
Chapter 3 

DYNAMICAL TREATMENT OF 

THE FLUX EXPULSION (FBE) 

3.1 Introduction 

The central concept in the flux expulsion scenario for the magnetic evolution of neutron 

stars discussed in the previous chapter is the idea of the interpinning of the ffuxoids 

and the vortices. This is however an issue which is least explored so far. Pinning of 

the quantized magnetic fluxoids to lattice defects and impurities in the case of type-I1 

laboratory superconductors is a key issue in explaining their magnetic properties. The 

pinning is necessary in order for the so-called "hard" superconductors to  be able to 

support large supercurrents and magnetic fields, as it prevents the fluxoids from moving 

freely under the existing Lorentz forces acting on them (Anderson & Kim 1964). Also, 

for the laboratory case of rotating superfluid *He pinning of the vortex lines to  the 

surface of the container results in new properties for the spin behavior of the auid 

as has been observed experimentally (see review by Sonin 1987). Pinning of neutron 

superfluid vortices to  nuclei in the crust of neutron stars has been invoked by ,kcierson 

& Itoh (1975) for explaining the observed jumps in the rotation rates of solce radio 

pulsars and the slow relaxations after such events, ie. glitches (see chapter 4). Less 

clear is the interaction and pinning between the two different families of vortex lines 



coexisting in the interior of a neutron star (see f j  1.2 and f j  2.2.1). 

In the original model of spin-down-induced flux expulsion (the SIF model) which 

was adopted in the previous studies referred to earlier, the pinning was suggested to 

result in a expulsion of the magnetic flux at a rate equal to the spin-down rate of the 

star (Srinivasan et al. 1990). The fluxoids were therefore assumed to be continually 

pulled out of the stellar core along with the outward moving vortices as the star spins 

down. However, due to the existing resistance against the motion of fluxoids and 

vortices and given the finite strength of the interaction energy associated with any 

assumed pinning mechanism the flwoids and the vortices might be expected to move 

with different velocities, while "cutting" or "creeping" through each other. A more 

refined treatment of the fEux expulsion out of the core of neutron stars would hence 

require the dynamics of the fluzoid motion to be considered independently. 

In the following, we discuss the various forces which act on the flwoids in the 

interior of a neutron star, including a force due to their pinning interaction with the 

moving neutron vortices. Other forces which we take into account are 

viscous drag force due to magnetic scattering of electrons, 

buoyancy force, and 

curvature force. 

The velocity of the outward motion of the fluzoids is thus determined, for a given steady- 

state spin-down rate of the star, from a solution of the Magnus equation requiring a 

balance of the diflerent forces acting radially on a unit length of a jluzoid. The derived 

radial velocity of the flwoids at the core-crust boundary would then determine the rate 

of the flux expulsion out of the core. The original SIF model assumes that the velocity of 

the fluxoids is always equal to that of the neutron vortices. Our attempt is analogous to 

that of Ding, Cheng & Chau (1993) in their study of the field evolution of single normal 

pulsars. The main objective of the present work is however to investigate the results 

of such a treatment of the flux expulsion sc,enario for the magnetic evolution of binary 

pulsars for which the spin-down history of the neutron star is expected to be different 



than that of the single pulsars considered by Ding et al. (1993). Furthermore, we have 

explored other possibilities different than those assumed by Ding et al. (1993) about 

the nature and magnitudes of the effective forces acting on the fluxoids. Alternative 

models for calculating the rate of the magnetic flux expulsion in neutron stars are thus 

realized. Predictions of the models for the magnetic evolution of binary as well as 

single pulsars are then compared and tested against the available observational data. 

We shall also compare the results of these more detailed studies of the flux expulsion 

scenario with those obtained from the much simpler approach adopted in the SIF 

model. This is particularly useful because the SIF model has been already shown to 

produce acceptable and useful resluts, as mentioned earlier. 

3.2 Dynamics of Fluxoids 

3.2.1 Neutron Superfluid Vortices 

In the steady-state, the neutron vortices in the interior of a rotating magnetized neutron 

star are expected to be co-rotating at a given rate R with the charged component of the 

star, including the lattice of the proton fluxoids (Sauls 1989). The plasma in the core 

has been shown to be coupled to the crust over time scales 5 10 s, for the case of non- 

superconducting protons (Easson 1979). The coupling mechanism is thought to be via 

the formation of Ekman boundary layer at the core-crust interface as in ordinary fluids 

(see eg. Greenspan 1969). In this process the boundary layer a t  the top and bottom 

of the fluid (for an assumed idealized cylindrical geometry) serves to bring the fluid to 

the new rotation rate of the container via formation of a radial secondary flow toward 

and away from the axis. Two types of boundary layers are possible in the case of core 

fluid of a neutron star, depending on whether the magnetic field or the plasma viscosity 

has the dominant effect. However for an assumed type-I1 superconductor plasma in 

the core of neutron stars most of the plasma lies in regions where there is no magnetic 

field and hence the coupling time scale in this case might be expected to be different 

than the above case. Although model calculations for the superconductor case have 



not been yet carried out, similar coupling time scales (- 10 s) have been suggested 

by Alpar, Langer & Sauls (1984) for this case, too, on the following grounds. They 

argue that viscosity due to electron-electron scattering alone indicates an Ekman time 

scale of 1-10 s, and fluxoids are coupled to the electron gas on time scales of 10-l4 s 

due to the magnetic scattering. Proton fluid outside the fluxoids on the other hand 

should respond to the motion of electrons through an adjustment of the supercurrent 

in accord with the new condition of the electron fluid motion. The latter process is 

argued to proceed at the speed of light propagation giving a time scale of s. T h u s  

the coupling t ime scale between the crust and the plasma in the core of a neutron s tar  

for the case of superconducting protons is  decided by the electron fluid viscosity as in 

the the case of normal plasma. The time scale for relaxation of any  relative velocity 

between the plasma and the neutron vortices, on  the other hand, due t o  scattering of 

electrons off magnetic field of the vortices is 20 s (Alpar et al. 198433). 

However, for a star which is spinning down at a rate h the rotation of the vortices 

would maintain a constant lag w behind the neutron superfluid bulk matter. The latter 

is assumed to be rotating uniformly with a rate R, so that w r a, - R > 0. For a 

given superfluid spin-down rate ha (which, in the steady state, will be equal to the 

spin-down rate of the rest of the star vis. h) the corresponding velocity of the vortex 

outward motion v,, at the core boundary, is given by 

where we have approximated 52, by R, and Q is the radius of the core of a neutron 

star. Substituting for Q = 9 x lo5 cm, and = 5 where P, and P, are spin period 

and its time derivative in units of seconds and s s-', respectively, result in 

where P, is the spin-down rate in units of,s yr-l. 

On the other hand, the rotational lag results in an outward Magnus force on the 



vortices which is responsible for the outward migration of the vortices and hence a 

reduction in their number density in a spinning down superfluid. 

The Magnus force : 

A vortex line in a rotating superfluid is expected to be carried along with the local 

superfluid velocity according to Kelvin's circulation theorem applied to transport of 

rectilinear vorticity in a 2D flow (Fetter 1976; Putterman 1979). However the superfluid 

may transmit a force to a vortex moving with respect to  the local fluid which has the 

form of the classical Magnus force acting on a rotating cylindrical body moving through 

a fluid perpendicular to its axis (Batchelor 1967, p. 427). The relevance of a Magnus 

force for quantized vortices has been shown both in the case of a rotating neutral 

condensate (Hall & Vinen 1956) and also for a charged superfluid on fluxoids in a 

type-I1 superconductor (Nozikres & Vinen 1966). The Magnus force per unit length of 

a vortex is given as 

where p,r is the superfluid density, 2 is the vorticity of the vortex line directed along 

the rotation axis, and v; and v t  are the local superfluid and the vortex line velocities. 
+ 

Note that in the case of superconductor fluxoids 2 G &' where q50 is the magnetic 

flux through the fluxoid and m, is the mass of the superconducting particles (Nozikres 

& Vinen 1966). 

