

entrant smectic phase, called the smectic-A1 (SmA1) phase, is found to have a layer 

spacing d  l, whereas the higher temperature smectic phase, called the smectic-Ad 

(SmAd) phase, has l < d < 2l, where l  is the molecular length. This partial bilayer 

C N H2n+1CnO 
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arrangement is understood on the basis of formation of appropriate antiparallel dimers 

of the molecules and hence the suffix „d‟ is used to denote  dimers and the suffix „1‟ 

for the monomers (see section 1.6.5, chapter-1). 

 

Figure - 3.2. (a) A typical temperature(T) - concentration (X) phase 

diagram of a binary mixture of polar compounds with X as wt% of 6OCB 

in 8OCB showing the nematic reentrance. The reentrant nematic occurs 

in the in the super cooled regime and the melting line is not shown [5]. (b) 

A reentrant phase sequence in pressure (p) - temperature (T) phase 

diagram for 8OCB [3]. 
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Figure - 3.3. (a) The temperature (T) - concentration phase diagram for  

binary mixtures of n-alkyloxybenzoyloxycyano-stilbene (n shown along 

the X- axis) showing the double reentrance with the bounded SmAd 

phase [6]. (b) The pressure (p) - temperature (T) phase diagram [7] of the 

homologue with n = 8 showing similar features. 

For example the compound octyloxybenzoyloxy cyano- stilbene (T8) shows 

double reentrance [8]: 

 

When the relative concentration in case of a binary mixture or the pressure applied to 

a pure compound is varied, the SmAd phase gets bounded. This is shown in figure 3.3 

3.1.4 Multiple reentrance and reentrant nematic lake 

 A few pure compounds, show a quadruple re-entrant sequence viz. 

I N SmAd NR SmAdR NR SmA1 as the temperature is lowered. Multiple 

reentrance in the pure compound DB9ONO2 (the ninth homologue of n-alkoxyphenyl-

nitrobenzoyloxybenzoate, DBnONO2) at atmospheric pressure was first reported by 

Tinh et al [9] though they did not identify all the phases. Later, DB9ONO2 was found 

to show the sequence [10], 

 

In the above, it may be noted that, apart from the SmA phases, the compound 

also exhibits the SmC
~

  phase which has, in the layers with tilted arrangement of 

molecules, the aromatic and the aliphatic parts alternating with some periodicity. The 

SmA2 phase has d 2l and SmC2 is the tilted version of SmA2. In our theoretical 

models we do not consider the SmC
~

 , SmA2
 

and
 

the SmC2 phases. The 10
th

 

homologue (DB10ONO2) exhibits a similar sequence at higher pressures (see figure 

3.4a) [11]. This behaviour is also seen in some mixtures over a very narrow range of 

concentrations (eg., ~50% molar mixture of DB8ONO2 and DB10ONO2) [10] (see 
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figure 3.4b). The temperature - concentration phase diagrams of mixtures of polar 

compounds not belonging to the same homologous series show other interesting 

features like a re-entrant nematic lake surrounded by the SmA phase [12] or a SmAd 

island surrounded by the nematic region [13] (figure 3.4- c, d). A detailed review of 

various experimental studies on the SmAd-SmA1 phase transition boundary and the 

NR region has been given by Shashidhar et al [14]. We do not specifically discuss 

SmAd-SmA2 critical point on the basis of our theory. Experimentally this transition 

has been studied in detail by Shashidhar et al [15].   

 

Figure-3.4.(a)The pressure-temperature phase diagram showing multiple 

reentrance and different smectic phases in DB10ONO2 [11]. (b) Similar 

phenomenon in temperature – concentration (X) plane in binary mixtures, 

(a) (b)

(d)(c)

re

re

 



Chapter-3 

 

-65- 

with X as the mole % of DB10ONO2 in DB8ONO2 [10]. In (a) and (b), SmA1, 

SmAd and SmA2 are denoted as A1, A2 and Ad respectively. (c)Re-entrant 

nematic lake surrounded by the SmA phase [12] where, 10.O.NCS is decyloxy 

isothiocyanatophenyl benzoate and 11OPCBOB is undecyloxyphenyl 

cyanobenzyloxy benzoate. (d) SmAd (denoted as SAd) island surrounded by 

the nematic region where nBCB is cyano biphenylyl n-alkylbenzoate and 

nCN is cyanophenyl n-alkyl benzoate [13]. In all the diagrams,  the reentrant 

nematic is denoted as Nre. 

There have been many attempts to explain double reentrance using 

phenomenological as well as molecular theories. Prost has developed a very 

successful Landau theory of the various phases exhibited by such compounds [16]. 

We have given a brief review of this theory in chapter-1 (see section 1.6.4). In the next 

section, we give some of the phase diagrams predicted by an extension of this theory 

by Prost and Toner [17]. 

3.1.5 Phase diagrams predicted by Prost’s phenomenological theory 

Different types of phase diagrams have been predicted by the phenomenological 

theory developed by Prost [16, 17] depending on the parameters used. In the theory, 

two coupled smectic order parameters corresponding to the molecular length l and 

another incommensurate length l  such that l< l  <2l, have been used. Some of the 

phase diagrams predicted by this model are shown in the figures 3.5 and 3.6. 
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Figure- 3.5. Phase diagrams involving SmA1, SmAd and N phases, 

predicted by the dislocation loop melting theory of Prost and Toner [17] 

without considering fluctuations. The thick and the dashed lines indicate 

first and the second order phase transitions respectively and C denotes a 

critical point. r and r are general variables which can be mapped to 

pressure and temperature or pressure and concentration etc. 

 

 Figure-3.6. Phase diagrams predicted by the fluctuation-corrected 

dislocation loop melting theory of Prost and Toner [17]. A1 and A2 are 

general variables which can be mapped to pressure and temperature or 

pressure and concentration etc. 

As de Gennes and Prost remark [16], “if the phenomenological approach provides 

a unifying framework for the description of the frustrated smectics, it does not give 

much detail on what is happening at a molecular scale”. In the next section we discuss 

the molecular origin of the „two lengths‟ assumed by Prost. 
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3.1.6 Molecular origin of  the ‘two lengths’ assumed in Prost’s model 

Various theories have been proposed to explain the molecular origin of the „two 

lengths‟ assumed by Prost. In all the molecular theories, the SmAd structure is 

explained by assuming that the medium consists of antiparallel dimers [18] having the 

overlap of the aromatic parts. In the compounds which show double reentrance, the 

lower temperature smectic liquid crystals (SmA1) has the monolayer structure [19]. 

We have reviewed several molecular models which have been proposed for the 

strongly polar compounds in section 1.6.5, chapter-1. We have also described in 

chapter-2, a simple model proposed by Madhusudana and Jyothsna Rajan [20], to 

explain the molecular origin of the „two lengths‟ assumed in the Prost‟s 

phenomenological model [16]. The basic idea in this model is that the molecular pairs 

can change over from the anti-parallel (A) to the parallel (P) configuration as the 

intermolecular separation (r) is reduced due to cooling or due to increase of pressure. 

This change over occurs due to a competition between the repulsive dipole-dipole 

interaction and the attractive dipole-induced dipole and chain-chain interactions (see 

section 2.2, chapter-2). Recent experiments [21] showing the presence of polar short 

range order at low temperatures support this model. The model [20], with suitable 

modifications, gives a variety of phase diagrams. In chapter-2, we adopted this model 

for describing the N1-Nd transition. In this chapter, we extend this model and develop 

a molecular theory of smectic mixtures, on the basis of the McMillan [22] theory of 

SmA liquid crystals. In the next section we give a brief review of the McMillan 

theory.  

