
Chapter 1 

BACKGROUND MATERIAL 

1.1 Inside Neutron Stars 

The structure and composition of a neutron star depends on its mass and the assumed 

equation of state of matter at densities above that of the terrestrial nuclear matter. 

However, all theoretical models of neutron stars predict a liquid interior which contains 

most of the moment of inertia of the star (the "coren) surrounded by a solid metallic 

crust of neutron rich nuclei and relativistic degenerate electrons. The thin layer (0.5 

km) of t h e  outer crust extends over the density range 7 x lo6 (g p S 4 x 

10'' (g ~ r n - ~ )  and is surrounded by a surface layer, an atmosphere, only a few meters 

thick where density falls to zero ; see Fig. 1.1. 

In the inner part of the crust at densities p > 4.3 x 10'' g ~ r n - ~  the neutrons 

begin leaking out of the neutron rich nuclei and form a background fluid of degenerate 

neutrons surrounding the nuclear lattice. This crustal region extends to  densities near 

the nuclear matter density po - 2.4 x 1014 g cmW3 at which the nuclei dissolve into 

a dense fluid consisting primarily of neutrons and a small fraction of protons and 

electrons, all being degenerate. Many other exotic states of matter including neutron 

solid, and pion condensate have been proposed to exist at densities of a few po which 

will not be of interest to our present study. 

Because of the very high thermal conductivity of degenerate matter the temperature 
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Figure 1.1- Cross section of a 1.4 Maneutron star based on a stiff equation of state. 
[from Sauls 19891 



T throughout the star is quite uniform and is typically expected to be 5 x 10' K soon 

after the formation of the star. Nevertheless the energy gaps and the corresponding 

critical temperatures for the neutron and proton superfluids are larger than T (see 

Fig. 1.2). In other words neutron stars are "cold" objects ( T - 10' (K) << T'ermi - 
10la K ). For the same theoretical reasons that terrestrial matter is argued to become 

superconducting with a transition temperature T, N TFermi the neutron stars are 

predicted to have superfluid interiors. In systems of Fermions, as for neutrons and 

protons in a neutron star, superfluid condensation occurs by the formation of pairs of 

the Fermions, Cooper pairs, provided there exists an at tractive interaction between the 

particles. However, while for neutrons in the crust and protons in the core the pairs 

are formed, due to the long-range attractive part of nucleon-nucleon interaction, in an 
-, -. 

s-wave (internal orbital angular momentum of the pair (11 = 0) spin-singlet (IS( = 0, 
f 

where S = 1s; + s:( is the total spin of the pair) state, for the neutrons in the density -. 
regime of the core of a neutron star spin-triplet (191 = h) pwave (111 = h)  pairing is 

favoured because of the higher associated T, values for the latter, as seen in Fig. 1.2 

(Ruderman 1972, Sauls 1989). 

In addition to the above theoretical expectation, a strong observational evidence for 

superfluidity of the interior of neutron stars has been provided by the long time scales of 

the post-glitch recovery in several pulszis. The observable crust of neutron stars should 

be coupled to the interior quantum liquid on microscopic time scales were the neutrons 

and protons "normal" degenerate Fermi liquids. The observed relaxation times of weeks 

to months imply however that the "strong" interaction scattering between protons and 

neutrons is quenched, which would be the case if bulk of neutrons (and are 

in a superfiuid state. The coupling of the protons (whether superconducting or not) 

and electrons in the core to  the crust is however believed to  be achieved on short 

time scale (- few seconds) through an Ekman pumping process and/or low frequency 

hydromagnetic waves induced by the stellar magnetic field (Easson 1979; Alpar, Langer 

& Sauls 1984b). Hence, for the purpose of apalyzing the post-glitch behavior of the star 

the interior plasma is assumed to be in co-rotation with the solid crust and the magnetic 



Figure 1.2- Transition te?eratures for neutron and proton supeduidity as a function 
of density expressed in terms of the Fermi wave number kt -- 3 x nt, where n is the 
number density in units of fm-'. The cross-over from s-wave pairing to  pirave pairing 
fro neutrons occurs at approximately 2 x 1014 gcm-', which is close to the  density of the 
core-crust interface. [from Sauls 19891 



field of the star. The main point of the discussion thus concerns the coupling of the 

neutron superfluid components in the core and in the crust to the rest of the star which 

will be referred to as the "crust". On the other hand in order for a superfluid to carry 

circulation and hence rotate with its vessel (in this case the crust) the condensate must 

be perforated with vortices, each of a unit circulation n. The superfluid thus mimics the 

state of rigid-body rotation along with its vessel through the creation of the required 

number of vortices (see Fig. 1.3). The problem of dynarnical response of the star to a 

perturbation, as in a glitch, and the coupling of the superfluid component to the crust 

therefore reduces to determining the dynamics of vortex motion for the assumed initial 

conditions (cf. chapter 4). 

The existence of superfluid condensates in the interior of a neutron star is expected 

to profoundly affect the dynarnical, magnetic, and thermal evolution of the star. Fur- 

thermore, the dynamical, magnetic, and thermal of a neutron star with neutron super- 

fluid and proton superconductor interior are also believed to be intimately correlated. 

In the quantum liquid interior of a neutron star a neutron vortex is expected to "pin" 

to a fluxoid (see Fig. 1.4) should the two structures overlap (Muslimov & Tsygan 1985, 

Sauls 1989, Srinivasan et a1 1990; Jones 1991). The strength of the pinning energy 

barrier which would impede any relative crossing motion between the fluxoids and the 

vortices is estimated to be Ep - 0.1 - 1.0 MeV. The mechanism of the pinning is 

associated with either the proton density perturbations or the magnetized nature of 

both the vortices as well as the fluxoids (Sauls 1989; Srinivasan et al1990; Jones 1991). 