The lag w and the resulting outward radial Magnus force on the neutron vortices in 

the spinning-down core superfluid are necessary in order to  balance the existing viscous 

forces against outward motion of vortices. The latter forces are usually assumed to be 

mainly due to the scattering of the electrons from the magnetized cores of the neutron 

vortices in the interior of a neutron star (Sauls 1989). The requirement for vanishing 

net force on vortices is due to the usual approximation of treating vortices as massless 

fluid configurations (Sonin 1987). An effective mass is nevertheless attributed to a 

moving vortex due to an additional flow ipduced by its motion which contributes to 

the kinetic energy of the system. For the neutron and proton vortices in a neutron star 



the effective mass per unit length of the vortex m* is found to be equal to the mass of 

superfluid displaced by a unit length of the vortex, ie. m* = p,7rt2 - 10-l2 g, where p is 

the density and ( is the radius of the vortex (Baym & Chandler 1983). The associated 

inertial force per unit length of the vortex would be extremely small (< dyn) 

for both neutron and proton vortices, compared to other forces considered, and will be 

neglected. 

The pinning force on the neutron vortices : 

On the other hand, if a fluxoid can pin on a vortex the associated pinning force on the 

vortex could be in principle in either radial direction (inward or outward), depending 

on the direction of the relative motion of the vortex and the fluxoid, and independent 

of the actual direction of motion of the vortices. Hence the pinning force might either 

contribute to the viscous forces against the outward motion of the vortices (which is 

the case when they are moving faster than flwoids) or in the opposite case it could 

act as a "driving" force during a spin-down phase of the star (since in this case it 

points along the direction of motion of the vortices). The viscous force on the vortices 

due to the electron scattering is, however, expected to be many orders of magnitudes 

smaller than the pinning force even for the largest steady-state spin-down rates of 

interest and hence the largest possible values of v,. The force per unit length of a 

vortex due to the pinning is typically expected to be >> 1012 dyn cm-', while that 

of the electron scattering (Alpar & Sauls 1988) is < lo5 dyn cm-l (and the buoyancy 

force on the magnetized neutron vortices is even smaller than this; see 5 3.2.3). The 

Magnus force on the vortices shou2d be therefore balanced only by the pinning forces 

exerted by the fiuzoids on them. An interesting consequence of this balance of forces 

on the vortices in the interior of a neutron star is that the vortices might be rotating 

faster than the neutron superfluid (w < 0) while it is spinning down. This is in contrast 

to the normal conditions of a superfluid spin-down phase where the vortices must be 

rotating slower (w > 0), so that the viscous force on the outward moving vortices is 

balanced by an outward "driving" Magnus force. In a neutron star, if the pinning force 



due to the fluxoids is itself directed outward during a spin-down episode it could play 

the role of the "driving" force on the neutron superfluid vortices and the balancing 

Magnus force has to be directed inward. The conditions for a negative rotational lag 

(w = 52, - 52 < 0) as well as an inward Magnus force during a spin-down phase of the 

neutron superfluid is therefore realized when the outward motion of the fluxoids is 

faster than that of the vortices. 

3.2.2 The Pinning Force on the Fluxoids 

In any case, a pinning force of the same magnitude as, and in the opposite direction 

to, that exerted by the fluxoids will be also acting on them, due to the reaction of the 

vortices. 

Throughout we will be considering the motion of the fluxoids only in the region 

close to the core-crust boundary. The strength of the average field of the stellar core 

is determined by the transport of these boundary fluxoids out of the core, and it is 

assumed that the rest of the fluxoids in the interior regions will adjust their positions 

and maintain a uniform density throughout the core. We will also neglect all the 

projection effects due to an inclination between the two lattices of the vortex lines and 

assume that all forces on the fluxoids as well as their velocities are directed radially in 

the magnetic equatorial plane. The Magnus force on the vortices and their outward 

velocities in the same region would however be co-linear with that of the fluxoids only 

for those vortex segments which lie close also to the spin equator of the star. The 

fractional size of such a region (of coincidence of the two equators) would be larger, 

and hence our treatment of the radial velocities and forces for the fluxoids and the 

vortices would be more accurate for smaller inclination angles. 

It might, on the other hand, be argued that since the pinning interaction energy is 

independent of a displacement of a neutron vortex parallel to the fluxoid pinned to it 

the vortices might be able to slide along the flwoids without producing a large scale 

movement of the fluxoids. It is noted that such a sliding might be realized for the vor- 

tices only in some parts of the spin equator, namely for those lying at large magnetic 



latitudes. Nevertheless this possibility does not by itself violate the assumption of a 

radial reactive force acting on the fluxoids even in those regions where the sliding might 

occur. The Magnus force on a sliding vortex would have the same magxircde 2nd di- 

rection as for the non-sliding vortices and its component in the direction pe~endicu la r  

to the fluxoid has to be balanced in any case with a force due to the pinning which will 

exert a reaction force on the flwoid. Furthermore, since the assumed sliding cannot 

be realized for all of the vortices for any assumed geometry of the lines its partial oc- 

currence, if at  all, seems to  be further questionable on the account that it would result 

in an azimuthally non-uniform vortex density distribution. This point will be further 

discussed in chapter 4. 

The pinning force: 

Having said that the Magnus force on neutron vortices is balanced by the pinning force 

on them exerted by the fluxoids, we now proceed to  estimate the reaction force felt 

by a unit length of a fluxoid. Equating the pinning forces communicated between the 

two lattices per unit volume, the pinning force per unit length of a fluxoid F, can be 

expressed as 

where n, = % and nf = 2 are the number densities per unit cross section areas of the 

vortices and the flwoids, respectively, K. = 2 x 10-3cm2s-1 is the vorticity of a vortex 

line, c$o = 2 x 1 0 - ~ G c m ~  is the magnetic flux carried by a fluxoid, B, is the strength of 

the core field in units of G, and FM is the Magnus force per unit length of a neutron 

vortex at  the core boundary. For the relative azimuthal velocity between vorzices and 

the neutron superfluid due to the lag w, the radial Magnus force is Fhr = p,nRw,  

where p, is the neutron superfluid density (see Eq. 3.3). Substituting in Eq. 3.4 gives 

(3-6 
= 5.03 - dyn cm-' 

P, B8 



where we have again approximated R = Qs, w-6 is the superfluid lag w in units of 

lO-%ad s-', B, = 108B8, and p, = 2 x 10 '~gcm-~ has been used. Note that the sign 

of w will determine the sign of F, for which, as well as for the other forces discussed 

below, the outward direction will be reckoned as the positive sense. 

The above derivation of F, is however based on certain assumptions which need to 

be clarified. The total Magnus force acting continuously on dl the neutron superfluid 

vortices has been assumed to be communicated instantaneously to the fluxoids through 

the reactive pinning force on them. This need not be always true since, in general, only 

a small fraction of the vortices might be expected to be directly interacting with the 

fluxoids at any instant of time. The remaining much greater fraction of them (of the 

order of the ratio of a fluxoid-spacing to  the size of a pinning interaction region) would, 

however, lie in the inter-fluxoid spacings. Also, the assumed total force on the flwoids 

has been divided equally among all fluxoids in spite of the fact that at any given time a 

majority of them would be located in the inter-vortex regions far from any pinning site. 

Nevertheless, the motion of the flwoids (as well as the vortices) is further constrained 

due to the mutual repukive forces among themselves. This would prevent them from 

being swept independently and requires a uniform density of lines to be maintained in 

the steady state. Consequently all fluxoids (whether being in an interaction region or 

in a free region) are forced to move always together and the force acting on some of 

them is shared equally among all, instantaneously. This argument fails however for the 

neutron vortices since for them displacements of some of them on scales of the order of 

a fluxoid-spacing (which is many orders of magnitudes smaller than the vortex-spacing) 

is not prohibited by the above constraint of the uniform density (in a different context 

Anderson & Kim 1964 have also remarked on this). For the same reason, any given 

vortex which is not interacting with a fluxoid at a given time is expected to move 

relative to the rest of the vortices and adjusts its position rapidly (within a distance of 

a fluxoid-spacing) so that it also feels the same viscous force due to the pinning with a 

flwoid. Therefore, in a steady-state co-moying vortex-fluxoid phase all the vortices are 

expected to be located within pinning interaction regions, and hence the total Magnus 



force on them has to be taken into account, as in Eq. 3.5. 