3.2 The McMillan theory of SmA liquid crystals 

McMillan extended the Maier and Saupe (MS) [23] theory by including a 

potential corresponding to the one dimensional translational order of SmA liquid 

crystals. As explained in chapter-1 (see section 1.4.2), the compounds exhibiting the 

SmA phase usually have a central aromatic core and flexible alkyl chains at the two 

ends. The dispersion interaction energy is very strong between the aromatic moieties 

since they have large polarisabilities. Thus the aromatic parts of the neighbours tend to 

overlap and arrange themselves in a layer. The layer-structure is stabilised if the alkyl 

chains, which separate the layers, are sufficiently long. This is the physical idea 
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behind the model proposed by McMillan. Starting from an anisotropic pair interaction 

energy, and restricting the expansion to only one Fourier component, McMillan wrote 

the single particle potential of the i
th

 molecule as  

Ui(cos i, zi ) = Uo [1+  cos(2 zi /d)] S (3 cos
2 

i 1)/2  (3.4) 

where U0 is the MS interaction parameter, i the angle between the long axis of the i
th

 

molecule and the director, S the orientational order parameter defined in equation 3.1 

above, d the layer spacing, zi the coordinate of the centre of the i
th

 molecule measured 

along the layer normal and   the coupled order parameter, which is a measure of the 

amplitude of the density wave in the SmA phase, defined by  

 = cos(2 zi /d) (3 cos
2 

i 1)/2 .   (3.5) 

in which  denote a statistical average. The McMillan parameter  is given by  

 = 2 exp[ (  ro / d)
2
 ]                                          (3.6) 

where r0 which represents the „range‟ of the dispersion interaction is of the order of 

the length of the rigid core of the molecules. 

The molar internal energy is given by 

 U =  
N

2
 Ui  =  

N

2
U0(S

2 
+

2
)    (3.7) 

where N is the Avogadro number. The factor (1/2) arises since each molecule is 

counted twice while finding the average. The molar entropy is written as 

 S  = NkB ln f(z,cos )     (3.8) 

where kB is the Boltzmann constant and f(z,cos ) is the normalised single particle 

distribution function. The molar Helmholtz free energy is written as 

 F = U  TS.                     (3.9) 

The normalised distribution function found by minimising the free energy is given by 

 f(zi,cos i) = Z
1
exp( Ui/kBT)    (3.10) 

where Z is the normalising integral. The order parameters S and   are calculated 

using 
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 S = 
1

d
 
– d/2

+d/2

dz
0

1

d(cos ) f(cos )P2(cos ).    (3.11) 

  = 
1

d
 
– d/2

+d/2

dz
0

1

d(cos ) f(cos ) cos(2 z/d) P2(cos ).  (3.12) 

The above equations have the following solutions: 

(i) S = 0,  = 0  corresponding to the isotropic phase, 

(ii) S  0,   = 0, corresponding to the nematic phase, 

(iii) S  0,    0, corresponding to the SmA phase.           (3.13) 

The MS condition is given by  

U0/kBTNI = 4.541     (3.14) 

where TNI is the N-I transition temperature. Hence, U0 just fixes the N-I transition 

temperature. The McMillan parameter   is a measure of the strength of the layering 

potential. It is clear from equation 3.6 that, for a given core length r0, the value of  

increases with an increase of the layer spacing d, i.e.,  increases with the increase of 

chain length in a homologous series. Thus the temperature-   phase diagrams of the 

McMillan theory are compared with the temperature-chain length phase diagrams 

obtained in experiments.  

McMillan showed that,  < 0.7 results in a second order SmA-N transition, which 

becomes first ordered in nature for   0.7, i.e., the phase diagram has a tricritical 

point at  = 0.7. Further, the SmA phase has a direct transition to the isotropic phase 

for   0.98. The theoretical phase diagram broadly reflects the experimental trends 

(see figure 3.1) in a homologous series.  

We now extend the McMillan theory to develop a theory for smectic liquid 

crystals made of strongly polar compounds. For simplicity, we first consider the 

nematic order to be saturated, i.e., S=1. 
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3.3 Theory of smectic liquid crystals made of strongly polar 

compounds with a saturated nematic order  

3.3.1 Theoretical model 

3.3.1.1 Assumptions 

 In order to simplify the calculations, the following assumptions are made. 

 

(1) As mentioned above, the nematic order is taken to be saturated and only 

the smectic interactions are considered. 

(2) For the sake of simplicity, as explained in chapter-2, we assume that the 

medium consists of pairs of molecules which have either an antiparallel (A) or 

parallel (P) configuration.  

(3) As we described in chapter-2, the A-type (P-type) configuration is 

favoured at lower (higher) densities (see section 2.2, Chapter-2). The energy 

difference between the two configurations is written as  

E =  EA EP  = R1 kBT*  
R2 

TR
 1                                           (3.15) 

where kB is the Boltzmann constant, EA and EP are the configurational energies of the 

A-type and P-type pairs respectively, T* is some reference temperature, R1 kB T* is an 

interaction parameter and TR = T/T* is the reduced  temperature. R2 is the reduced 

temperature at which the density of the medium is such that E  becomes zero. For 

TR> R2 , the A-type configuration has the lower energy. 

(4) The McMillan parameters for A-type ( A) and P-type ( P) configurations 

can be written as 

A = 2 exp(  [  ro / (ro + 2c)]
2
 )                                         (3.16) 

and

P = 2 exp( [  ro / (ro + c)]
2
 )                                            (3.17) 

where ro and c are the lengths of the aromatic and chain moieties of the molecule 

respectively. P can be expressed in terms of A using  
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c

r0
  = 

1

2
 

ln(2/ A)
  1 .    (3.18) 

(5) It is clear that the geometrical parameters of the A and P types of 

configurations are different. Hence, as in case of nematic potential used in chapter-2, 

we assume the mutual smectic interaction parameter  

AP = PA = E  = Q A P                                             (3.19) 

where Q  1  indicates a deviation from the geometric mean (GM) approximation for 

the mutual smectic interaction and (Q –1) is a measure of this deviation. 

(6) In the previous chapter, E was taken to be a function of temperature 

only (see equation 3.15 above). But, we note that the nematic lake is found in mixtures 

of chemically dissimilar compounds. Hence, an exact description of this phenomenon 

requires a general theory of mixtures. However, for the sake of simplicity we assume 

that the McMillan parameter A (or P) is adequate to represent a given concentration 

in such mixtures. In a homologous series, the chain length of the molecule and hence 

 vary. The chain-chain interaction energy and hence EP can also be expected to vary 

with .  We assume that 

E  ( A)
n
     (3.20) 

As in chapter-2, the value of E is calculated for r = 0.5 nm for various values of 

chain length c, with the core length equivalent to that of 10 carbon bonds, dipole 

moment p = 6 Debye = 2 10 
–29

 Cm, polarisability of the core =20Å
3
 = 20 10

–30
m

3 

and chain-chain interaction constant 1.1 10
–77

 SI units/carbon bond (see section 2.2, 

chapter-2 for details). A is calculated using equation 3.16 above. By plotting 

ln( E/10
–19

J) as a function of ln( A), it is seen that the slope  4 for the range of A 
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relevant in our calculations (see figure-3.7).  

  Figure- 3.7. Plot of ln( E/10
–19

J ) with ln( A). The slope 4 . 

Hence we take  

E  ( A)
4
     (3.21) 

Since  E linearly depends on the interaction parameter R1, we assume that 

R1 = R1*( A)
4
     (3.22) 

where R1* is an input parameter. As will be discussed later (section 3.3.3.3 and 

section 3.4.2.3), inclusion of this variation of E results in phase diagrams containing 

an NR lake. Though the above calculation has been made for variation of chain length 

in a homologous series, the strong dependence of E with respect to A appears to be 

valid only in case of mixtures of chemically dissimilar compounds which show the NR 

lake in the temperature-concentration plane (see figure 3.4c). Mixtures of compounds 

belonging to the same homologous series show only SmA1-SmAd transition and not 

an NR lake. R2 can also be expected to depend weakly on the chain length in a 

homologous series i.e., on the McMillan parameter . We ignore this dependence of 

R2 with . 

(7) As we have described in chapter-2, most experimental phase diagrams on 

binary mixtures of nematogens correspond to a negative deviation from the geometric 

mean (GM) approximation for the mutual interaction between the components and  

the deviation increases as the  molecular structures of the two components become 

more dissimilar. Further, in chapter-2, we have shown that a negative deviation is 

necessary to get a nematic to nematic phase transition in polar compounds. We can 

expect a similar negative deviation in the mutual smectic interaction also, i.e., for the  

McMillan parameter AP. 