In addition to the consequences of such pinning effect for the dynamical and the 

magnetic evolution of neutron stars which are the subject of the present study, the 

expected frictional motion of superfluid vortices could also be a source of internal 

heating of the star. The rate of energy dissipation Edis. and thus heating of a neutron 

star due to a superfluid component, with a moment of inertia I,, which is spinning faster 

than the crust while maintaining a constant rotational lag w between their angular 

frequencies during the steady-state slowing down of the star at a rate fl is given, as for 



Figure 1.3- Schematic representation of the vortex state of a rotating superfluid at  a rate 
R as in the interior of a neutron star is shown at the top. The radial dimension of the fluid 
in the case of the core of the star is R - 10 km, the mean distance between vortices is - cm for a young pulsar, and the radial dimension of a vortex core is - 100 fm. The 
bottom part of the figure shows the profile of the superfluid velocity along a line through 
the center of rotation (line A-B). The rotational velocity of the superfluid deviates from 
the rigid-body value of RS2 only near the central parts of the vortices, where the individual 
vortex velocity field (o: inverse of the distance from the center of that vortex) dominates 
the average velocity induced by all other vortices. [from Sauls 19891 
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Figure 1.4- a) -4 view of the  equatorial plane of the core of a rotating neutron star show- 
ing an idealized geometry of the arrangement of the neutron supeduid  vortices (parallel 
to the rotation axis) and the  proton superconductor fluxoids (parallel to the magnetic 
axis ). For the u r p o s e  o i  iilustration the magnetic axis has been assumed to be perpen- 
dicular to the rotation axis. b) A more realistic state of affairs in the presence of strong 
interaction between the vortices in the two supeduid mixture. [from Srinivasan et al. 
1990j 



any two dynamically coupled systems with relative velocities between them, by 

The effect of a supeduid component in the crust of neutron stars on the thermal 

evolution of the star have been already discussed (Pines & Alpar 1985; Shibazaki & 

Lamb 1989; Link & Epstein 1996) which might be generalized to the case of core 

superfluid. The corresponding rate of heating Ea;,, due to the core supeduid might be 

however expected to be of the same order of magnitude as that of the crust superfluid 

component. This is because the larger value of I, in the case of core supeduid is 

compensated by its smaller steady-state lag than that invoked for the crust. 

Recycling of Pulsars 

Young radio pul;ars, neutron stars in binary X-ray sources, and old binary (and/or 

millisecond) radio pulsars are considered to represent three successive stages of the 

evolution of a neutron star in a binary, according to the recycling scenario (Radhakr- 

ishnan & Srinivasan 1984). The binary and millisecond pulsars as a group differ from 

the bulk of normal single pulsars by having on average much faster spins and much 

weaker surface magnetic fields. As can be seen from Fig. 1.5, most binary pulsars and 

all of the millisecond pulsars fall outside the pulsar "island" on the B,-Pa diagram. 

While less than 2% of all pulsars in the galactic disk are found in binaries, however 

some 50% of the millisecond pulsars are found in binaries (van den Heuvel 1994). Or 

put it another way, more than half of the known binary pulsars (and all millisecond 

pulsars) have P, < 12 ms whereas 97% of all pulsars have P,? 30 ms (Bhattacharya & 

van den Heuvel 1991). 

The binary radio pulsars are furthermore divided into two classes, according to their 

orbital characteristics and the estimated masses of their companions. The two classes 

of binary radio pulsars are in fact associated with the final evolutionary products of 

the two classes of binary X-ray sources whiqh are thought to be neutron stars accreting 

matter from their unevolved companion stars. Evolution of the X-ray sources consisting 
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Figure 1.5- The B,-P, diagram for the observed single (dots) and binary (circles) pulsars. 
Possible evolutionary tracks of pulsars recycled in binaries are indicated. Pulsars are born 
in the left upper part of the diagram and, if no field decay occurs, move towards the right 
along horizontal tracks (full lines). In the graveyard, assuming the field to  decay, they 
move downward. Accretion causes the spin-up and the leftward movement of pulsars in the 
diagram as is shown by dashed lines. The bottom diagram shows alternative evolutionary 
routes depending on the strength of the magnetic field and the accretion rate. The 
equilibrium period line corresponding to  the Eddington accretion rate is shown at  the 
extreme left. [from van den Heuvel 1994, and Srinivasan 19891 



a neutron star and a high-mass mainsequence companion (HMXBs) is predicted to 

result in relatively narrow orbits due to occurrence of a spiral-in phase. This happens 

when the companion evolves off the mainsequence and transfers mass at a very large 

rate which cannot be accreted promptly. Thus it surrounds the whole system, forming 

a so-called "common-envelope" that causes a frictional motion at the cost of the orbital 

energy and hence the orbit shrinks. The fate of the companion of the neutron star in 

these systems is to become either another neutron star in an eccentric orbit or a massive 

C - 0  white dwarfs in a circular orbit. On the other hand, pulsars recycled in the other 

class of X-ray binaries having low-mass companion stars (LMXBs) are predicted to be 

found in circular orbits with low-mass He white dwarf companions. Needless to say 

that these expectations are in agreement with the existing body of observations on the 

binary pulsars. 