However, such a restriction on the vortex positions cannot be guaranteed at all times 

if the radial velocities of the vortices and the fluxoids are different, since the vortices 

have to travel through the inter-fluxoids distances as well. The effective instantaneous 

force per unit length of a fluxoid, F,, during such a state is therefore smaller than 

that given in Eq. 3.5 and might be estimated by considering the time averaged force 

on the fluxoids (or equivalently the average fractional number of the vortices that are 

expected to be interacting with the fluxoids at any given time) which results in 

where 4 is the flwcoid-spacing, and d p  is the effective size of a pinning interaction region 

around each fluxoid. For the assumed magnetic pinning mechanism (see below), the 

effective London length of the proton superconductor X i  which is a characteristic length 

scale for the magnetic field around a neutron vortex line may be used for the size of 
1 

the interaction region. Substituting for 4 = 2.3 x lO-'B,-' cm, and d p  = A; - 118 fm 

in Eq. 3.6 and using Eq. 3.5 results in 

w-6 F, = 2.59 x - dyn cm-' 
P. B,"' 

It has to be noted that for evaluating the "averaged" value of Fn as given in Eqs 3.6 

and 3.7 the velocity of a vortex while it is crossing through an interaction region has 

been assumed to be same as that in the free space between the fluxoids; equal weights 

have been therefore assigned to the corresponding periods of times . 

Realistically the vortices might be expected to move much faster while they are in 

the "free" regions than in the pinning regions because of the large difference in the 

effective viscous forces acting on the them in the two regions (as discussed above). As 

a consequence they tend to spend most of the time within the pinning zones and an 

almost zero weight has to be considered for the time durations when no pinning force is 

acting on a vortex. Consequently the same estimate for F, as in Eq. 3.5 might be used 

even for the cases when the fluxoids and the vortices move with different velocities and 

cross through each other. 



Each of the above derivations for Fn as given in Eq. 3.5 and Eq. 3.7 might be 

expected to represent a better approximation depending on the assumed behavior of 

the neutron vortices regarding the creeping of the different pinned segments of a vortex. 

If each pinned segment of a vortex could move independently (over the length scales 

of about a fluxoid-spacing) then the above argument to justify Eq. 3.4 (and Eq. 3.5) 

for the creeping phases applies. In contrast, for a vortex line of infinite rigidity the 

whole line moves always as a single piece and F, as in Eq. 3.6 (and Eq. 3.7) would 

be appropriate. We will adopt both the above estimates for F, during phases when 

v, # up in alternative models which we explore. 

The " critical lag" : 

The magnitude of the force which is exerted by a vortex on a flwoid, and vice versa, at 

each intersection (and hence Fn) is limited by a maximum value fp corresponding to  the 

given strength of the pinning energy Ep and the finite length scale of the interaction, 

namely Ep = fpdp. The Magnus force on the vortices which is assumed to be balanced 

by the pinning force cannot therefore exceed a corresponding limit which in turn implies 

also a maximum absolute value for the lag w (to recall w = R, - RL, where R, is the 

superfluid rotation rate and RL is the rotation rate of the vortices). The maximum 

absolute value of the lag, the critical lag w,, may be determined by equating the 

Magnus force on unit length of a vortex (p,~R,w) with the maximum available pinning 

force per unit length of the vortex (& I &). The pinning energy, in the magnetic 

interaction mechanism, arises because of the difference in the free energy of a fluxoid- 

vortex pair whether they cross each other or not. For a fluxoid with an average field 
-, -+ 

Bp and a vortex having an average field B,, the magnetic energy density when they 

overlap at an intersection would include a term (2/8a)ip.Zn, in addition to the sum 

of their contributions to the energy density when they are separate, ie. (B i  + B2)/8*. 

The pinning energy per intersection may be thus estimated as (2 /8~)&, .&  times the 

interaction overlap volume -- (~X,) (TA;~) ,  yhich results in Ep -- lo-' ergs (see Jones 

1991 for a more refined derivation). Using the associated value of dp -- A; for the 



magnetic pinning, the maximum critical lag w,, is estimated as 

w,, = 1.59 x B:'? rad s-' (3.8) 

where we have used the same expression as in Ding et al. (1993) in order for the 

further comparison of the results. Thus during a co-moving state where the force 

communicated between a vortex and a fluxoid at each pinning point is less than its 

maximum value, fp, the lag might have any value within the range -w, < w < w,. 

However when the vortices move faster or slower than the fluxoids, a const ant value of 

w = w,, or w = -wa will be maintained, respectively. 

We note that a different estimate for the pinning energy due to the proton density 

perturbation gives a smaller value of Ep - 5 x ergs. The pinning energy in 

this case arises due to the difference in the condensation energy between the pinned 

and the free configurations, which is in turn due to the change in the proton density 

induced by the large velocity of the neutrons close to the core of a neutron vortex. The 

interaction volume for this mechanism is - t;tp, and the change in the free energy 
A~ density is estimated as %+ *, where A is the condensation energy gap, EF the 
EP, EF, 

Fermi energy, f the coherence length, and n the number density; the subscripts p and 

n refer to protons and neutrons respectively (Sauls 1989). Eventhough the value of the 

pinning energy due to the density perturbation is smaller than that of the magnetic 

interaction, however since the associated value of the interaction length - the London 

penetration depth in the latter case - is also larger by about the same ratio than 

for a pinning due to the density perturbation, similar values of fp ,  and hence w,, 

are expected for the both pinning mechanisms (Bhattacharya and Srinivasan 1991). 

Also, since the magnetic interaction depends on the angle between the fluxoids and the 

vortices at the intersection points the pinning due to the density perturbation might 

indeed have the dominant effect in a neutron star with a nearly parallel geometry of 

the vortices and fluxoids. 

In this rather long subsection we have argued that the effective value of the pinning 

force on the fluxoids is (not the maximum possible value fp  and is) decided by the 

Magnus force on the neutron vortices, which in turn is determined by the rotational 



lag between the vortices and the neutron superfluid. Two alternative estimates for the 

pinning force were also discussed, as well as the maximum absolute value of the lag due 

to the finite strength of the pinning energy. In our model calculations the value of F, 

as given in Eq. 3.5 will be used for a co-moving state of the fluxoids and the vortices. 

However for states with different velocities of the two families of lines either of the two 

estimates as in Eqs 3.5 and 3.7 is adopted, alternatively, in different models (see Table 

1 below). 

3.2.3 Other Forces on the Fluxoids 

In addition to  the force F, due to the pinning with the vortices, the fluxoids in the 

interior of a neutron star are expected to be also subject to other forces which should 

be taken into account in order to determine their outward radial motion in the stellar 

core. We consider three force below: viscous drag force, buoyancy force, and curvature 

force. 

The drag force: 

An isolated fluxoid moving through the normal degenerate electron gas in the core of 

a neutron star is subject to  viscous drag forces due to scattering of the electrons by 

the magnetic field of the flwoid. 

A simple order of magnitude calculation of the drag force due to magnetic scattering 

of electrons might be given based on the geometrical and dynamical considerations as 

follows (see also Harvey et al. 1986). Electrons in the core of a neutron star have 

associated de Broglie wavelengths (X/27r - 3 x 10-l3 cm) much smaller than the 

effective radius of a fluxoid A, - 10-l1 cm. Hence classical trajectories can be assigned 

to the electrons in their interaction with the flwoids. The force on a unit length of a 

fluxoid parallel and opposite to its velocity v', may thus be written as a product of the 

flux of particles (- 2Apn,v,) times the average change in momentum of an electron p, 

being scattered through an angle 0 (-- p, 5 1 - cos 0 >, where the bracket indicates 

averaging over all possible scattering angles). Furthermore, the gyration radius of an 



electron in the field of a fluxoid a~~ - -- 2 - lo-' cm is much larger than the 

radius of the fluxoid, where Hcl = &In 2 is the lower critical field of the type-I1 
P 

proton superconductor which is also the value of the field within a fluxoid (see eg. de 

Gennes 1966, pp. 55-60), and where A, and ( are the London penetration depth and 

the coherence length of the proton superconductor, respectively. Hence electrons are 

deflected through small angles of order Bo - -& - upon scattering at each fluxoid. 
2 

Therefore the angular term < 1 - cos B >- 1 - cos do = 2 sin2 % 5 do
2 .- (2) . This 

will give us an estimate for the viscous drag force per unit length of a fluxoid 

A more refined estimate due to Jones (1987) gives 

-+ 2 2 -  37r nee ($0 v, F' = ---- 
64 EFXp c 

= -7.30 x lo7 v j  dyn cm-' 

where n, is the number density of the electrons, EF is the electron Fermi energy, v, 

is the velocity of the radial outward motion of the fluxoids in units of cm s-', and 

values of n, - 3. x 1036~m-3 and EF - 88. MeV corresponding to total core density 

p -- 2. x 1014g ~ m - ~ ,  and neutron density n, - 1.7 x 1038~m-3 have been used. Jones' 

derivation is based on finding the change in electron distribution function from its 

equilibrium isotropic form in momentum space away from a vortex due to interactibn 

with the field of a vortex from a solution of the Boltzman equation. The associated 

power dissipation due to acceleration of electrons in the induced electric field and hence 

the corresponding viscous force is then calculated as given above. 