As we have discussed, the P-type and A-type configurations give rise to the SmA1 

and SmAd phases respectively. There have been some experiments on binary mixtures 

of polar compounds [24] in which one component shows SmA1 and the other shows 

SmAd. In these cases, the smectic-nematic transition line  has an appreciable concave 

shape, especially when the components have a large difference in the layer spacings, 

indicating a strong negative deviation from the GM approximation for the mutual 

interaction i.e., Q < 1 in equation 3.19. As the chain length in a homologues series is 
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increased, the numerical value of A as also the structural dissimilarity between the P-

and A-types of pairs is enhanced. Hence it is reasonable to assume that as A increases 

the deviation |Q 1| from GM rule increases, or Q (<1)decreases. Since both A and P 

vary in a homologous series, we expect Q to depend on the ratio A/ P (which is a 

rough measure of the dissimilarity) and we assume 

Q = Q* ( A/ P)                                                       (3.23)  

 

where Q* is a constant chosen such that Q < 1 in the entire range of A used. Since P 

increases with the chain length more rapidly than A, the ratio A/ P decreases 

moderately, and leads to results which can be compared with experimental data. For 

example, with Q*  0.12, we get Q  0.6 for A 0.4 while Q  0.4 for A 1. 

In chapter-5, where a hybrid model is developed including the hard core 

interactions, we show that the excluded volume effects cause the negative deviation 

from the GM approximation and that the magnitude of the deviation increases as the 

two components become geometrically more dissimilar. In our present calculations 

where the hard core interactions are not taken into account, as in the previous chapter, 

the assumed negative deviation reflects the excluded volume effects.  

3.3.1.2 Expressions for the free energy and the order parameters 

Extending the McMillan theory to the case of mixtures and considering only the 

smectic interactions, the potential energy of the i
th

 A-type of pair can be written as 

UAi =   U0XA A A cos(2 zAi/d)  U0XP AP P cos(2 zAi/d)       (3.24) 

where XA, XP and A , P are the mole fractions and translational order parameters of the 

A- and P-types of pairs respectively, and d is the average layer spacing given by  

d = XAdA + XPdP, 

with          dA = r0 + 2c 

and     dP = r0 + c.                  (3.25) 

Similarly for a P-type pair, 

UPj =   U0XP P P cos(2 zPj/d)  U0 XA PA Acos(2 zPj /d)   (3.26) 
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The internal energy of one mole of the pairs obtained by averaging over the 

distribution functions is 

2U = 
 NXA 

 2 
 UAi  + 

 NXP 

 2 
 UPj   NXP E       

 =  
N U0

2
 [ XA

2
A A

2
 + XP

2
 P P

2
 +2 EXA XP A P]  NXP E   (3.27) 

 

where N is the Avogadro number,   indicate statistical averages and the factor 2 on 

the left hand side reminds that we have a mole of pairs. The last term is the 

concentration dependent part of the configurational energy.  

The molar entropy is given by 

2S  =   N kB [ XA  
1

d
d/2

+ d/2

dzAi fAi ln fAi + XP  

1

d
d/2

+ d/2

dzPj fPj ln fPj ] 

 N kB ( XA ln XA  + XP ln XP )                                             (3.28) 

where the last term is the entropy of mixing and  fA and fP are the normalised 

translational distribution functions of A and P types of pairs respectively. The 

Helmholtz free energy is given by: 

F = U  TS .                                                            (3.29)  

The normalised distribution functions fA and fP and the expression for XA found by 

minimising F are,  

fAi(z) = 
1

 ZA
exp( UAi/kBT)    (3.30) 

fPj(z) = 
1

 ZP
exp( UPj/kBT)    (3.31) 

and 

  XA = 
1

1 + 
ZP

ZA
exp( E/kBT)

     (3.32) 
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where ZA and ZP are the appropriate normalising integrals. The expressions for the 

smectic order parameters are given by, 

A =  cos(2 zAi /d)  = 
0

1

d i fAi(z) cos( i A)   (3.33) 

P =  cos(2 zPj/d)  = 
0

1

d j fPj(z) cos( j P)   (3.34) 

where we have used the reduced coordinate  =2z/d.

3.3.1.3 Specific heat at constant volume 

The molar specific heat at constant volume is give by 

CV = 
U

 T V
 

 =  
NU0

2
 

XA

 T
[XA A A

2
  XP P P

2
  + E A P (XP  XA)] 

   + 
A

 T
 [ XA

2
 A +  XAXP P] + 

P

 T
[XP

2
P P + EXAXP A]  

+ 
XA

 T
 N E.         (3.35)

Note that in the above expression, as explained in chapter-2, we have not 

differentiated E  with respect to T as it depends really on volume and the temperature 

dependence is taken only for convenience. Expressions for the derivatives of XA, A 

and P are obtained by differentiating the relevant parameters in the equations  3.32, 

3.33 and 3.34 respectively, with respect to T. We get,  

XA

 T
  

U0

kBT
( A

2
  P P

2
  +2 E A P ) + 

1

XAXP
  

+ 
A

 T
 

U0

kBT
 ( EXA P AXA A)  + 

P

 T
 

U0

kBT
 ( PXP P  E XP A)   

+ 
U0

kBT
2 [ AXA A

2
 PXP P

2
  + E A P (XP  XA)]  

E

 kBT
2 = 0.          (3.36) 
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XA

 T
  

U0

kBT
( A A  E P)  + 

A

 T
 

U0

kBT
 AXA  

1

AS
 + 

P

 T
 

U0

kBT
 E XP   

 
U0

kBT
2 [ AXA A + EXP P]  = 0.              (3.37) 

XA

T

U0

kBT
( E A P P)  + 

A

T
 

U0

kBT
 E XA  + 

P

 T
 

U0

kBT
 PXP  

1

PS
  

 
U0

kBT
2 [ PXP P + EXA A]  = 0.              (3.38) 

where, we have used, 

 

AS =  [cos(2 zAi /d)]
2 

 A
2
 

and PS =  [cos(2 zPj/d)]
2 

 p
2
                (3.39) 

The relevant derivatives are obtained by solving the three simultaneous equations 

3.36, 3.37 and 3.38 and used to calculate CV.   

3.3.2 Method of calculation 

The smectic interaction parameter is assumed to be U0  with U0 = 4.541 500kB 

i.e., T* = 500K, which corresponds numerically to the value of TNI used in the 

previous chapter. We use Q < 1 i.e, E< A P in equation 3.19 to take into account 

the negative deviation from the GM approximation. At any reduced temperature TR, 

consistent values of A  and P are found as XA is varied from 0 to 1 for the assumed 

set of the four parameters of the problem, viz. R1*, R2, A, and Q*. The free energy is 

calculated in each case. Near the minimum of F with respect to XA, equation 3.32 is 

used to find the consistent value of XA. We usually get more than one set of self 

consistent values of XA , A and p. The stable solution corresponds to the one with the 

lowest value of F. Calculations have been made for R1*=8 and R2 around  0.7 which 

are very reasonable values as described in chapter-2. We evaluate all the necessary 

integrals numerically using a 32 point Gaussian quadrature method in double 

precision.  

We look for the following types of solutions: 
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(i) A = P  = 0 corresponding to the nematic phase, and,  

(ii) A P  0 corresponding to smectic phase which is SmA1 if XA is 

relatively small and SmAd if XA is relatively large. 

3.3.3 Results and discussion 

Depending on the  values of the parameters used, our calculations give the 

following results: (i) a first order SmA1 -SmAd transition changing to a continuous 

SmA1 to SmAd evolution beyond a critical point (ii) a re-entrant nematic lake 

associated with the SmA1 -SmAd transition, and (iii) the re-entrant nematic lake 

merging with the nematic sea. We discuss these in the following subsections. 