The spin-up of a neutron star due to the matter accreted from its companion at 

a rate M,, is expected to be limited by an uequilibrium" period P,, given (van den 

Heuvel 1977; Henrichs 1983) as 

where M~~ is the rate of capture of wind matter in solar masses per year, ~ E d d  is 

the maximum possible "Eddington limit" for the accretion rate, B9 is the surface field 

strength in units of lo9 G, and &, is the radius of the neutron star in units of lo6 cm. 
/ 

Using lI;IEdd = 1.5 x 10-'&, MO yrr-l, and assuming = 1, Mn = 1.4 Ma, and 

Mace = MEdd the minimum value of P, is found to be 

which defines the so-called "spin-up" line in the pulsar B,-P, diagram (Radhakrishnan 

& Srinivasan 1984; Srinivasan & van den Heuvel 1982), as shown in Fig. 1.5 . 

According to the standard picture, the evolutionary history of neutron stars in close 

binaries may be divided into three successive phases (Pringle & Rees 1972; Illarionov 

& Sunyaev 1975) as follows. 



a) The (possibly obscured) radio pulsar phase, in which the radio emission from 

a young pulsar might be absorbed in the surrounding plasma due to the stellar 

wind of the companion. The pulsar's radiation pressure however keeps the 

accreted plasma away from the neutron star's magnetosphere. 

b) The slow-down or deceleration phase, in which the magnetosphere of the neutron 

star acts as a "propeller", ejecting the infalling accreted wind matter. 

c) The accretion or spin-up phase, in which the accreted matter falls onto the 

surface of the neutron star releasing its gravitational energy. A heavy mass 

transfer might then ensue due to the Roche-lobe overflow whence the binary 

starts its new life as a bright X-ray source. 

A neutron star born in a close binary will therefore evolve through the following 

"recycling" route on the B,-P, diagram (see Fig. 1.5). The normal spin-down of a 

pulsar will first cause the spin period to increase and the star will move to the right 

along a horizontal track, if no magnetic field decay over the corresponding period of 

time occurs. This motion will finally make the pulsar to cross the "death-line" and 

stop functioning as a pulsar, if its companion wind has not been able to do so earlier 

(see 5 1.4). Interaction with the stellar wind of the companion during its mainsequence 

phase will further increase the spin period during a 'propeller" phase until it reaches 

the corresponding Peq for the given values of B, and Ed,. The neutron star will 

however remain unobservable throughout this period, except for the case of those with 

Be-type companions which might from time to time eject some matter. This will cause 

a temporary increase in M,, and hence a spin-up "accretion" phase making the system 

observable as a transient X-ray source for a few weeks. But, in general later when the 

companion evolves away from the mainsequence it overflows its Roche lobe (in a close 

binary) and the neutron star will be spun up because of the enhanced MgC values 

which correspond to smaller Peq (see Eq. 1.2). The angular momentum of the accreted 

matter being in Keplerian orbits around the neutron star will cause it to spin up, aa 

is observed in the case of disk fed pulsating X-ray sources. Thus during the accretion 
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Figure 1.6- Schematic representation of the recycling scenario including the magnetic 
field evolution according to the model of spin-down-induced flux expulsion. The symbols 
are defined in the text. 



phase the neutron star moves on B,-P, diagram to the left, in addition to a vertical 

downward displacement which it might undergo due to the decay of its magnetic field. 

Since the spin-up line lies to the left of the pulsar death-line, the above motion to the 

left will therefore cause the neutron star to return from the graveyard and start its new 

recycled pulsar life somewhere on the spin-up line depending on its current surface field 

strength, once the mass transfer is halted. 

To summarize and highlight the quantities of interest for our present study, the 

recycling scenario along with the implications of the spin-down induced field decay 

model for evolution of the surface magnetic fields B, of neutron stars in close binary 

systems are shown, schematically, in Fig. 1.6. Slanted up- and doumward arrows in 

Fig. 1.6 indicate increasing and decreasing quantities, respectively. 

Fig. 1.6 depicts that a pulsar in a close binary with a mainsequence (MS) star will 

undergo a phase of spinning-down to a maximum period P-, followed by a phase 

of spinning-up both due to interaction of its magnetosphere with the matter accreted 

from the stellar wind of its companion. Roche-lobe overflow (RLOF) of the companion 

star will, at some later stage of its evolution, further decrease the spin period P, of the 

neutron star (NS) bringing it from its value at the beginning of the RLOF-phase P, to 

a minimum equilibrium period PC,. The value of PC, depends on the strength of the 

surface magnetic field of the neutron star at that epoch BR and the rate of accretion of 

matter onto the neutron star M,, (Eq. 1.2). In the following the Eddington accretion 

rate ~ E d d  will be assumed to be applicable during the RLOF-phases of all binaries 

of interest hence making P,, a function of BR only (Eq. 1.3). This value of P,, is 

however only a limit on the minimum spin period which is possible through the spin- 

up process. The actual value achieved is further constrained by the duration and the 

efficiency of the RLOF-phase in each case. A neutron star born with an initial period 

f i  and field strength Bi in a close binary which would be otherwise observable as a 

radio pulsar is presumably being obscured in the wind of its companion and missed by 

the general radio pulsar surveys in most cases of interest (Illarionov & Sunyaev 1975; 

Bhattacharya & van den Heuvel 1991; Lipunov 1992). It is however expected to start 



again functioning as a recycled pulsar (being either in a binary with a compact stellar 
I 

remnant, CSR, or single) after a time about the MS-lifetime of its companion t ,  has 

elapsed. The subsequent evolution of a recycled pulsar will in general cause its period 

and magnetic field strength to change from the starting values P,, and BR to the final 

observed (after a time tR)  values Pf and Bf, respectively. The evolution of the orbital 

period Porb of the binary system is not expected to depend on the spin or magnetic 

evolution of the neutron star and is determined by the amount of mass transfer within 

the binary as well as the mass and angular momentum losses from the system. 