The expression for F,, in Eq. 3.10 is derived based on the assumption of independent 

fluzoids motions. It has been argued that this is not justified for the typical conditions 

in the interior of a neutron star (Harvey et al. 1986; Jones 1987). The mean free path of 

the highly relativistic degenerate electrons hp - crSc, where rSc = 2% is the electron 

relaxation time in the case of proton superconductor core, Hc2 = -̂ 3 x 1016 G 

is the upper critical field of the proton superconductor , T, - 2 x lo2 T W 2  s is the 

electron relaxation time in the case of normal protons, T is the temperature of the 



interior of the star. A typical value of T - lo8 K gives hP .v 10 cm. On the other 

hand, for scattering centers, namely fluxoids, each of a width A, - lo-'' cm having a 

mean separation of 4 - lo-'' cm the mean distance between successive encounters of 

electrons de, - 42 ̂ - lo-' cm. The polyhedra of the repeated deflections each of an , 

angle - Bo and of a polyhedral side - den, may be approximated by a circle of a radius 

r~ such that den, - Bo r ~ .  Thus r~ = A: 4EF which upon substituting for Hcl .-. 8, 
and d: - % may be reduced to rg - 5 - 3 x lo-' cm. The latter ezpression shows 

that rg is same as the radius of gyration of electrons in a uniform field same as the 

average field of the core of the star. Hence, during a relaxation time, T.,, electrons 

make - @ - lo9 encounters with fluxoids and complete - 2 - lo6 gyration 

cycles round the fluxoids. The lattice of jluxoids is therefore expected to be frozen in 

the electron gas as would be the case for the uniformly distributed flux equivalent to 

that carried by all of the flwoids in the MHD approximation of a highly conducting 

fluids (for a discussion see Jones 1987; Harrison 1991). 

A treatment of the coherent electron scattering by the fluxoid lattice suggests that 

indeed the classical result of a "frozen-in" flux is applicable; the relative velocity of 

electrons and the fluxoids turns out to be almost zero. Nevertheless, the expulsion 

of the fluxoids out of the core would not be still prohibited as long as the electron- 

current loops across the core-crust boundary are not excluded. The expulsion time scale 

calculated for the case of coherent scattering as determined by the Hall drift of the flu 

in the base of the crust is not much different than that  based on the single fluxoid 

approximation using F, as given in Eq. 3.10 (Jones 1987, 1988, 1991). Uncertainties 

about the distribution of the magnetic flux and the correct value of the conductivity 

of the crust, and also the possibility of a mechanical failure of the solid crust due to a 

build-up of magnetic stresses however obscure any definite conclusion to be drawn. One 

may conclude that eventhough these studies suggest that whether or not flux can be 

expelled out of the core will be decided by the behavior of the currents at the core-crust 

boundary layer, the expulsion rate itself should be determined by the dynamics of the 

fluxoids and not from the boundary conditions alone. In our opinion, the importance 



of collective effects is still controversial and the last word has not been said ! (see also 

Ding et al. 1993; Ruderman 1995). 

Finally, we would like to draw attention to the following two points which have not 

been discussed in this context and which might be of some importance . The finite 

volume of the fluxoid lattice and the superconductor boundary effects on the motion 

of the fluxoids might allow for a different behavior than of those embedded within the 

electron gas. Secondly, the permitted motion of the lattice of fluxoids for the case 

with currents present at the core boundary (Jones 1991) would be nevertheless one 

with a nonzero divergence as the lattice constant is changing. In contrast the motion 

of the incompressible electron fluid in the interior of a neutron star is expected to  be 

divergence free as pointed out by Goldreich & Reisenegger (1992). A relative motion 

between electrons and the fluxoids is therefore inescapable if any flux expulsion is to 

be assumed. 

In the light of the above uncertainties, the value of F, given in Eq. 3.10 will be 

therefore adopted for the drag force due to the electron scattering in our models. We 

note however that consideration of the coherent electron scattering has been shown 

to imply a maximum velocity for the flwoids outward motion (Jones 1991). On the 

other hand in some of our models which will be described later on (models B1 and B2 

in Table 1 below) a similar value for a constraining maximum velocity of the fluxoids 

has been invoked, eventhough for a different reason. These models might be therefore 

expected to  represent also the effects of considering a drag force due to  the coherent 

electron scattering. 

The buoyancy force: 

The buoyancy force on fluxoids in a neutron star arises for reasons analogous to the 

case of macroscopic flux tubes in ordinary stars. Because flu tubes are in pressure 

equilibrium with the surrounding the excess magnetic pressure inside a flux tube causes 

a deficit in pressure and density of the plaspa compared to the surrounding fluid. The 

tube will thus rise buoyantly due to the existing pressure gradient which supports the 



hydrostatic equilibrium of the star against its gravitation. The force per unit length of 

a flux tube is given as 

where A is the tube cross section area, g is the local gravitational acceleration, and Ap 

is the difference in the density between the inside and outside of the tube (Parker 1979, 

chapter 8). For the fluxoids in the interior of a neutron star A = rX:, Ap = C L ~ A P ~ ,  

the pressure difference A P. = 2, and f -- Rc, where c, is the local sound speed. The 

buoyancy force per unit length of a fluxoid Fb which is directed radially outward can 

be expressed as (Muslimov & Tsygan 1985) 

= 0.51 dyn cm-' (3.12) 

where values of Xp = 131.5 fm and % = & have been used. Note however that smaller 
2 values of ; -- 0.1% have been also assumed in the literature (Muslimov & Tsygan 

1985) which result in a larger value for Fb . 

Harrison (1991) has raised objection against the relevance of the buoyancy force for 

the fluxoids in the core of neutron stars. However, his argument is based on the premise 

of a frozen-in lattice of fluxoids in the electron-proton plasma within the star. In this 

case the buoyancy force is argued to contribute to the gradient of the macroscopic 

magnetic stresses supporting the hydrostatic equilibrium of the plasma within the star. 

His argument does not of course apply to the case where relative motion of the fluxoids 

and the plasma is allowed to take place, as we have assumed. We will therefore take 

into account the buoyancy force on the fluxoids in our model calculations. Ding et al. 

(1993) whose study also assumes independent motions of single flwoids have argued 

that fluxoid motion might be so fast that hydrostatic-equilibrium conditions and hence 

Harrison's objection against the buoyancy force in neutron stars might be avoided. We 

don't find this argument self-consistent. Either one assumes the fluxoid lattice to be 

frozen into the plasma in which case the bu,oyancy force contributes to the hydrostatic 

pressure and results in inflation of the plasma as pointed out by Harrison (1991), or 



if the relative motion of the fluxoid with respect to the electron gas is assumed there 

exists no question about the effectiveness of the buoyancy force (see in particular last 

paragraph before 5 3.2, p. 422 in Harrison 1991). Furthermore, it is hard to see why 

the hydrostatic equilibrium in the core of a neutron star would be approached, as 

speculated by Ding et al. (1993), at  a speed less than cm s-' which is the largest 

typical speed predicted for the fluxoids. This would imply an absurdly large time scale 

for the hydrostatic equilibrium of a neutron star 2 1 Myr in contrast to  its dynamical 
1 

time scale - (&) ' - S. Notice that the sound speed in the interior of a neutron 

star is calculated to be - lo8 cm s-' for the case of a normal non-superfluid core and 

> lo9 cm s-' if a superfluid component is present (Epstein 1988). N 

The curvature force : 

The kinetic energy per unit length of a superfluid vortex is T - (g) In where D 

is a macroscopic cutoff distance that represents either the size of the container or the 

distance between vortices (Fetter 1976). Although the tension of the vortex line is 

not always exactly equal to its energy per unit length, in the limit of long wavelength 

disturbances the equality does hold (Fetter 1976, Baym & Chandler 1983). For proton 

superconductor flwoids the currents are screened away within a distance - A, which is 

the corresponding cutoff length ( D  = A,). Substituting for the vorticity n G s, and 

one gets Tp - (&) 1n for the tension of the flwoids (Nozieres & 

Vinen 1966; Harvey et al. 1986; see however De Gennes 1966 for a different derivation 

based on integration of the electromagnetic energy density of a f lwoid in a type-I1 

superconductor). 