3.3.3.1 First order SmA1-SmAd transition ending in a critical point 

Since the SmA1 and the SmAd phases have the same symmetry, we can expect a 

first order SmA1-SmAd transition or a continuous evolution of SmA1 to SmAd beyond 

a critical point. The temperature- A phase diagram obtained with Q* = 0.22 and R2 = 

0.7 is shown in figure 3.8. Keeping R1* and R2 fixed, if a lower value of Q is used, 

i.e., the deviation from the GM rule is slightly larger, the critical point C1 of the 

SmA1-SmAd  transition is shifted to a lower value of A while the rest of the diagram 

does not change perceptibly. This is shown by a dashed line in figure 3.8 for Q* =0.2 

for which the critical point is at A = 0.945 and TR = 0.60867. 
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Figure – 3.8. Calculated phase diagram showing the SmA1-SmAd 

critical point C1 for R1* = 8, R2=0.7 and Q* =0.22. The open circle 

shows the critical point which is shifted to a lower value of A when Q* 

= 0.2. The rest of the diagram does not change perceptibly when Q* is 

reduced from 0.22 to 0.2. 

It can be seen that the first order SmA1- SmAd boundary ends at a critical point C1 

as A is decreased. This can be understood as follows. For low values of A, the free 

energy has a single minimum with respect to XA. For higher values of A, the 

structural dissimilarity between the A-type of pairs and the P-type of pairs is large, 

leading to a large negative deviation from GM rule (see equation 3.23), i.e., the 

mutual interaction between the A-type of pairs and the P-type of pairs is relatively 

weak. Hence the „middle‟ concentrations (i.e., XA  0.5) are not favoured and this 

causes a „hump‟ in the variation of the free energy with respect to XA resulting in two 

minima. This is shown in figure 3.9 for A =1.1. At TR  0.6383, the two minima in 

free energy become equal resulting in a first order SmA1-SmAd transition with a jump 

in XA. The latter along with the jumps in the order parameters are shown in figure 

3.10. In the narrow range of temperatures around TA1-Ad shown in the figure 3.10, the 

order parameter P does not have an appreciable dependence on temperature. Over a 

wider range, P generally decreases with increase of temperature. 

SmAd

SmA1

2
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Figure – 3.9. Molar Helmholtz free energy difference (Fsmectic – Fnematic ) 

as a function of relative concentration of the A-type of pairs (XA) at three 

temperatures near TA1-Ad for R1* = 8, R2 = 0.7, Q* = 0.22 and A = 1.1 

(a)T/T*=0.6373 (b) T/T* =0.6383 and (c) T/T* = 0.6393. 

Figure – 3.10. Relative concentration of the A-type of pairs (XA), smectic 

order parameter for the A-type of pairs ( A) and for P-type of pairs ( P) 

as functions of T/T* near TA1-Ad/ T* = 0.6383. Other parameters are the 

same as in figure 3.9. 

As A is decreased, the dissimilarity between the A- and P-types of pairs is 

reduced. Hence the SmA1-SmAd transition becomes weaker and at a specific value of 

A (  1.01) the first order SmA1-SmAd line ends in a critical point C1 for TR = 0.62238 

(see figure 3.8). As the critical point is reached, as expected, the jumps in XA, A, P 

and the internal energy approach zero (figure 3.11). 
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Figure – 3.11. (i) Relative concentration of the A-type of pairs (XA), 

(ii)smectic order parameter of the A-type of pairs ( A), (iii) smectic order 

parameter of the P-type of pairs ( P) and (iv) internal energy per mole of 

pairs (2U) as  functions of T/T* near the critical point C1 of figure 3.8 for 

R1* = 8, R2 = 0.7, Q* = 0.22 and (a) A = 1.01, (b) A = 1.02, (c) A =1.03, 

(d) A = 1.04. 

 

Over a narrow range of temperatures close to the critical point, the value of XA 

increases rapidly with temperature. As XA increases, the effective smectic interaction 

potential of the A-type of pairs (XA A) and the mutual interaction (XA AP) increase. 

This results in an increase of both A and P with temperature. However, over a wider 

range of temperatures, A and P generally decrease as the temperature is increased. 

(i) (ii)

(iii) (iv)
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This variation is similar to that in the average orientational order parameter near the 

N1-Nd transition for Y <1 (i.e., the orienting potential of the P-type pairs less than that 

of the A-type of pairs) discussed in chapter-2 (see section 2.4.3.3 and figures 2.16 and 

2.17).  

As the critical point is reached, the specific heat (CV) peak becomes stronger and 

finally diverges as shown in figure 3.12. Note that CV shown in figure 3.12 is obtained 

as 
U

 T V
 without differentiating E with respect to T (see section 3.3.1.3), while the 

variation of U shown in figure 3.11(iv) includes the variation of E with respect to T.

 Figure – 3.12. Specific heat at constant volume per mole of pairs (2Cv) as 

a function of T/T* near the critical point C1 of figure 3.18. The 

parameters corresponding to (a) ,(b), (c) and (d) are the same as in figure 

3.11 

 

3.3.3.2 Two SmA1-SmAd transition lines ending in critical points C1 and C2 

A further lowering of Q results in other interesting results. With Q* = 0.19, we 

have extended the calculations for A values much lower than that corresponding  to 

C1. At some low value of A, the SmA1-SmAd transition reappears below  another 
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critical point C2 (see figure 3.13). This indicates that, at low values of TR and A, the 

free energy again has two equal minima with respect to XA. This can be understood as 

follows.  

Figure – 3.13. Calculated phase diagram showing two SmA1-SmAd 

critical points C1 and C2 for R1* = 8, R2 = 0.7, and Q* = 0.19. Near C2, 

SmA1 and SmAd are denoted as A1 and Ad respectively. 

It can be seen from figure 3.14 that, for higher values of A, a steep variation of 

XA with TR occurs at TR  R2, whereas when A has a low value, it occurs at TR 

considerably lower than R2.  

E varies as A
4
 (see equation 3.21) and at any given value of TR, E is very low 

for low values of A. Further, when A is decreased, P decreases more rapidly than 

A and hence the ratio A/ P (which is > 1) is large thus favouring the A-type 

configuration. Hence XA is relatively large even when TR is much less than R2. 

However, as the temperature is further decreased, E becomes sufficiently strong to 

lower the value of XA.  

 

 

SmAd

SmA1
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Figure – 3.14. Relative concentration of the A-type of pairs (XA) plotted 

as a function of T/T* for R1* = 8, R2 = 0.7, Q* = 0.18 and (a) A = 0.43, (b) 

A = 0.865. Note that in (a), the rather low value of E leads to a 

significant decrease in XA as T/T* is increased beyond 0.3. 

Since E is small for low values of A, even though XA has a steep variation, the 

free energy does not vary much over a wide range of XA (see equations 3.27 and 3.29). 

Hence, for lower values of A, the free energy has a flat minimum with respect to XA 

(see figure 3.15) while it has a deeper minimum for larger values of A. Therefore, at 

low values of A, even a small negative deviation from GM rule is sufficient to cause 

a „hump‟ in the free energy minimum, resulting in two minima with respect to XA. 

This leads to SmA1-SmAd transition. Thus, even though the deviation from the GM 

rule (i.e, |Q –1|) decreases as A is decreased (see equation 3.23 and figure 3.15), the 

SmA1-SmAd transition reappears below some values of A, i.e., below another critical 

point C2. If the negative deviation from GM rule is stronger (i.e, as Q is lowered), the 

critical point C2 is shifted to higher value of A and TR. For Q* = 0.19, C2 is at A = 

0.385 and TR  0.1693 (figure 3.13). For Q* = 0.18, C2 is at A  0.43 and TR 0.2316 

as indicated by vanishing of two minima(figure 3.15). 
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Figure – 3.15. Variation of free energy as a function of XA for two values 

of A near the critical point C2, with R1* = 8, R2 = 0.7, Q* = 0.18 and 

(a) A= 0.43, TR = 0.2316 (b) A = 0.42, TR = 0.2178. Note that the value of 

Q is 0.9132 for (a) and 0.9234 for (b) (see equation 3.23).  

In general as Q* is lowered, both C1 and C2 approach each other. For a 

sufficiently low value of Q* we can expect them to merge. But, much before this 

happens, a nematic lake appears in the middle which is discussed in the next 

subsection. 