1.3 Accretion from a Stellar Wind 

A neutron star in a binary system might interact with the accreted matter which is 

lost by its companion due to two different processes. The companion star loses mass 

firstly as it emits a stellar wind during the mainsequence and the subsequent phases of 

its evolution. In a close binary system another possibility for mass transfer might be 

also realized when a star is unable to hold its surface matter against the gravitational 

attraction of its companion. In the latter case, viz. the so-called Roche-lobe overflow, 

matter is transferred through the inner Lagrangian point of the binary and forms a 

disk around the companion neutron star. The Roche-lobe mass transfer might occur in 

a binary when a star expands due to its internal nuclear evolution. Another possibility 

is that the Roche lobe might shrink to  a size within the stellar surface as a result of a 

loss in the orbital angular momentum of the system (see 5 1.4) which would cause the 

orbit to shrink. 

In the studies of X-ray binary sources, accretion of the stellar wind by the neutron 

star has been usually invoked only in the case of massive X-ray binaries (HMXBs). The 

neutron star in these systems is believed to accrete from the winds of OB supergiants or 

Be-type companions (Henrichs 1983; Rappaport & Joss 1983). In the case of Low-mass 

X-ray binaries (LMXBs) however the Roche lobe overflow is considered to  be the case 

since the wind rate of the companion is too weak to account for the observed X-ray 

luminosities of these sources. Nevertheless, in our study of the coupled spin-magnetic 



field evolution of neutron stars accretion from the stellar wind of a mainsequence com- 

panion prior to the X-ray phase of the binary will be considered, for both massive and 

low-mass systems. This is because according to the adopted model the magnetic evolu- 

tion of a neutron star is determined by its spin-down history. A spin-down phase is, as 

indicated earlier, expected to occur favorably prior to the X-ray phase in both LMXBs 

and HMXBs. This is partly because of the lower rates of accretion from a stellar wind 

of a mainsequence star as compared to  its supergiant phase, or that due to the Roche 

lobe mass transfer. Also the larger field strengths of the younger neutron stars in the 

younger systems calls for a spinning down of the neutron star before the X-ray phase 

(see Eq. 1.2). Indeed, in our model simulations (to be discussed in chapter 2) for both 

low- and high-mass systems the spin-down and spin-up phases are realized successively 

during the mainsequence phase of the companion star. The transition from a spin- 

down to a spin-up phase occurs due to  the adopted decay mechanism for the magnetic 

field of a neutron star which has been built into the simulations. 

A neutron star moving in the wind of its companion star with a velocity is 

assumed to capture all the approaching matter having an impact parameter less than 

or equal to a maximum value of R,,, the so called accretion radius. According to  the 

Hoyle-Lyttleton scenario (Hoyle & Lyttleton 1939) wind particles follow free Keplerian 

trajectories until they collide with each other along the down stream accretion axis 

(see Fig. 1.7). The collisions are supposed to result in cancellation of the velocity 

components perpendicular to the axis, leaving only the parallel velocity components 

pointing away from the star. Accretion radius is thus determined by finding the impact 

parameter for which the parallel component of velocity on the axis becomes equal to 

the local escape velocity. Equivalently, from energy considerations it is hence found 

that 

2G Mn 
R,, = - 

where Mn is the mars of the neutron star, and I.',el = (V: + ~ 2 ~ ) ' ' ~  where Vorb is the 

orbital velocity of the neutron star, and V, is the velocity of the wind with respect to  the 

mass-losing star (see Fig. 1.7). The accretion rate M,, is determined by calculating 



Figure 1.7- Accretion by a compact object (say a neutron s tar)  from the stellar :sind oi 
its binary companion. The relative directions of accretion cylinder and different veiociries 
are shown a t  the top. An accretion disk might form near the neutron s tar  and behind ihe  
shock front in the converging wincl as shown in the bottom. [from Nagase 19891 



the rate of matter flowing through the accretion cylinder, which is the cylinder of 

radius R,,, with its axis passing through the neutron star and parallel to the upstream 

particles velocity. Thus 

Macc = rRzcc PW Kel (1.5) 

For the above Hoyle-Lyttleton approximation therefore the accretion rate may be given 

where p, is the density of the wind matter just before being deflected onto the neutron 

star, ie. at a large distance upstream. The density of the stellar wind at any distance 

r' from the mass losing star can be found from the continuity equation for the flow, 

namely 

where is the rate of the mass-loss from the companion star in the form of a spher- 

ically symmetric stellar wind. 

The accretion axis invoked above being a geometrical line however implies a sin- 

gularity in the density of the converging matter. An improvement due to considering 

instead a more physical, finite density, accretion cone has led (Bondi & Hoyle 1944) to 

the accretion rate 

where 112 5 a,,, < 1 is an unknown parameter which depends on the initial conditions. 

The above derivations of the accretion rate however neglect the effects due to the gas 

pressure, since they were based on the dynamics of single particles trajectories which is a 

valid approximation only for highly supersonic flows. The hydrodynamical treatment of 

the problem has nevertheless resulted in the following general formula for the accretion 

rate (Davidson & Ostriker 1973; Alcock & *Illarionov 1980; Ghosh & Lamb 1991) 



where C, is the sound velocity in the wind upstream. 