As in a mechanical system the tension of a vortex line implies that a curved geometry 

of the line would result in a restoring force, called "curvature" force, which tries to  

bring the line back to  the minimum energy straight configuration. The concavely 

directed "curvature" force per unit length of a vortex F, having a tension T and a 

radius of curvature Sc is given as Fc = 2 (Harvey et al. 1986). This is similar to  

the curvature force on magnetic field lines embedded in a conducting fluid which is 



defined in a similar way (Parker 1979, chapter 5). The curvature force on a vortex line 

may be also derived on an apparently different basis. A curved vortex is subject to an 

additional induced motion perpendicular to the plane of the vortex which will result 

in a corresponding Magnus force that has the same magnitude and the same direction 

as the above curvature force (Batchelor 1967, p. 510). 

For a fluxoid in a neutron star with tension T, the curvature force can be expressed 

in terms of the buoyancy force Fb (see Eq. 3.12) as follows : 

where R, is the radius of the core of the star. The end points of a fluxoid, where its 

magnetic flux spouts out and joins the almost uniform field of the crust are expected to 

be "frozen-in" at the bottom of the crust due to the large conductivity of the matter. 

An outward moving fluxoid is therefore expected to be bent outward and subject to 

a force Fc which is directed inward, namely Fc = - 2 ~ ~ .  For a spatially uniform 

distribution of the flwoids the estimated average value of 2 - In 2 (Ding et al. 1993). 

Substituting in Eq. 3.13 and using Eq. 3.12 the inward curvature force per unit length 

of a fluxoid is found to be 

Fc = -0.35 dyn cm-' (3.14) 

In contrast, Muslimov & Tsygan (1985) suggested a value of F, - -O.lFb due to the 

larger value they adopted for Fb compared to that given by Eq. 3.12, and Harvey et al. 

(1986) used F, - -Fb for the outer parts of the core. Ding et al. (1993) assumed that 

the fluxoids would be bent outward during times t <  TO^ and, conversely, (in effect) 

bent inward at all later times t > rOhm, where roa, is the assumed time scale for the 

decay of the magnetic field in the crust. An inward force Fc as in Eq. 3.14 is hence 

adopted in their model only during times t < , while for t > rOhm an outward 

force of a comparable magnitude has been assumed to be effective. 

The latter (outward) force which implies an spontaneous motion of the end points 

of a fluxoid at a speed faster than the fluxoid itself will be however ignored in the 



alternative models which we have considered. The assumed tendency of a flux tube for 

decreasing its length under the effect of its tension (Harvey et al. 1986) does not seem 

to satisfy by itself the requirements for realizing such a geometry of inward bending 

lines continuously at all times t > rOhm. Or equivalently, considering the negligible 

radius of a fluxoid as compared to the radius of the curvature of its boundary surface 

the gain in energy due to outward motion does not imply an instantaneous force to be 

effective. 

Furthermore, in our models the time constraint used by Ding et al. (1993) for the 

outward bending of the fluxoids namely, t < r o b  is replaced by a condition on the 

velocity of the lines as compared to a maximum speed vm,, permitted for the motion 

of their end points by the conductivity of the matter in the crust. It will be assumed 

that whenever the condition v, < v,,, is satisfied the end points of the flwoids in the 

crust are able to follow the motion of the fluxoids, thence they remain straight and 

no "curvature" force will be acting on them. In the opposite case when v, > v,,, 

the fluxoids are however expected to  be bent outward and the force F, as in Eq. 3.14 

would be effective. We note that a self-consistent solution of the equation of motion 

given below (Eq. 3.18) is however found to require that the transition between the 

above two realizations of F, for up 2 v,,, and up < v,,, occurs gradually (see Fig. 3.4 

below), which is also a more physically plausible behavior than a discontinuous jump 

at up = v,,,. The maximum drift velocity of the magnetic flux in the crust v,, is 

estimated as 

where R is the radius of a neutron star and R = lo6 cm has been used, and TOhm is in 

units of yr. A larger value for v,,, may be however expected if the effects due to the 

Hall drift of the magnetic field at the bottom of the crust is taken into account. The 

suggested mechanical failure and plate tectonic motion of the crust itself (Ruderman 

1991) if it is driven by some other effect rather than the pull of the flwoids on the crust, 



implies a separate model in which only up >_ uplate is allowed, where vplat, is the assumed 

velocity of crustal plates motion. However, in the cases where the motion is argued 

to be driven by the motion of fluxoids themselves (Ruderman 1991) no additional 

restrictions is required in our models. 

On the other hand, it has been argued that the repulsive force between the flux- 

oids should ensure that the lattice response to a deformation is determined, to a first 

approximation, by their collective rigidity (Jones 1991). The force Fc associated with 

even a piece of the lattice which lies between successive neutron vortices (typically 

extending over some lo7 flux lines) would be, in this approximation, so large that any 

bending of the lattice is effectively prohibited. The velocity of the fluxoids would be 

therefore constrained at all times by the condition up 5 urn,,, with F, = 0. In this ap- 

proximation, if the conditions are such that a value of up > urn,, is implied for F, = 0 

then up = v,,, will be assumed, and Fc is calculated from 

where the right hand side is evaluated for up = urn,,, and w = w,or = -w,, whichever 

is the case. The above prescription for calculating F, might be alternatively justified 

as being due to the extremely large viscous drag force in the case of coherent scattering 

discussed earlier. 

We will consider different models for determining the fluxoids velocity in which 

either of the two estimates for Fc (Eqs 3.14 or 3.16) are adopted, alternatively (see 

Table 1 below). 

Magnetic scattering of electrons off fluxoids results also in a component of the drag 

force perpendicular to the direction of the relative motion (Harvey et al. 1986) which 

is interpreted also as a Lorentz retarding force acting on fluxoids (Harrison 1991; Jones 

1991). For a radial motion of fluxoids this component of the drag force is expected 

to  be canceled by the azimuthal Magnus force on fluxoids due to their motion with 

respect to the proton superconductor (Jones 1991). These two forces as well as a radial 

force due to electron-proton Coulomb scattering which is much smaller than the other 

forces of interest (Jones 1987) are hence neglected. 



The steady-state ra&! motion of a fiuxoid in the region of interest (cf. fj 3.2.2) is thcs 

determined from the balznce equation for all the radial forces, per unit length, acting 

on it 

Substituting for the di-Ffzrect terms from Eqs 3.5 or 3.7, 3.10, 3.12, and 3.14 or 3.16, 

respectively, the above equation may be rewritten in the form 

where parameters a, G, and E ( r  Fb + F,) are givec below for the different models, a d  

v,, is the flwoid velocity up in uaits of lov7 cm s-l. Recall that  w-6 which is the value 

of w(- R, - SZL) in units of rad s-' might have either positive or negative values, 

as is the case for 6 in some of the models. 