3.3.3.3 Re-entrant nematic lake 

When Q* is 0.188, the nematic phase just re-enters over narrow ranges of A 

(between 0.585 and 0.593) and temperature (TR between 0.352 and 0.358). On 

lowering Q* to 0.18, the NR region widens as a lake occupying larger ranges of A and 

temperature (figure 3.16).The appearance of the NR can be understood as follows.  

In a binary mixture of polar compounds, since the E values of the components 

are different, the average E per pair can be expected to change with composition. As 

explained earlier, in our model, A is taken to represent a given concentration and E 

is assumed to vary as A
4
. Therefore, E is very low for small values of A. But, in 

our model, the re-entrance of the nematic phase on cooling is due to the rapid 

changeover of A-type of pairs to P-type of pairs at a temperature not low enough to 
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stabilise the SmA1 phase. However, when  E is very low, as discussed in the 

previous subsection, and shown in figure 3.14, this changeover occurs at temperatures 

low enough for the SmA1 phase to be stable. Therefore, as the temperature is varied at 

low values of A, the smectic phase is stable without the intervening NR region. On 

the other hand, at intermediate value of A, E is strong enough to bring about the „A‟ 

to „P‟ changeover at a higher temperature, thus resulting in double re-entrance. 

Figure – 3.16. Calculated phase diagram for R1* = 8, R2 = 0.7 showing the 

re-entrant nematic (NR) lake for Q* = 0.18. C1 and C2 are the SmA1-

SmAd critical points. The small loop within the NR lake is for Q* = 0.188, 

for which the NR lake just appears.  

Larger values of A also lead to larger values of p. Hence the SmA phase is 

stable even when XA is small, leading again to the disappearance of the NR phase. 

Hence, the NR region appears as a lake over a range of intermediate values of A or 

equivalently, over a range of intermediate concentrations in a mixture. In general, we 

can see that, in the presence of a strong negative deviation from GM rule, the smectic 

phase is destabilised in the „middle‟ concentrations, whereas the „pure‟ components 

have only smectic phases. Indeed, experiments [6, 11, 25] on binary mixtures show 

SmAd

SmA1

SmAd

SmA1

NR

SmA
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that the NR-lake appears around a concentration of 50 %. Further, the NR- lake appears 

in association with SmA1-SmAd boundary in the experimental studies also (for 

example, see figure 3.4c above).  

A further increase of the negative deviation (Q* = 0.15) obviously widens the NR 

lake and also as discussed earlier, brings the critical points C1  and C2 closer (figure 

3.17a). In this case, near the extreme values of A the NR phase occurs below the 

SmAd-SmA1 transition line. For still lower value of Q (Q* = 0.12, see figure 3.17b) or 

when E is increased using a higher value of R2 = 0.72, (see figure 3.18a), the NR-lake 

becomes still wider and swallows one or both the SmA1-SmAd critical points.  

When E is increased further, the nematic lake becomes much wider and 

eventually merges with the nematic sea creating a „nematic gap‟ over a range of A 

values (figure 3.18b). Obviously, the nematic gap widens as Q* is further  decreased 

or equivalently, the components in a binary mixture become structurally more 

dissimilar. This agrees with the appearance and widening of the nematic gap in 

experiments [24] on binary mixtures of 8OCB with one of the homologues of nDBT 

(n alkyl isothiocyanatophenyl dioxane) exhibiting SmAd and SmA1 phases 

respectively. With the lower values of n, the components have larger ratio of smectic 

layer spacing and are structurally more dissimilar. For mixtures of 8OCB and 7DBT, 

the layer spacing ratio r = 1.46 and the nematic gap is over a small concentration range 

of X = 0.4 to 0.75 of 8OCB, whereas for mixtures of 8OCB and 4DBT, r = 1.76 and 

the nematic gap is wider, between X = 0.3 to 0.9 [24]. Also, we note that the 

calculated N-SmAd-NR boundary is parabolic (figure 3.18b) as seen in the 

experimental phase diagrams [24].  

Experimentally it is possible to measure the temperature variation of the smectic 

layer spacing. We plot in figure 3.19 the calculated values of the relative layer spacing  

d/dP = (XAdA + XPdP)/dP     (3.40) 

as functions of relative temperature for three values of the McMillan parameter A 

corresponding to the phase diagram shown in figure 3.17a. Note that d shows a 

maximum value as the temperature is increased in the SmAd phase. This trend reflects 

the temperature variation of XA (see figure 3.14). The increase in layer spacing from 

SmA1 to SmAd has been experimentally measured [19]. 
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Figure- 3.17. Calculated phase diagram showing a wide re-entrant 

nematic (NR) lake for R1* =8, R2 = 0.7 . (a) Q* = 0.15. C1 and C2 are the 

SmA1-SmAd critical points. SmA1 is indicated as A1 at the bottom left 

corner of the figure. (b) Q* = 0.12. The point where first-order SmA1-

SmAd transition line meets the boundary of NR lake is shown by the open 

circle. 
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Figure –3.18. (a) Calculated phase diagram showing a wide re-entrant 

nematic (NR) lake for R1* =8, R2 =0.72 and Q* = 0.15. In this case, the 

first order SmA1-SmAd transition line merges with the boundary of the 

lake in the lower range of A. (b) Calculated phase diagram showing the 

re-entrant nematic (NR) lake merging with the nematic sea creating a 

nematic gap, for R1* = 8, R2 = 0.75, Q* = 0.12. The open circle indicates 

the point where the SmA1-SmAd transition line meets the NR boundary. 

In some parts of the figures, SmA1 and SmAd are indicated as A1 and Ad 

respectively. 
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Figure – 3.19. The ratio of average layer spacing d to the molecular 

length dP as a function of T/T* for (a) A = 0.5, (b) A =0.6 and (c) A = 

0.75 corresponding to the phase diagram of figure 3.17a. The dotted lines 

in the NR phase represent the d values of smectic like short range order. 

The dashed lines indicate jumps in d at the first order SmA1-SmAd 

transitions.  

3.3.3.4 Comparison with other theoretical models 

The dislocation loop melting theory developed by Prost and Toner [17] predicts 

different types of topologies  showing a first order  SmA1- SmAd transition boundary 

ending at a critical point, the NR-lake associated with  SmA1-SmAd transition  and the 

NR -lake merging with the main nematic sea as shown in figures 3.5 and 3.6. These 

topologies are similar to those obtained by our theoretical calculations. Note that, 

figure 3.6 shows a nematic-nematic transition also. As described in the previous 

chapter (see chapter-2, section 2.4.3), taking into account only the orientation 

dependent part of the interactions, a nematic-nematic transition can be obtained only if 

we assume a negative deviation from the geometric mean (GM) rule for the mutual 
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orienting potential. But, in the present calculations such a transition is not possible 

since the nematic order is taken to be saturated. In the next section, we extend the 

theory to include an unsaturated nematic order and discuss the results. The 

microscopic theory using the frustrated spin-gas model developed by Berker et.al [26] 

predicts the possibility of double re-entrance, quadruple re-entrance,  SmA1- SmAd 

transition, NR -lake surrounded by the SmAd  region etc. However, as noted by 

Garland et al [27], the NR-lake predicted by the frustrated spin-gas model does not 

occur in association with the SmA1-SmAd transition whereas the experiments [25, 27] 

and also the Landau theory by Prost and Toner [17] indicate that the NR-lake occurs in 

association with the SmA1-SmAd transition line and eventually replaces the SmA1-

SmAd critical point. This feature is brought out in our molecular model. However, the 

predicted temperature range of  NR-lake is much larger than the experimental one.  

We now extend the theory to include the orientational interactions also. 

3.4 Extension of the theory to include unsaturated nematic order 

In the previous section, we have developed a theory of smectic mixtures to 

describe the SmA1 -SmAd transition  assuming a saturated  nematic order is, i.e., S = 1. 

Depending on the  values of the parameters used, our calculations have shown the 

possibility of (i) a first order SmA1 -SmAd transition changing to a continuous SmA1 

to SmAd evolution beyond a critical point (ii) a re-entrant nematic lake associated with 

the SmA1 -SmAd transition, and (iii) the re-entrant nematic lake merging with the 

nematic sea. 