Using Eqs 1.4, 1.5, 1.7, and 1.9 and assuming p, = ~ ( r '  = a ) ,  the radius and the 

rate of accretion will be calculated in our simulations from 

where all the velocities are in units of km/s, and M, is in solar unit. 

1.4 Spin Evolution 

A homogeneous wind (in density and velocity) entering into the accretion cylinder 

would have zero net angular momentum with respect to the neutron star. Indeed 

the basic underlying assumption in the above Hoyle-Lyttleton picture is the exact 

cancellation of the transverse velocities of the wind particles, which will make the 

subsequent infall along the down-stream accretion axis possible. The spin period of a 

neutron star accreting from such an idealized homogeneous wind would not be therefore 

changed due to its interaction with the accreted matter. The density of the matter 

in a stellar wind is however expected to decrease with increasing distance from the 

star, as required by the continuity equation (Eq. 1.7). The wind velocity might be 

constant or the wind might be speeding up as is believed to be the case in particular 

for the massive stars where radiation pressure due to resonant scattering of the stellar 

uv-photons by ions in the wind is believed to accelerate the wind (eg. Lucy & Solomon 

1970). During the outflow from the stellar surface the wind is accelerated to a typical 

terminal velocity of a few times the escape velocity at  the stellar surface. The wind 

velocity V, as a function of the distance r' from the star is given (eg. Abbott 1978) as 



where k 3 is attained at T' of a few times the stellar radius R. We will be however 

considering a constant wind velocity for any star of a given mass assuming that for 

the binaries which are considered here the wind velocity close to the neutron star has 

already achieved its terminal velocity. Matter entering the accretion cylinder would be 

therefore denser at those points of the cylinder cross section which are closer to the 

companion star (see Fig. 1.7). 

The specific angular momentum I of the accreted matter could be in general calcu- 

lated by approximating the variations in the density and the velocity with their first 

order expansions about the center of the cylinder. This result in 

where norb = 2~ and 17 is a numerical parameter of order unity which depends on the 
Porb ' 

variation of the density and velocity of the wind across the capture area. The maximum 

possible angular momentum carried by the wind is thus found to be comparable with 

that in the case of disk accretion (Nagase 1989). It is not however clear how much of 

this is actually deposited onto the neutron star when it is finally accreted. While some 

authors have assumed that all of the above angular momentum (Eq. 1.13) is transferred 

to the accreting neutron star (Illarionov & Sunyaev 1975; Wang 1981) others have 

argued that in this case too, as for a homogeneous wind, no angular momentum is 

accreted at all (Davies & Pringle 1980). Nevertheless, the earlier 2D and the more 

recently emerging 3D numerical hydrodynamical simulations seem to have established 

that angular momentum is indeed accreted from a nonhomogeneous wind, even though 

possibly at a rate somewhat smaller than that given by Eq. 1.13 (Livio 1994). In 

some of these calculations even a disk is also seen to form around the accreting center, 

which in some cases exhibits reversal of its sense of rotation quasi periodically (Taam 

& Fryxell 1988; Fryxell & Taam 1988). A disk is believed to be formed around an 

accreting object if the specific angular momentum of the converging matter is larger 

than that of the closest possible circular Keplerian orbit which will form the inner edge 

of the disk. In the case of a neutron star the inner radius of the disk has to be larger 

than the radius of the star's magnetosphere Lag (see below). The specific angular 



momentum of the accreting matter therefore has to be larger than that of a circular 

Keplerian orbit of the radius kag, for a disk to be formed around a neutron star. 

Thus, the observed formation of a disk in the 3D simulations indicates a minimum 

limit for the angular momentum of the matter accreted from a stellar wind in a binary 

system. 

1.4.1 The Magnetosphere 

Accretion of the matter captured by the gravitational attraction of a neutron star, 

whether forming a disk or as a spherical infall, is on the other hand impeded by the 

electromagnetic field of the star. The energy radiated by a rotating magnetized neutron 

star in the form of relativistic particles and/or electromagnetic radiation is assumed to 

originate somewhere at a characteristic distance of the so-called light cylinder radius 

Rl defined as 

where R is the angular rotation frequency of the neutron star. 

At distances from the neutron star T < Rl the electromagnetic field is static and 

since the wind matter is expected to be a highly conductive plasma it cannot penetrate 

through the field. The wind will instead act like a dimagnetic and will try to squeeze 

the field. By balancing the pressure Prig of the assumed dipolar magnetic field around 

the star with the ram pressure Pgm of the matter, the radius kag of the magnetosphere 

might be therefore determined. We use 

where p(r) is the density and v ( r )  is the velocity of the matter at a distance r  from 

the neutron star, and R, is the radius of the neutron star. The matter after entering 

the accretion cylinder would be freely falling onto the neutron star. In this regime 



the velocity v(r) and the density p(r) of the accreting gas obey the following general 

relations, for the case of spherical accretion, 

Substituting for v and p from Eqs 1.17, and 1.18 into Eqs 1.15, and 1.16 and using the 

pressure balance relation, ie. 

Lag is derived as 

It is noted that the value of Lg for the case of disk accretion is also expected to 

be similar to the above value, although both smaller and larger values than the above 

estimate have been derived by different authors depending on the different values which 

they have assumed for the radial velocity of the matter in both cases of disk and 

spherical accretion (Nagase 1989; Wang 1981). At distances r 5 &,, the magnetic 

field is so strong that it will determine the motion of the matter which is hence forced 

to co-rotate with the neutron star. 