This equation includes two urilcrlown variables w and v, and represents the az- 

imuthal component of the Ilfsgzcs cqzmtion of motion for the proton vortices. The 

right hand side is zero because there is no radial Magnus force being exerted by the 

superconductor on tile. fluoids, due to the assumed co-rotation of the Suxoids 54th 
m the proton supercocducior.  here exist however additional restrictiozs on the motiog 

of the flwoids which can be used to fix the value of one of the variables in Eq. 3.18 

and solve for the other. Namely, in a co-moving state v, = v, thus Eq. 3.18 can be be 

solved for w. And, in the other two alternative cases where v, is unknown w could take 

only either of the two values w = uCT or w = -w, depending on up < v, or up > v,, 

respectively. Furthermore, inspectizn of the Eq. 3.18 indicates that only one of the 

above three so!utions (viz., up = v,, w = w,, or w = -w, ) can be szltisfied at  any 

time, for given values of the variables u,, B,, and P,. The rate of the flux expulsion 

out of the core Bc = - kECvp ,  asd the evoiution of the stellar field B, (with a decay 
B -23 rate of B, = -=) are h e x e  c ~ i q l l e l y  determined from the akove force balance 
r a r m  

equcttion (Eq. 2.13), for an a:~fimrtd s ~ i n  evolution of the star which de:ermin.ss the 

vcrtex ve!ocit,y V ,  at each :,irne (Eq. 3.2). 



Based on the two alternative estimates discussed in the previous subsections for 

each of the pinning F, and curvature F, forces acting on the fluxoids in the interior 

of a neutron star, we have considered four separate models by permutation, which 

are labeled A l ,  A2, B1, and B2. The underlying assumptions which lead to these 

alternative evaluations of the forces, discussed earlier, are 

pinned segments of a vortex may creep independently t, vortex remains 

straight while creeping 

fluxoids may bent if moving faster than a given maximum velocity o (fluxoids 

are never bent E )  fluxoids velocity cannot exceed the given maximum value 

The models are summarized below by indicating which of the above four assumptions 

are adopted in each case. Also the values of the parameters in the single force equation 

(Eq. 3.18), which is the starting point for computing the field evolution in all the 

models, are given for each of them. 



- vortex segments creep independently 
Model Al: 

- fluxoids are bent when up > v,,, 
a! = 5.03, 

- vortices remain straight while creeping 
Model A2: 

- fluxoids are bent when up > v,, 
CY = 2.587 x lo-' B,"~, 

6 = same as for A1 

- vortex segments creep independently 
Model B1: 

- fluxoids velocity up < v,, always 
CY = same as for Al ,  

I 

u p  > v,,, not permitted 

- vortices remain straight while creeping 
Model B2: 

- fluxoids velocity up 5 v-, always 
CY = same as for A2, 

6 = same as for B1 

while P = 7.30 is the same for all the models 

These four models together with the model adopted by Ding et al. (1993, the DCC 

model) will be referred to collectively as the FBE models (namely those which employ 

a Force Balance Equation), in contrast to the SIF model which follows a different 

treatment of the flux expulsion rate (see Table 1). Spin and magnetic evolution of 

single as well as binary pulsars are calculated according to  the requirements of each of 

the models, separately, and the results are discussed in the following sections. 
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3.3 Field Evolution of Single Pulsars 

We shall now present the results of our model computations for the spin-magnetic 

evolution of single pulsars based on the models discussed in the previous section. The 

spin evolution of a solitary pulsar is assumed to be driven by a torque due to its 

magnetic dipole radiation and/or outflow of the relativistic charged particles which 

results in = 3.15 x B ~ ~ / P ,  syr-' (cf. Eq. 1.26), where B8 is the surface field 

Bs in units of lo8 G, and P, is in units of seconds. The coupled evolution of the spin 

period and magnetic field are thus followed over a period of lof0  yr in order to  cover 

both young and very old neutron stars in the Galaxy. The rate of the decay of the core 

field will be calculated from the value of the fluxoid velocity as determined in each of 

the FBE models discussed in the previous section. From the instantaneous value of the 

spin-down rate one finds the velocity vn of the outward motion of the vortex (Eq. 3.2). 

Also, w, - the maximum absolute value of the lag w that might be supported by the 

pinning force - may be determined for any given value of the core field strength B, 

from Eq. 3.8. The solution of Eq. 3.18 for the given values of v, and w, at a given 

time t then determines the corresponding values of the fluxoids velocity up and the lag 

w between the rotation rates of the vortices and the neutron superfluid in the core of 

the evolving solitary pulsar. As indicated in the previous subsection, Eq. 3.18 admits 

one and only one of the following three different solutions: 

w = w(vp = vn) iff -w, < w < w, 

up = vP(w = w,) iff up > V n  

vP = vP(w = -w,) iff up < Vn 

where in each case one of the two unknowns in Eq. 3.18 is given and the other one 

may be determined. Time evolution of up may thus be calculated by testing the above 

three solutions, in any order, and finding the appropriate one at each time. The 

computed time behavior for up and w are shown in Fig. 3.1 as predicted in the A1 

model. Characteristically similar results as in Fig. 3.1 are obtained for the other FBE 
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Figure 3.1- The top panel shows the predicted time evolution of the lag w and its critical 
value w,, in a solitary neutron star according to  the A1 model. The bottom panel shows 
the corresponding evolution of the velocity of the fluxoids v, and vortices v,. Initial values 
of B, = 10'2.5 G, Bc = 0.9Bs, and a value of 70hm = lo7 yr have been used. 



models described previously (5  3.2.3). We have also included in Fig. 3.1 the curves 

representing evolution of the velocity of neutron vortices v, and the critical lag w,, in 

the appropriate panels, as indicated. 

The fluxoids motion in Fig. 3.1 is seen to follow three evolutionary phases in which 

they move slower, together, and faster than the vortices, successively. These will be 

referred to as forward creep, co-moving, and reverse creep phases, respectively (we 

use the terminology of Ding et al. 1993). A final co-moving phase might also occur 

for some choices of the initial conditions. Note that w is negative during the reverse 

creep phase and the later parts of the co-moving phase. A change from positive to 

negative values for these quantities occurs during the co-moving phase. Also note that 

I w I  = wa during both the forward and reverse creeping phases. Transitions between 

these successive evolutionary phases occur due to a reduction in vn (oc 0,) as well as 

the increasing value of P, . 

Field behavior: 

The rate of expulsion of the core field at any time is governed by up and therefore 

evolution of the core and the surface field strengths may be determined corresponding 

to the history of the fluxoid velocity given in Fig. 3.1. The predicted field evolution of 

a single neutron star according to the A1 model (which is similar to that due to  other 

FBE models) may be seen in Fig. 3.2. Evolution of the spin period is also plotted in 

Fig. 3.2, and Fig. 3.2a corresponds to the results in Fig. 3.1. 

A substantial decrease in the core magnetic field strength occurs at times t z  lo7 yr, 

due to the typical average value of ups cm s-' during this period (see Eq. 3.18). 

Recall that $ = which implies a time period of At .- $ for a major reduction in 

the core field to occur. As a result of the very small magnitude of v, (although 2 vn) 

and the reduced value of B, at all later times, there is no substantial change in Bc 

subsequently. 

The surface field B, responds to the chqnge in B, on the assumed decay time scale 

TOhm of the crust. A value of lo7 yr has been assumed for  TO^ in Fig. 3.2a. The effect 



Figure 3.2- The predicted time evolution of the strength of the magnetic field in the core 
B, and at the surface B,, and the spin period P, in a solitary neutron star according to 
the A1 model.(a) is for an assumed value of rob,  = lo7  yr and corresponds to the results 
in Fig. 3.1, and(b)is for Tohm = lo8  yr. 



of the value of  TO^ on the predicted field evolution of neutron stars may be seen by 

comparing Fig. 3.2a with Fig. 3.2b where for the latter we have assumed a value of 

 TO^ = 10' yr. A larger value of r o b  results in large B, over an extended period of 

time which corresponds to larger ~ h /  and hence larger v.. Consequently the predicted 

evolution of the spin period of the star leads to  larger values of the rotation period for 

a larger choice of r o b .  This results in a smaller final value for Bc (note the inverse 

dependence on P,B, in Eq. 3.18 which is further discussed below). 

Fig. 3.2a seems to suggest that B, stops decaying when B, starts to decline (indeed, 

this has been asserted by Ding et al. 1993). However this is an artifact of the assumed 

value of r o b  which happen to be close to the saturation time of the core field decay. 

The spurious correlation between the time when the core field stops decaying and the 

value of r o b  may be confirmed by using tentatively smaller values of T O ~ S  lo6 yr 

in which case the core and surface fields are seen to decay simultaneously as seen in 

Fig. 3.3. Rather, the core field stops decaying as a result of decreasing values of vp as 

well as B, itself. 