In chapter-2, we have described the nematic-nematic transition considering only 

the orientational interactions. The nematic-nematic transition  found experimentally in 

a system [28] occurs in the reentrant nematic range associated with SmA1-SmAd 

transition. In order to describe this feature, we extend our model to include both the 

nematic and smectic interactions. In the next section, the theoretical model is 

presented. 
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3.4.1 Theoretical model 

3.4.1.1 Assumptions 

We have made the following modifications of our assumptions mentioned in 

section 3.3.1.1. 

(1) As explained in chapter-2, The energy difference between the A and P type 

configurations is written in terms of the N-I transition temperature TNI  

E =  EA EP = R1 kB TNI  
R2 

TR
 -1                                     (3.41) 

(2) Since the A and P type of pairs are geometrically dissimilar, as in chapter-2, 

we assume that the orientational potential for A-type of pairs UAA and P-type of pairs 

UPP to be different. We write,  

UPP = Y UAA                                                                                             (3.42) 

and the mutual interaction potential 

UAP  = UPA = P UAA UPP                                           (3.43) 

where P  1 indicates a deviation from the  geometric mean (GM) rule in the 

orientational part of the mutual interaction potential.  

 (3) Following  Kventsel et  al  [29], we decouple the translational and 

orientational parts in the McMillan‟s „mixed‟ order parameter ( ) and write  

  =  P2(cos )   cos(2 z/d)  

 i.e.,    = S       (3.44) 

(4) As explained in section 3.3.1.1, a negative deviation from the geometric mean 

(GM) approximation for the mutual interaction between the components can be 

assumed to be valid. Hence we can assume both P and Q to be < 1. The deviation 

increases as the molecular structures of the two components in a mixture become 

more dissimilar. As the chain length in a homologues series is increased, the 

numerical value of  and also the structural dissimilarity between the P-and A-types 

of pairs is enhanced. Hence it is reasonable to assume that, as A increases, the 

deviations (|1–P| and |1–Q|) from GM approximation increase, or P and Q decrease. 
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Since P and Q always occur together in the expressions involving the mutual 

interaction in all the equations, it is enough to consider the variation of P with respect 

to A, i.e., we do not use the equation 3.23 above. Since both A and P vary in a 

homologous series, as explained earlier, we expect P to depend on the ratio A/ P and 

we assume, as in equation 3.23 

P = P* ( A/ P)                                                          (3.45)  

where P* is a constant chosen such that P < 1 in the entire series.  

3.4.1.2 Free energy and order parameters 

 The medium is assumed to consist of a mixture of A-type pairs and P-type 

pairs. Extending the McMillan theory to the case of mixtures, the potential energy of 

the  i
th  

  A-type of pair can be written as 

UAi =   UAA XA SA P2 (cos Ai)[1 + A A cos(2 zAi/d)] 

           UAP XP SP P2 (cos Ai)[1 + AP P cos(2 zAi/d)]              (3.46) 

where XA, XP, SA, SP and A , P are the mole fractions, orientational and translational 

order parameters of A and P types of pairs respectively and d the average layer spacing 

(see equation 3.25). Similarly for a P-type pair, Upj is obtained by interchanging 

suffixes A and P in equation 3.46. Now, the internal energy of one mole of  pairs can 

be written as  

2U = 
 NXA 

 2 
 UAi  + 

 NXP 

 2 
 UPj   NXP E 

=  
N UAA

2
 [XA

2
 SA

2
 (1+ A A

2
)+ Y XP

2
 SP

2
 (1+ P P

2
)+ 2P Y XA XP SA SP(1+ E A

 

P
 
)]  

    NXP E                  (3.47) 

where we have used the equations 3.42, 3.43 and the factor 2 on the left hand side 

reminds that we have a mole of pairs. We  have also added the concentration 

dependent part of the configurational energy.  

 The molar entropy is given by: 
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2S =   N kB XA 
1

d
 
– d/2

+d/2

dzAi

0

1

d(cos Ai) fAi ln fAi + XP 
1

d
 
– d/2

+d/2

dzPj

0

1

d(cos Pj) fPj ln fPj  

 N kB ( XA ln XA  + XP ln XP )            (3.48) 

where the last term is the entropy of mixing and  fA and fP are the normalised 

distribution functions of A and P type of pairs respectively. The Helmholtz free energy 

is given by: 

F = U  TS                                                             (3.49)  

The distribution functions fA and fP are found by minimising F. It can be shown 

that [29] the decoupling assumption (see equation 3.44) leads to the result  

fA = fAo fAt  , and  fP = fPo fPt                                                                          (3.50) 

where fAo and fAt are the orientational and translational distribution functions of the A-

type of pairs and fPo and fPt are similar functions for the P-type of pairs. We have 

fAo = 
1

ZAo
exp 

UAA

 kBT
 [ XASA(1+ A A

2
) + P Y XPSP(1+ E A P)]P2(cos A )   

fPo = 
1

ZPo
exp 

UAA

 kBT
 [ YXPSP(1+ P P

2
) + P Y XASA(1+ E A P)]P2(cos  P)   

fAt = 
1

ZAt
exp 

UAA

 kBT
 SA[ A XASA A + P Y E XPSP P]cos(2 zA/d)    

fPt = 
1

ZPt
exp 

UAA

 kBT
 SP[Y P XPSP P + P Y E XASA A]cos(2 zP/d)           (3.51) 

where ZAo, ZPo, ZAt and ZPt are the corresponding normalising integrals. The order 

parameters are given by:  

SA = 
0

1

 d(cos Ai)P2 (cos  Ai) fAo     (3.52) 

and   A = 
0

1

d(  A)cos( A) fAt          (3.53) 

where the reduced co-ordinate A = (2zA/d) is used. SP and P are obtained by 

interchanging the suffixes A and P in equations 3.52 and 3.53.  
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The free energy per mole of pairs can now be written in the simplified form as  

2F = + 
N UAA

2
 [XA

2
SA

2
(1+3 A A

2
)+ YXP

2
SP

2
(1+3 P P

2
)+ 2P Y XA XP SA SP(1+3 E A

 
P

 

)] 

   NkBTXA ln
ZAo ZAt

 XA
  NkBTXP ln

ZPo ZPt

 XP
   NXP E               

(3.54) 

The equilibrium value of mole fraction XA of the A-type of pairs is found by 

minimising  F  with respect to XA. We get (with XP = 1– XA) 

 

  
XP

XA
 = 

ZPo ZPt

 ZAo ZAt
 exp 

UAA

kBT
 [ AXASA

2
A

2
Y PXPSP

2
P

2
 + P Y ESASP A P(XP XA)] + 

E

kBT
  (3.55) 

3.4.1.3 Specific heat at constant volume 

The molar specific heat at constant volume is give by 

CV = 
U

T V
 

= 
NUAA

2
  

XA

T
 [XASA

2
 (1+ A A

2
)  Y XPSP

2
 (1+ P P

2
)+ P Y  SA SP(1+ E A

 
P

 
) 

(XP XA)] 

     + 
SA

T
  XA [XASA(1+ A A

2
) + P Y XPSP(1+ E A P)]  

     + 
SP

T
  XP [YXP SP(1+ P P

2
)+P Y  XASA(1+ E A

 
P )] 

          + 
A

T
  XASA( A XASA A + P Y E XP SP P) 

          + 
P

T
 XP SP(Y P XP SP P + P Y E XASA A)  

 + 
XA

T
 N E.               (3.56)

Note that in the above expression, as explained earlier (see section 3.3.1.3), we have 

not differentiated E  with respect to T. Expressions for the derivatives of XA, 
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P
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CCCCC
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CCCCC

SA, SP, A and P and are obtained by differentiating the relevant parameters in the 

equations  3.52, 3.53 and 3.55 respectively, with respect to T. The five equations 

obtained after differentiation can be written in the matrix notation as, 

 

 

(3.57) 

 

 

where the primes indicate the differentiation with respect to T. The expressions for the 

elements of the matrices are given in the appendix. The relevant derivatives are 

obtained by solving the five simultaneous equations and hence CV is calculated. 