The expression for A!-, in Eq. 1.20 is not however valid if the conditions are such 

that Pmg > Pgas at T = R,, which implies that the radius of the magnetosphere 

is larger than Race. Note that in this case the condition P-, > Pgw will persist 

throughout the region inside the accretion cylinder since Pmag or r-6 and Pgu or T- t .  . 
Outside the accretion cylinder, which is also assumed to be bounded by a shock front 

at a distance of - R,,, up-stream from the neutron star (see Fig. 1.7), the motion 

of the gas is unafEected by the gravitation of the neutron star. Hence Eqs 1.17 and 

1.18 which assume the gas is falling under the effect of the gravitation of the neutron 

star are not valid. Given the velocity law for the outflow of the stellar wind from the 

mass-losing star then V,(r) is known and the density of the gas in this case may be 

however determined from the continuity equation, namely 



The magnetospheric radius for the case when it is located outside the accretion cylin- 

der might therefore be estimated still from the pressure balance equation 

(Eq. 1.19) which reduces to 

It has to be recalled that the magnetosphere of a neutron star is bounded by the light 

cylinder of the radius Rl (Eq. 1.14). If the calculated value of Gag from Eq. 1.20 (or 

from Eq. 1.22) turns out to be larger than Rl then it is set equal to Rl. 

Furthermore, the accretion rate M,,-in for the case when magnetosphere extends 

beyond the accretion cylinder also cannot be calculated by use of the general definition 

of the accretion radius (Eqs 1.4 and 1.5), which has been adopted by some authors 

(Liuponov 1992) for this case too. This is because the accretion radius is determined 

from a balance of the gravitational and kinetic energies of the freely moving matter. 

In the present case however the matter encounters the magnetosphere before getting 

close enough to the neutron star to feel its gravitation and its kinematics is different 

than outside the magnetosphere. In the absence of any theoretical treatment of the 

problem of accretion by a neutron star for such a case, we use the suggested rate given in 

analogy with the accretion rate of the solar wind by the Earth's magnetosphere (Alcock 

& Illarionov 1980). The accretion rate in the case of geomagnetosphere, which is also 

situated outside the corresponding accretion radius as defined by Eq. 1.4, is estimated 

to be - of that due to the geometrical cross section of the magnetosphere, which 

results in 



1.4.2 Radiat ion-pressure Dominated Regime 

For the accreting wind matter within the accretion cylinder in order to reach the 

magnetosphere and be able to interact with the neutron star it has to first overcome the 

obstacle due to the pressure of the relativistic particles as well as the electromagnetic 

radiation (the pulsar wind) emitted by the star, in the region T > Rl. The energetic 

particles in the pulsar wind are expected to be "trapped" in the magnetic field of an 

accreting plasma and hence impart momentum to it, ie. present pressure against the 

incoming plasma. This is because for the typical random magnetic fields in the stellar 

wind the Larmor radius of the energetic particles is found to be much smaller than 

the accretion radius (Liuponov 1992). Also the associated plasma frequency of the 

accreting wind matter is larger than the frequency of the magnetic dipole radiation 

and hence the radiation is reflected by the wind matter. The total pressure Prad due 

to the particles and radiation field emitted by a neutron star at a distance T from the 

star is estimated as 

where LPsR is the total rate of energy loss by the neutron star and is given, in analogy 

with the case of purely magnetic dipole radiation, as 

The balance between the radiation and the gas pressure will determine the distance 

from the neutron star at which the matter infall towards the star might be brought 

to a halt by the pulsar wind. It is noted that depending on whether Rrd < Race 

or && > Rmc the P, and M~~~ have to be calculated self-consistently from the 

appropriate relations, as discussed earlier for the calculation of Lag (see discussions 

related to Eqs 1.22 and 1.23). 

An explicit evaluation of Kad is not however required in either cases and one needs 

only to compare values of Prd and P,, at T = R1 in order to determine the expected 

phase of the pulsar spin evolution. If ,> R1 (viz. Prd > Pgas at T = R1) a cavern 

is formed around the neutron star (see Fig. 1.8) and no dynamical coupling between 



Active pulsar 

Figure 1.8- Schematic representation of the light cylinder with a radius Ri m d  the 
radiation field around a rotating magnetized neutron star in the Active pulsnr phase. 
The balance between radiation pressure, mainly due to the outflowing relativiszic parti- 
cles and/or magnetic dipole radiation, and gas pressure of the matter attraczed by the 
gravitation of the star is achieved at a distance of Rrd. [adopted from Lipunov 19921 



the star and the accretion matter can occur. The star will be therefore slowing down 

in this phase, namely the ( ~ o s s i b l ~  obscured) active radio pulsar p'atse, due only to its 

intrinsic decelerating torque. The spin-down rate of the neutron s : x  Ps in this phase 

may be derived from 

where fi is the rate of change of the spin frequency R, and which results in 

where B8 is the surface field strength in units of 10' G. 