3.3.1 Flux expulsion: which is the "Driving" Force? 

It is interesting to note that the major flux expulsion occurs (compare Fig. 3.1 with 

Fig. 3.2a) during the co-moving and, particularly, the reverse creep phases. This means 

that the dominant "driving" force for the flux expulsion is the buoyancy force (together 

with the tension force in the case of the DCC model). In Fig. 3.4 the time evolution 

of the forces acting on the fluxoids is shown for the different models, separately. In 

each plot the three curves correspond to the time behavior of the pinning, drag, and 

buoyancy plus curvature forces acting on unit length of fluxoids close to the core- 

crust boundary. The four plots in Fig. 3.4 show the results for the models A1 (which 

corresponds to the results in Fig. 3.1 and Fig. 3.2a), A2, B1, and DCC, separately, 

while those of B2 are similar to A2 and are excluded. 

The pinning force F, is seen to be negative and directed inward during the reverse 

creep phase and the later part of the co-moving ~hase .  Hence, the overall effect of the 



Figure 3.3- The evolution of the spin period and the strengths of core and surface 
magnetic fields ( t o p ) ,  and that of the velocities of the fluxoids and vortices (bo t tom)  as in 
Fig. 3.2a and Fig. 3.1, respectively, but for an assumed value of r o b  = 10' yr. The DCC 
model has been used for the purpose of the discussion but the behavior is the same for 
the other FBE models as well. 



Figure 3.4- The predicted time evolution of the various forces acting radially on fluxoids 
(per unit length) in a solitary neutron star, according t o  the different FBE models. The 
pinning force F., the drag force F',, and sum of the buoyancy plus curvature forces Fb + Fc 
are shown in each panel. The force evolution shown for the  A1 model corresponds to the 
results in Fig. 3.1 and Fig. 3.2a1 and the same values of the parameters have been used 
for all the models. 
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pinning force for the field decay of solitary pulsars is more like a "brake" preventing 

the flux to be to  expelled too rapidly. This conclusion is in contrast to what might 

have been expected at the outset for the role of the pinning force as a driving cause 

of the flux expulsion. Indeed, Ding et al. (1993) attribute such a driving role to the 

pinning force throughout their paper, which is not correct as is further discussed in the 

following. 

Although the above conclusion about the role of the pinning force seems to be 

obvious from the results in Fig. 3.4 (and also from velocity and field plots in Fig. 3.1 

and Fig. 3.2)) it may be further demonstrated by other tests of model calculations. 

We will present the results of these tests in Figs 3.5a, 3.5b, and 3.5d within the DCC 

model, however other FBE models produce similar results. Fig. 3 . 5 ~  which i s  for the 

case of setting F, = 0 in the model calculations shows that in the absence of the pinning 

force almost all of the core f i x  is  expelled within a time scale of - lo7 yr. In contrast, 

Fig. 3.5b shows that for an assumed case of Fb + F, = 0, in which case the force F, is 

directed outward all the time, the field decays by only less than an order of magnitude 

within 10'' yr. Since the buoyancy and curvature forces are not invoked in the SIF 

model it is appropriate to compare Fig. 3.5b with predictions of the SIF model for the 

same assumed parameter values. Fig. 3 . 5 ~  shows that field decay is more in SIF than 

for the case with Fb + Fc = 0 in FBE models (Fig. 3.5b). The difference is due to 

the smaller values of v, at early times in Fig. 3.5b than that implied by in Fig. 3 . 5 ~  

which is due to the presence of the drag force in the present calculation. Yet another 

demonstration of the retarding effect of the pinning of fluxoids and vortices on the 

expulsion of the magnetic flux might be seen from a comparison between the results 

for different assumed values of the pinning energy Ep. In Fig. 3.5d the results due to 

two cases with assumed values for Ep being 10 times smaller and 10 times larger than 

that used in all other Figures (in particular Fig. 3.2a) are shown. Note that in addition 

to the plot for the field and period evolution we have also included in Fig. 3.5d the plot 

for the force evolution in one case and for the velocity in another case. Comparing the 

two cases in Fig. 3.5d, and also with Fig. 3.2a which is for the value of E p  intermediate 



Figure 3.5(a)- The spin-magnetic field, and the velocity plots as in Fig. 3.2a and Fig. 3.1 
and for the same values of the parameters (particularly 70hm = l o7  yr) but for an assumed 
case of F, = 0 throughout the evolution of the star. The DCC model has been used for 
the purpose of the  discussion but the behavior is the same for the other FBE models as 
well. 
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Figure 3.5(b)- The spin-magnetic field, and the velocity plots as in Fig. 3.2a and Fig. 3.1 
but for an assumed case of Fb + F, = 0 throughout the evolution of the  star. The DCC 
model has been used for the purpose of the discussion but the behavior is the same for 
the other FBE models as well. 



Figure 3 . 5 ( c ) -  The spin-magnetic field evolution as predicted in the  SIF model. Same 
parameter values as in Fig. 3.5b have been used. 



Figure 3.5(d)- The l e f i  two panels show the spin-magnetic field, and the force plots as 
in Fig. 3.2a and Fig. 3.4 but for an assumed 10 times smaller value of the pinning energy 
Ep. The right panels show the spin-magnetic field, and the velocity plots as in Fig. 3.2a 
and Fig. 3.1 but with an assumed 10 times larger value for the pinning energy Ep. The 
DCC model has been used for the purpose of the discussion but the behavior is the same 
for the other FBE models as well. 



to those in Fig. 3.5d, shows that the amount of the expulsion is less for an assumed 

larger value of Ep that supports a stronger pinning force (compare the force behavior 

with that in Fig. 3.4). This again indicates that the opposing role played by the pinclng 

force against the outward motion of the flwoids is dominant over its contribution, at  

the earlier times of a pulsar lifetime, to the "driving" causes of flux expulsion. 

Therefore, the fact that the final value of Bc is smaller for larger values of 

may not be explained in terms of F, acting more efficiently to expel the flux, which 

is the explanation given by Ding et al. (1993). Instead, it is because larger values of 

TOhm have the effect of resulting in larger values of P, and hence smaller residual field 

strengths. Consulting Eq. 3.18 one might verify that the combination Ps B, (or P,B,+ 

in A2 and B2 models) is the deciding factor in determining the value of v,. Ding et al. 

(1993) further state that in comparison to the SIF model the lower final Bs values 

predicted by their model (the DCC model) is due to the extra push on fluxoids due 

to F,, which they believe is absent in the SIF model. As we have argued above the 

driving cause of the flux expulsion in all FBE models, including the DCC model, is 

however the combined force Fb + F, which results in the lower final field values in these 

models. 

The above discussion highlights the possibly important role of buoyancy - should 

that concept be relevant ! - for the field decay in neutron stars. As already discussed, 

if collective eflects dominate fluxoids motion then buoyancy will take a secondary role, 

and pinning force will, indeed, be the driving force causing flux expulsion. 

3.3.2 FBE Models: various forces compared 

Although the relative velocity of fluxoids and vortices, and hence the field evolution, 

behave very similarly in the different models the role of the different forces are different 

in the different FBE models. The combined force Fb + Fc in the models Al,  A2, a d  

DCC is always positive (Fig. 3.4), as assumed, and is balanced by the drag force, F,, 

in the earlier times (t: lo6  yr) and by the pinning force in all later times. The drag 

force follows a behavior obviously same as the core field, and is negligible at late times 



(2 lo7 yr) when Bc has achieved its final values. On the other hand, for the models 

B1, and B2 the force Fb + Fc does become negative and restrict the flwoid velocity to 

remain smaller than the adopted m~x imum velocity v,,, - 3.2 x lo-' cm s-' , for the 

assumed value of rOhm = lo7 yr in Fig. 3.4. This happens during the forward creep 

phase for the B1 model due to the dominance of the positive F, over the drag force F,,. 

In the B2 model, however, smaller value of F, << Fv requires Fb + Fc to be positive 

during this phase. 

Comparison between the results for models A1 and DCC in Fig. 3.4 reveals that the 

two models produce similar results in many aspect. Nevertheless the A1 model has the 

added advantage that the sharp jump in the value of Fb + F, for DCC has disappeared 

in the results of Al.  On the other hand, in both cases the dominant force at early times 

are F, and F,, which balance each other. At late times however F, becomes negative 

and is balanced by Fb + Fc; the drag force F, being negligible. 