Apart from the trivial solution corresponding to the isotropic phase, we look for 

the following types of solutions: 

1) SA, SP   0, A = P = 0 leading to nematic phase which is  N1 if XA is small and 

Nd if XA is large, and, 

2) SA, SP   0, A , P  0 leading to the smectic phase which is  SmA1 if  XA is 

small and SmAd if XA is large. 

3.4.2 Results and discussion 

3.4.2.1 E and P independent of A: Double reentrance and  SmA1-SmAd 

transition 

We have carried out the calculations, in the first instance, without including the 

variation of E or P with A. A negative deviation from the GM approximation (i.e., 

Q <1) is necessary to get a first order SmA1 - SmAd transition. The phase diagram 

obtained with R1 =15, R2= 0.6, Q = 0.62 with P = Y= 1, is shown in figure 3.20. 
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Figure – 3.20. The phase diagram obtained with R1 =15, R2= 0.6, Q = 

0.62,  P = Y= 1 and treating E and P to be independent of A. The first 

order SmA1-SmAd transition line ends in a critical point (shown by the 

filled circle). When Q is decreased to 0.55, the SmA1-SmAd transition line 

continues (as indicated by the dashed line) and meets the SmA-NR 

boundary (shown by the open circle). The remaining parts of the phase 

diagram do not change perceptibly on decreasing Q. 

The first order SmA1-SmAd transition ends in a critical point at A = 1.067 and TR 

= 0.56855 (shown by the filled circle). When Q is decreased, the critical point is 

shifted to lower values of A. For Q = 0.55, before ending in a critical point, the 

SmA1-SmAd transition line meets the SmA-NR boundary at A = 0.907 and TR = 

0.5796 (shown by the open circle). Note that the critical point is highly sensitive to the 

value of Q while the other transition temperatures do not change perceptibly on 

changing the value of Q. This trend is similar to that got in the calculations with 

saturated nematic order, as already shown in section 3.3.3.1. If we consider P = Q = Y 

= 1, our model reduces to the model by Madhusudana et al, [20], which gives a 

similar T- A phase diagram showing double reentrance, which does not contain a 

SmA1-SmAd transition line. In the next subsection, we present the results obtained 

when the variation of P with A is included while E is treated as constant with 

respect to A. 
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3.4.2.2 Variation of only P with A:  N - SmAd - NRd - NR1 - SmA1 transition 

sequence 

In this subsection, we treat E  constant with respect to A and include the 

variation of P with A. In this case, for a given set of parameters, the free energy has 

four local minima with respect to XA, two corresponding to the nematic phase and two 

to the smectic phase. Of these, the phase corresponding to the absolute minimum is 

the stable one. Depending on which two of these four local minima are equal, we get 

the possibility of various phase transitions.  

With Y = 1.4, R1 = 15, R2 = 0.6, P*
 
= 0.15 (recall equation 3.45) and Q = 1, we 

get the phase diagram shown  in figure 3.21. We have already shown, considering a 

saturated nematic order,  that the strong variation of E with A (see section 3.3.3.2) 

leads to an NR lake associated with the SmA1-SmAd transition in the temperature-   

phase diagram which corresponds to the experimental temperature-concentration 

phase diagram. We have also pointed out that this variation is associated with the 

dissimilarity of the molecules of the two components in the mixture. As mentioned 

earlier, the strong variation of E with A appears to be valid in case of binary 

mixtures of smectogenic compounds not belonging to the same homologous series 

which show the NR lake in the temperature-concentration phase diagram. In the 

mixtures of smectogenic compounds belonging to the same homologous series, which 

show only the SmA1-SmAd transition, E can be taken to be practically constant with 

respect to A. As mentioned earlier, A is taken to represent the concentration in a 

mixture. Hence, our results obtained by neglecting the variation of E with A can be 

compared with that obtained by experiments [28] (see figure 3.22a) on a mixture of 

two compounds DB8ONO2 and DB10ONO2 belonging to the same homologous series. 

In the phase diagram, X denotes the mole percentage of the longer homologue 

(DB10ONO2). Obviously, increase of X is equivalent to increase of the McMillan 

parameter For example at X = 53, SmAd-NRd-NR1-SmA1 sequence is seen on 

cooling. In our calculated phase diagram, for example, at A = 0.525, we have N-

(0.7)-SmAd-(0.63)-NRd-(0.627)-NR1-(0.323)-SmA1 sequence on cooling, where we 

have indicated the transition TR  values in parentheses. (For the sake of clarity, the part 

of the phase diagram below TR = 0.5 is not shown in the figure 3.21). A reentrant    

Nd-N1 transition line which ends at a critical point (at A= 0.5123 and TR =0.6266) is 



Chapter-3 

 

-98- 

seen over a small range of A (0.5123 to 0.542). As A is increased above 0.542, the  

NRd-NR1 transition line continues as SmAd - NR1 line (for a range of A = 0.542 to 

0.83) and extends as SmAd - SmA1 line (for A > 0.83). These features agree with the 

experimental trends [28], in which there is a reentrant Nd - N1 transition line which 

ends at a critical point for lower values of X (see figure 3.22a). As X is increased the 

Nd - N1 transition line becomes the SmAd - NR1 transition line and finally continues as 

SmAd - SmA1 transition line.  

Keeping  R1, R2, and Q the same, if Y and P*
 
are increased to 2 and 0.18 

respectively, we get a similar phase diagram shown in the inset of figure 3.21. In this 

case, the SmAd-NR1 transition occurs over a smaller range of A values. These 

diagrams are also similar to those predicted by the dislocation loop melting theory of 

Prost and Toner [17] (see figure 3.6 given earlier). 

We have evaluated the variation of specific heat at constant volume across the 

SmAd-NRd-NR1-SmA1 transition sequence at A = 0.513 of figure 3.21. The calculated 

specific heat (figure 3.23) shows a strong peak at the NR1-NRd transition as seen in the 

experimental diagram (figure 3.22b). The corresponding variation of the order 

parameters and XA are shown in figure 3.24 .  
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Figure-3.21. Calculated phase diagram with R1 = 15, R2 = 0.6, P* =0.15, 

Y=1.4 , Q = 1, and treating P to be dependent on A, showing the 

reentrant Nd- N1 (indicated in the text as NRd - NR1) transition line starting 

from a critical point. As A is increased the transition line continues as  

SmAd -N1 line and finally as SmAd - SmA1 line. The inset is a similar 

diagram with P* and Y increased to 0.18 and 2 respectively, showing that 

SmAd-N1 transition occurs over a smaller range of A values.  

Figure – 3.22. (a) The T-X phase diagram, where X is the mole percent of 

DB10ONO2 in DB8ONO2 [28]. Filled circles, open circles and open 

squares represent calorimetric, X-ray scattering and optical 

measurements respectively. The dashed curves indicate 2
nd

 order phase 

transitions and the solid curves, the 1
st
 order ones. TCP marks the 

tricritical point. (b)Variation of CP across the SmA1-N1-Nd-SmAd 

transition for the mixture with X = 53.7. The strong peak in the middle 

corresponds to the N1-Nd transition and the small peak marked by the 

left arrow corresponds to SmA1-N1 and the right arrow to SmAd-Nd 

transition. 

(a) (b)
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Figure - 3.23. Calculated temperature variation of the specific heat at 

constant volume (Cv) across the SmAd-NRd-NR1-SmA1 transition at 

A=0.513 as shown in figure 3.21. Note that the scales are different in the 

left and the right parts of the figure. 

Figure - 3.24. Calculated temperature variations of the order parameters 

and XA across the SmAd - NRd - NR1 - SmA1 transition at A = 0.513 

corresponding to figure 3.21. Note that the X-axis scales are different in 

the left and the right parts of the figure.  
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The calculated specific heat (2Cv/NkBTNI) shows a jump  0.28 for the NR1-NRd 

transition. Taking TNI = 500K and the gram molecular weight of DB9ONO2 to be  

500 gm, this value corresponds to Cv 1 JK
–1

g
–1

. This roughly agrees with the 

experimental value of CP  2 JK
–1

g
–1

 (see figure 3.22b). Also, the experimental data 

indicates that the CP corresponding to the SmA1-NR1 transition is less than that for 

the NRd–SmAd transition. Our calculations show that the jump in the specific heat at 

constant volume Cv at the SmA1-NR1 transition is about 10 times less than that at the 

NRd-SmAd transition (see figure 3.23). However, the calculated Cv values can not be 

expected to have a quantitative agreement with the experimental CP data. Further, in 

the SmA1 and the N1 phases, the parallel molecules need not be restricted to pairs but 

can form larger clusters, which has not been taken into account in the theoretical 

treatment.  