1.4.3 Gas-pressure Dominated Regime 

However, when the pulsar radiation pressure is not strong enough to stop the infalling 

accreted matter, i.e. &ad < Rl, the accreted matter makes contact with the magneto- 

sphere and may cause a spin-down or spin-up of the star. Namely the matter once it 

reaches the magnetosphere might extract extra angular momentum from it and be be 

thrown off or else it would settle onto the neutron star adding to  star's specific angular 

momentum. For the case of disk accretion the rate of the transfer of angular momen- 

tum between the neutron star and the matter rotating in Keplerian orbits around the 

star due only to  mechanical stresses is estimated (Illarianov & Sunyaev 1975) as 

where Vdif(r = L a g )  = Korot - VKep is the difference between the mrotation velocity 

V,,,,t(r) with the magnetosphere and the Keplerian velocity VKep(r) both evaluated at 

a distance r = ka,. The rate of angular momentum transfer for the spin-up and the 

spin-down phases may be therefore calculated in both cases from Eq. 1.28 depending 

on the sign of Va. The change in the sign of the quantity Vdir may be determined 

also from a comparison between the values.of the so-called co-rotation radius &, and 

Lag. The plasma entering the magnetosphere is frozen in the magnetic field and is 



dragged along with it to co-rotate with the star. There exists however a surface S,, 

(see Figs 1.9 and 1.10) beyond which the velocity of particles (when forced to co-rotate 

with the magnetosphere) is too high to let them fall toward the star. The co-rotation 

surface is defined by the balance between the gravitation and the centrifugal forces on 

an assumed co-rotating particle. Namely at a radial distance T from the center of the 

star and at an angle 6' away from the equator the relation 

must be satisfied for particles on S,,. The equation for the generator of the co-rotation 

surface is thus given (Liuponov 1992) as 

1 

where &, = (%)' is the co-rotation radius at the equator. The positive or negative 

sign of Vdif which corresponds to the conditions for the propeller or the accretion phase, 

respectively, could be therefore expressed also as &, < Lg (Fig. 1.9) and I&, > Lg 
(Fig. 1. lo), respectively. 

Nevertheless, due to the additional magnetic coupling of the infalling matter with 

the magnetosphere the interaction between them might however occur simultaneously 

over an extended boundary region. This is in contrast to the unique distance of &, 

which was assumed for the case of mechanical coupling that leads to Eq. 1.28 for the 

transmitted torque. The magnetic coupling has been studied in detail for the case when 

the stellar magnetic axis is aligned with the disk axis (Ghosh, Lamb & Pethick 1977, 

Ghosh & Lamb 1991). The results of these studies however show that for the limiting 

cases of very slow and very fast rotations of the neutron star the torque is similar to 

that due to the mechanical stresses exerted at I?,-, (Nagase 1989), namely that given 

by Eq. 1.28. In addition, our rough estimate of the accretion torque (Eq. 1.28) might 

be excused particularly for the discussions in chapter 2 because the important quantity 

relevant to the adopted field decay model is the man'mum spin period which a neutron 

star acquires during its lifetime. The improvement in the results due to any other 

detailed treatment of the torque history would be only in possible changes in the time 



Propeller 

Figure 1.9- As Fig. 1.8 but for the case of a Propeller phase. When La, = I&, the 
neutron star spins at its equilibrium spin period P,, which is expected not to  be changed 
by further accretion. [adopted from Schreier 1977, and Lipunov 19921 



magnetosphere 

Accretion 

Figurel.10- Schematic representation of the magnetosphere at  a radius Rm., and the 
co-rotation surface S,, with an equatorial radius Q, for a rotating magnetized neutron 
star in the Accretion phase, as viewed along ( t op )  and away from (bot tom) the rotation 
axis. [adopted from Schreier 1977, and Lipunov 19921 



scale and the exact spin history of the star in arriving at a final value of PC, (along 

the spin-up line) which is decided only by the field strength B, and the accretion rate 

Ma,,. As long as the difference in the time scales of the spin-down phase due to the 

different plausible evaluations of the torque is not larger than the assumed decay time 

scale of the field in the crust of neutron stars the predicted field evolution would be 

essentially the same. Also it is noted that the torque given by Eq. 1.28 for the case of 

a spin-up phase is less than that expected even for the mechanical coupling at Lag; 

namely Vdir has to be replaced with VKep. The spin-up of the neutron star has no 

effect on the further evolution of its magnetic field in our calculations and the above 

relation for angular momentum transfer has been used to ensure the occurrence of an 

equilibrium spin period, without resorting to a detailed and complicated modeling (as 

in, say, Ghosh et. al. 1977). However in order to test the results of other estimates of 

L, different than that in Eq. 1.28 it might be modified to  the following form 

where we have introduced an efficiency factor ( for which different values will be used 

in our simulations of binary evolution of neutron stars, and ( = 1 reproduces Eq. 1.28. 

The rate of change of the spin period of the star due to the accretion torque L. 

would furthermore depend also on the sense and the angle of the rotation axis of the 

neutron star with respect to the orbital plane, the latter being same as the plane of the 

accretion disk. Here we will consider only the case where the stellar axis and the disk 

axis are parallel, and also assume that the matter in the disk is rotating in the same 

sense as the neutron star. These assumptions might be justified as representing the 

most probable cases since they correspond to the presumably aligned and synchronous 

rotation of the neutron star's progenitor in the binary. 

The spin evolution of a neutron star during the propeller and the accretion phases 

can be thus calculated using the dynamical equation 

where I is the total moment of inertia of the neutron star. Substituting for L, from 



Eq. 1.31 the rate P, of change of the spin period of the neutron star due to interaction 

with accreted matter is derived as 

where G,,, VU, and P, are in units of km, km s-l, and s, respectively. Note that the 

sign of is decided by that of Vdif. 

