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SYNOPSIS 

This thesis is devoted to an investigation of the secular decay in the magnetic fields of 

neutron stars. The magnetic field of a neutron star plays a central role in its evolution 

- like the mass of a gaseous star does in stellar evolution. Very soon after pulsars 

were discovered it was suggested by Ostriker and Gunn that their magnetic fields 

may be decaying in very short timescales of the order of a few million years. It was 

however pointed out by Baym, Pethick and Pines (1969) that there is a fundamental 

difficulty in understanding the decay of the magnetic fields of neutron stars. In the 

classical picture this difficulty arises due to the astronomically long ohmic dissipation 

timescales (- 1015 yr) that are implied by the enormously high electrical conductivity. 

In the quantum picture, according to which the protons in the interior will be in a 

superconducting state, it is even more difficult to understand the decay of magnetic 

fields. 

Regardless of the conceptual difficulties, the observational evidence gathered during 

the past 25 years does seem to indicate that magnetic fields of neutron stars may 

indeed be decaying. A further twist to this dilemma is provided by the observational 

fact that the overwhelming majority of neutron stars with low magnetic fields are in 

binary systems. Therefore there have been attempts in the literature to seek a causal 

connection between the mechanism of field decay and the history of a neutron star in 

a binary system. 

According to one hypothesis (Taarn and van den Heuvel 1986; Romani 1990), the 

decay of the magnetic field may be related to the accretion of matter itself. We shall not 

pursue this mechanism in this thesis. Instead we will investigate in detail an alternative 

suggestion that has been made recently. 

Soon after the discovery of the microscopic theory of superconductivity by Bardeen, 

Cooper and Schriefer - and many years before the discovery of neutron stars - A.B. Migdal 



and V.L. Ginzburg predicted that the neutron fluid in the interior of a neutron star 

would be in a superfluid state, and the protons in a superconducting state. It has since 

been widely accepted that the existence of superfluid states can and will have many 

important astrophysical consequences. Superfluidity of the neutrons was first invoked 

to explain the phenomenon of "glitch" in radio pulsars. More recently the supercon- 

ductivity of the proton fluid was given a central role in trying to explain the decay of 

magnetic fields in neutron stars. 

According to this novel suggestion (Srinivasan 1989, Srinivasan e t  al. 1990), the 

magnetic flux trapped in the superconducting interior is expelled from it as a con- 

sequence of the slowing down of the neutron star. This model invokes interpinning 

between the vortices in the neutron superfluid (parallel to the rotation axis of the star) 

and the quantized fluxoids in the proton superconductor (parallel to  the magnetic axis). 

This thesis is devoted to a detailed investigation of this novel suggestion. The material 

in this thesis is organized as follows. 

Chapter 1: In the first chapter a detailed introduction is given to the structure of 

the interior of a neutron star. Then the rotational history of neutron stars in binary 

systems is reviewed and the necessary formulae for the ensuing detailed calculations 

are summarized. 

Chapter 2: This chapter begins with a brief review of the current ideas on the ori- 

gin and evolution of magnetic fields of neutron stars. Then the scenario of spindown 

induced flux expulsion from the superconducting interior (SIF model) is described in 

some detail. The rest of the chapter is devoted to a detailed analysis of the magnetic 

field evolution of solitary neutron stars, as well as those born and processed in binary 

systems within the premise of the SIF model. In the latter category, a separate ac- 

count is given of neutron stars with massive, intermediate mass and low mass stellar 

companions. A comparison is made betweep the predictions of the model as borne out 

by detailed calculations and the observed magnetic fields of neutron stars. 



Chapter 3: In the simple model of flux expulsion explored in chapter 2 it was as- 

sumed that the fluxoids pinned to the neutron vortices could be drawn out at arbitrary 

speeds decided only by the spindown rate of the neutron star. Such a simplified picture 

ignores several other important forces that may be acting on the magnetic flux tubes 

as they move through the degenerate electron gas. For example, it is well known from 

laboratory experience in type I1 superconductors that a moving fluxoid will experience 

a "drag" force due to scattering of electrons off the flux tubes. Such a drag force can 

restrict the motion of the flux tubes. In addition, the quantized flux tubes may ex- 

perience a buoyancy force, as well as forces that arise due to curvature of these flux 

tubes as they are dragged out of the superconducting interior. In this chapter all these 

forces are carefully taken into account and the results of chapter 2 are re-examined for 

solitary, as well as neutron stars in binary systems. b 

Chapter 4: The underlying theme of chapters 2 and 3 was that if the vortices and 

fluxoids were interpinned, then, as the vortices move out in response to the slowing 

down of the star they will drag the flux tubes with them. If this is indeed the case then 

it is reasonable to ask whet4er there could be a back reaction on the rotation of the 

star itself. For example, it is customarily assumed that the neutron superfluid in the 

core will more or less instantaneously re-adjust its rotation rate to match with that of 

the crust. This need not be true if the vortices are tangled up with the fluxoids and 

are therefore not able to quickly re-adjust their positions in response to a sudden spin- 

ning up or spinning down of the crust. This question has not been considered in the 

literature so far, and is addressed for the first time in this chapter. Several interesting 

consequences of the interplay between the magnetic evolution of the neutron star and 

its spin evolution are described. 

Chapter 5: In this final chapter we gather together all the new results and conclusions 

described in this thesis. . 