In the next subsection we discuss the effect of inclusion of the variation of E 

with A while P is treated as constant with respect to A.

3.4.2.3 Variation of only E with A: Reentrant nematic lake 

We now include the variation of only E with A (i.e., E A
4
, see equation 

3.21) and, for the sake of simplicity, ignore the variation of P and Q with respect to 

A. As already discussed, the results of this calculation are to be compared with those 

of experiments on mixtures of chemically dissimilar compounds. With R1*= 6, R2 

=0.7, P= Q =Y = 1, the NR lake obtained in the TR- A plane is shown in figure 3.25. In 

our earlier calculations with saturated nematic (section 3.3.3.3) order, we have already 

shown that the variation of E with A leads to an NR lake. The shape of the NR lake 

boundary was elliptical, whereas experimentally it is not found to be so (see figure 

3.4c). The shape of the NR lake boundary obtained in the present calculations is also 

not elliptical, being wider in the lower A side. 

As explained in section 3.3.3.3, in this case also, an increase of R1* or R2 leads to 

a wider lake as shown in figure 3.26 (for R1* = 7, R2 = 0.7) which finally merges with 

the main nematic sea (for R1* = 6, R2 = 0.75). Also, we have made several 

calculations including the variation of both E and P with A. It not possible in the 
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present theory to get NR1-NRd  and SmA1-SmAd transitions associated with an NR lake 

merging with the main nematic sea, as it is found in the experiment. 

 

Figure - 3.25. The phase diagram calculated including the variation of 
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only E with A, showing the NR lake with R1* =6, R2 =0.7 and P=Q=Y=1. 

Figure – 3.26. The phase diagram calculated including the variation of 

only E with A, showing the widening and merging of the NR lake with 

the nematic sea (P = Q = Y = 1). The solid curve is for R1* = 7, R2 = 0.7 

and the dashed one is for R1* = 6, R2 = 0.75. 

While the topology of the calculated phase diagram agrees with the experimental 

one, the theory overestimates the temperature range of NR. However, it is to be noted 

that experiments are done on a mixture of two components belonging to different 

chemical species. Our molecular theory is necessarily over simplified, and a 

quantitative comparison can not be made. A more detailed  theory of mixtures of polar 

compounds might give results which are in closer agreement with the experimental 

data. We develop a hybrid model in chapter-5, including the hard rod features of the 

interactions and show that the resulting phase diagrams compare better with the 

experimental ones. 

3.5 Conclusions 

In this chapter, we treat the N and SmA liquid crystals made of highly polar 

molecules to consist of mixtures of parallel and antiparallel molecular pairs to develop 

a simple molecular mean field theory. We have argued that the configurational energy 

difference between the two types of pairs as well as the negative deviation from the 

GM rule for the mutual attractive interaction between them vary with the McMillan 

parameter A. We first treat the nematic order to be saturated and calculate various 

phase diagrams as functions of model parameters. Our theory explains the 

phenomenon of double re-entrance, first order smectic A1 to smectic Ad transition 

ending at a critical point and the appearance of a re-entrant nematic lake associated 

with the SmA1-SmAd transition [30]. Next, we have extended the theory [31] to 

include the orientational interactions and an appropriate deviation from the GM rule. 

It is shown that as the McMillan parameter A (and hence the chain length in a 

homologous series) is decreased, SmAd - SmA1 line goes over to the SmAd-NR1 line 

which finally becomes the NRd-NR1 transition line, the latter ending in a critical point, 

as seen experimentally. Also, for a range of values of A, we get the possibility of  N-

SmAd-NRd-NR1-SmA1  phase sequence on cooling. The NRd- NR1 transition occurs over 

a very small range of A. The shape of the boundary of the NR lake obtained after the 
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inclusion of the nematic interactions is in better agreement with the experimental 

results compared to that obtained with a saturated nematic order. 

 

3.6 Appendix 

Elements of the matrix (see equation 3.57) used to calculate the derivatives are as 

follows: 

Ci1 are the coefficients of 
XA

T 
, 

C11 = 
UAA

kBT
 [2P Y  SA SP(1+ E A

 
P

 
) –SA

2
 (1+ A A

2
)  Y SP

2
 (1+ P P

2
)] + 

1

XAXP
 

C21 = 
UAA

kBT
 [SA(1+ A A

2
)  P Y  SP (1+ E A

 
P)] 

C31 = 
UAA

kBT
 [P Y  SA (1+ E A

 
P

 
)  Y SP (1+ P P

2
)] 

C41 = 
UAA

kBT
 SA( A SA A – P Y E SP P) 

C51 = 
UAA

kBT  SP(P Y E SA A –Y P SP P)       

Ci2 are the coefficients of 
SA

T 
, 

C12 = 
UAA

kBT
[ P Y XASP(1+ E A P) – XASA(1+ A A

2
)] 

C22 = 
UAA

kBT
[ XA(1+ A A

2
)] – 

1

A
 

C32 = 
UAA

kBT
[ P Y XA(1+ E A P)] 

C42 = 
UAA

kBT
[2 AXASA A+P Y EXPSP P] 

C52 = 
UAA

kBT
[ P Y EXA ASP] 
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Where we have used   A =  [P2cos( i)A]
2 

 SA
2
 

Ci3 are the coefficients of 
SP

T 
, 

C13 = 
UAA

kBT
[YXPSP(1+ P P

2
) – P Y XPSA(1+ E A P)] 

C23 = 
UAA

kBT
[ P Y XP(1+ E A P)] 

C33 = 
UAA

kBT
[ YXP(1+ P P

2
)] – 

1

P
 

C43 = 
UAA

kBT
[ P Y EXP PSA] 

C53 = 
UAA

kBT
[2Y PXPSP P+P Y EXASA A] 

Where we have used  P =  [P2cos( i)P]
2 

 SP
2
 

Ci4 are the coefficients of 
A

T 
, 

C14 = 
UAA

kBT
 [SA(P Y EXASP P  – A AXASA)] 

C24 = 
UAA

kBT
 [P Y EXPSP P + 2XASA A A] 

C34 = 
UAA

kBT
 [P Y EXASA P] 

C44 = 
UAA

kBT
 [ AXASA

2
] – 

1

 AS
 

C54 = 
UAA

kBT
 [P Y EXASASP] 

Where we have used AS =  [cos(2 zAi /d)]
2 

 A
2
 

Ci5 are the coefficients of  and  

C15 = 
UAA

kBT
 [SP(Y P PXPSP –P Y EXPSA A)] 
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C25 = 
UAA

kBT
 [P Y EXPSP A] 

C35 = 
UAA

kBT
 [P Y EXASA A+2Y PXPSP P] 

C45 = 
UAA

kBT
 [P Y EXPSPSA] 

C55 = 
UAA

kBT
 [Y PXPSP

2
] – 

1

BS
 

Where we have used BS =  [cos(2 zPi /d)]
2 

 p
2
 

Di are the terms not connected with the derivatives. 

D1 = 
UAA

kBT
2 [YXPSP

2
(1+ P P

2
)–XASA

2
(1+ A A

2
)–P Y SASP(1+ E A P)(XP XA)]+ 

E

kBT
2 

D2 = 
UAA

kBT
2 [XASA(1+ A A

2
) + P Y XPSP(1+ E A P)] 

D3 = 
UAA

kBT
2 [YXP SP(1+ P P

2
)+P Y  XASA(1+ E A

 
P )] 

D4 = 
UAA

kBT
2 [SA( A XASA A + P Y E XP SP P)] 

D5 = 
UAA

kBT
2 [SP(Y P XP SP P + P Y E XASA A)]  
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