1.5 Orbital Evolution 

The orbital separation a of the binary clearly affects the estimated value of P, given 

by Eq. 1.33, and its time behavior ought to be determined. The orbital evolution 

of a binary system under mass exchange between the components and/or mass loss 

from the system may be determined from the expression for the total orbital angular 

momentum Lorb; namely 

Lorb = MlM2 \/$ 
where MI and M2 are the masses of the two stars, M = MI + M2. Differentiating with 

respect to the time results in 

a - Lo,, & M2 M - - 2--2- - 2- +-  
a Lorb MI M2 M 

where a dot indicates the time derivative of the corresponding quantity. The rate i O r b  

of change of the orbital angular momentum may be expressed as 

Lorb = Lest + L l o ~ ~ e s  (1.36) 

where L,,, denotes the change in Lorb due only to the matter escaped from the binary 

system, and ~ l , . , ,  is that due to the other causes (see below). Let M2 be the mass of 

the mass-losing star, then if a fraction CY of the matter which is lost by the mass losing 

star leaves the system (and the rest falls on its companion) the rate of total mass-loss 

M from the binary system may be written as 



where both ~2 and M < 0, and 0 5 a < 1. Similarly, the specific angular momentum 

L,,,/ M carried away by the matter leaving the binary is defined in terms of that of 

the matter in the mass losing star as 

where L2 is the orbital angular momentum of the star with mass M2.  Substituting for 

M and L2 in Eq. 1.38 then results in 

Lesc - - ~2 Ml 
- 

Lorb 

Using Eqs 1.36, 1.37, and 1.39 Eq. 1.35 may be rewritten in the following form 

a M2 a M 2  Llosses 
a 

(1.40) 
MI 2 M Lorb 

where a! and p define the mass lost from the binary and its associated loss of orbital 

angular momentum as defined (Eqs 1.37 and 1.38). This is the equation which we use 

for a determination of orbital evolution in our model computations. It remains to give 

the prescription for calculating the values of a, P ,  and L~,. , ,  which is dealt with in the 

following remaining pages of this chapter. 

The matter converging on the neutron star (at the rate Mac,; cf. 5 1.3) might 

however fail to actually accrete onto the star. Conditions at the boundary region of 

the magnetosphere, or even before that in the radiation zone of the pulsar, might be 

such that part or all of the matter captured from the wind is further lost from the 

gravitation pull of the neutron star and the binary system (cf. 5 1.4). In the steady 

state it will be assumed that all of the matter entering the accretion cylinder is either 

accreted completely or else leaves the binary system. Thus, 

Ma,, . . . . . . accretion phase 
M I  = 

( 0 . . .  ... ... otherwise 

is used, and the factor a is determined from 



For a determination of @ two separate contributions have to be considered. One is 

due to the matter lost by the binary system directly from the companion star and the 

other is that due to the matter which is first captured by the neutron star gravitation 

and then is either lost from the system or accretes onto the neutron star. The part 

of the wind which leaves the system without interacting with the neutron star carries 

away a specific angular momentum equal to that of the mass losing star. Therefore 

p = 1 for a fraction (1 - %) of the matter lost from the binary. For the rest of the 

matter, if it is accreting the associated loss of orbital angular momentumis equal to the 

gain of spin angular momentum by the neutron star. The effective value of P, taking 

into account also the contribution due to the matter lost directly, is thus calculated in 

this case as 

1 - a Lag M! lVml p = I + -  . . . . . . accretion phase 
a G+ at  M~~ 

where length scales and masses are in solar units and lVdifl is in units of km s-l. 

Alternatively, for the case when the matter is expelled upon interaction with the mag- 

netosphere it will be assumed that it leaves the system with its corresponding Keplerian 

velocity around the neutron star at the magnetosphere boundary. The specific angular 

momentum carried away would be hence that of the orbital motion of the neutron 

star plus that of the Keplerian velocity of the matter around the neutron star. This 

together with the contribution from the matter lost directly then gives 

P = a + (1 - a) [(s)' M2 + (%) (M) M2 $1 . . . propeller phase (1.44) 

which is derived for the propeller phase, but will be also used for the comparatively 

short period of the active pulsar phase too. 

Finally, for the last term in Eq. 1.40, ie. L1,,,,,, the effects due to two other sinks of 

the orbit a1 angular momentum namely magnetic braking and gravitational waves are 

taken into account, hence 



where the two terms on the right hand side are defined as follows. 

The spin rotation of a mass losing star is believed to be continuously slowed 

down since the stellar wind is forced to co-rotate with the star out to large 

distances because of the effect of the stellar magnetic filed on the highly con- 

ducting ionized wind matter. The requirement for a synchronous rotation of 

normal stars, at a rate same as the orbital frequency, in close binary systems 

then results in the spin angular momentum to be compensated from the orbit. 

The rate of loss of spin (or equivalently orbital) angular momentum due to  this 

magnetic braking mechanism is given (Verbunt & Zwaan 1981) as 

LMB = -0.5 x lo2' f - 2  k2 R24 M2 (2) g m c m s  2 -1 (1.46) 

where R2 is the radius of the star, k  is a structure dependent constant defined 

through I = k 2 ~ 2 ~ 2 2  where I is the moment of inertia of the star, the constant 

f depends on the evolutionary stage of the star and is a measure of the strength 

of the magnetic field of the star, and Pz is the spin period of the star which 

in our case will be equal to the orbital period of the binary. Thus the relative 

rate of loss of orbital angular momentum due to  the magnetic braking is found, 

using Eq. 1.31, as 

LMB - = -9.58 x 10-14 f-' k2 a-5 R: M;' M 2  s-' (1.47) 
Lorb 

where masses and length scales are in solar units. 

For the gravitational radiation due to the orbital motion of the stars, the loss 

of orbital angular momentum is given (Shapiro & Teukolsky 1983) as 

which results in 

LGR - - - 32G3 Ml M2 M -- 
Lorb 5c5 a4 

where all the masses and a are in solar units. 