In model A2, F, is estimated assuming a neutron vortex is infinitely rigid and hence 

remains straight throughout its length while creeping. As a consequence the push on 

the fluxoids due to  the vortices at early times is much smaller (see 5 3.3) than for the 

A1 model. Flwoids move much slower under this approximation than otherwise, and 

the drag force is balanced by Fb + F, instead of F, in case of Al.  The balance of forces 

at late times is however similar to that in Al ,  and DCC. 

The role of F,, at early times, when fluxoids have the largest speed in model A1 is 

played in the B1 model by Fb + Fc which can become negative in this case. Model B1 

assumes same prescription for evaluation of F, as in Al ,  but v, is in this model re- 

stricted to remain smaller than a maximum value v,,,, where v,,, - 3.2 x lo-' cm s-' 

for results in Fig. 3.4. 

Finally, in the B2 model F, is calculated as in A2 (assuming vortices remain straight 

while creeping), and Fb + Fc as in B1 (assuming fluxoids are never bent thus their 

velocity cannot exceed the given maximum value). The time evolution of the forces as 

predicted in the B2 model are similar to  that of A2 shown in Fig. 3.4. This is expected 

since the difference between the two models (B2 versus A2) is only for the restriction 



v, < v,,, assumed in the B2 model, which is however almost satisfied even in the A2 

model. Thus the force Fb + Fc never becomes negative in B2, although it does in B1, 

and remains positive and dominant over F, while both are being balanced by F,. 

It was remarked earlier that models B1& B2 may also be interpreted as representing 

the case for a drag force due to coherent scattering of electrons by the fluxoid lattice 

which inhibit the relative motion between the two. The flu expulsion is however still 

not prohibited since the two might move together, subject to a maximum velocity 

imposed by the boundary conditions on the motion of electrons. Any attempt to move 

the fluxoids at a larger velocity would be opposed by the large drag force which will 

adjust itself to cancel out the other existing forces. 

Notice that for this interpretation of the results of models B1 & B2 however the 

lines in the force plots in Fig. 3.4 corresponding to Fb + F, (the dotted l ine)  would 

now represent the viscous drag force if it is more negative than F, (the full l ine).  The 

similarity between force behavior for models B2 and A2, discussed above, shows that 

the drag force (due to coherent scattering) would be of no major consequence if F, 

is calculated according to Eq. 3.7. Namely rigid straight vortices would never try to 

push fluxoids at speeds larger than the assumed maximum velocity permitted by the 

core-crust boundary conditions for the accompanying motion of electrons with fluxoid 

lattice. On the other hand for the model B1 the new interpretation of the model 

renders its results similar to that of A l ,  as the dotted l ine  in the corresponding plot for 

B1 in Fig. 3.4 has to be compared with the full l ine in the plot for Al .  Thus in both 

cases the drag force is seen to be balanced by the outward directed pinning force which 

pushes the fluxoids at a velocity v, - v,,, during early times, while at late times the 

negative pinning force cancels the force Fb + Fc. 

TO sum up the results of the different models presented in Fig. 3.4, the assump- 

tion of infinite rigidity of vortices which prevent each pinned segment of a vortex to 

creep independently than rest of the line have the effect of making the pinning force 

unimportant for the fluxoids motion. I t  thus reduces the flux expulsion rate only dur- 

ing early times ( 5  lo6 yr) of a pulsar lifetime. The opposing role of the pinning force 



against fluxoids outward migration at late times (2 lo7 yr) is however present in all 

the models. This is probably one or the characteristic feature common among all the 

FBE models discussed here. It is for this reason that in all of the models the field of a 

neutron star is prevented to decay to very small values (< 10' G) even after very long 

times (2 10'' yr). As already discussed, the FBE models share with the earlier studies 

(Muslimove & Tsygan 1985; Harvey et al. 1986) in having the buoyancy force (plus 

the outward directed tension force in case of DCC) as the driving cause of the flux 

expulsion out of the core of a neutron star. However, inclusion of the pinning force in 

these models (FBE) serves to regulate the rate of expulsion, and in particular to save 

a residual amount of flux (2 10' G) for the star through its retarding force throughout 

most of the star's lifetime (ie. at t z  lo7 yr). 

3.3.3 Surface Fields 

The evolutionary tracks for single pulsars on the B,-P, diagram as predicted in SIF 

and DCC (the latter being typical for all FBE models) are plotted in Fig. 3.6 for the 

different assumed initial field strengths. Points corresponding to the different ages of 

the neutron star are also marked along each track. As is seen in Fig. 3.6, the final 

strength of B, as predicted in any of the FBE models is found to depend sensitively, 

and with an inverse proportionality, on the initial value of B,. However the predicted 

final B, is insensitive to the assumed initial values of P, and B, for changes in these 

quantities by almost two orders of magnitudes. This behavior may be also stated in a 

different way which is   rob ably easier to  grasp. The amount of flux expulsion is directly 

proportional to the initial value of B,, which is expected because larger values of P, 

are achieved for larger initial B, values (see above). The final value of B, according 

to the SIF model does however depend on the initial values of P,, B,, as well as that 

of B, even though with a direct proportionality in this case. These latter correlations 

are in accord with the assumed relation = -5 in the SIF model, corresponding to 

v, = v, at all times. 

An observationally interesting point to note in Fig. 3.6 is that while according to 



Figure 3.6- Surface field versus spin period evolution of solitary pulsars born with the 
different assumed initial field strengths, as predicted in the different models discussed 
in the text. The results shown are for the SIF and the DCC models while the latter is 
similar to those of the other FBE models. Positions of the neutron stars at various ages 
are marked on each track, and the spin-up line and the death line are also shown in each 
panel. A value of rOhm = lo7 yr has been used. 



SIF very old neutron stars (ages - 10") are expected to have rather large magnetic 

fields in the range 3 x 10'' < B, < 2 x 10" G, the FBE models predict values of 

B, < 10'' G for these stars. An even smaller upper limit of B, < 10' G at ages 

> few x lo8 yr is also implied by the results of FBE for neutron stars with initial field 

values of B,? 1012 G. It has to be also noted that the results in Fig. 3.6 are derived for 

rohm = l o 7  yr, and the predicted final fields would be smaller if larger values of 

are used (compare Fig. 3.2a with Fig. 3.2b). 

y-ray bursters : 

The strengths of the magnetic fields of the very old neutron stars and their statistics 

are issues of relevance to the study of at least a sub-class of 7-ray burst sources which 

are likely to be highly magnetic old neutron stars (see eg. Blandford 1992). While such 

an identification of the 7-ray bursters does not seem to be consistent with the above 

predictions of FBE (represented by the results for the DCC model in Fig. 3.6) for the 

field strengths expected in old single neutron stars, could be however accommodated 

in the SIF model. 

Ruderman & Cheng (1988) have proposed that the burst sources may be neutron 

stars with their magnetic axes aligned with their rotation axes. Ding et al. (1993) 

suggested that for an aligned neutron star the core field according to  their model 

would not be expelled even on large time scales (>> lo7 yr), unlike the general case 

presented in Fig. 3.6. Two crucial and doubtful assumptions have been however made 

to derive such a behavior for the case of an aligned pulsar. In spite of the assumed 

alignment of the surface dipole field with the rotation axis of the star flwoids and 

vortices are still thought to be inclined to each other, or otherwise their entanglement 

being effective and the same pinning force as for the non-aligned case acting on fluxoids. 

Secondly, and even more serious is that the spin-down torque on a pulsar is considered 

to be only due to the magnetic dipole radiation which is thus diminished for an aligned 

case (Ding et al. 1993). This is in contraqt to the general consensus that the rate of 

spin-down of solitary pulsars is apparently independent of the inclination angle; an idea 



which is commonly adopted to infer the strength of the surface fields of pulsars (cf. 

Eq. 1.26 and Eq. 2.7). The spin-down rate for any given angle of inclination between 

the rotation and the magnetic axes of the star is believed to be the same as that due to 

the magnetic dipole radiation of a perpendicular rotator (Taylor & Manchester 1977; 

Srinivasan 1989). The theoretical rationale for this is the well-known Glodreich-Julian 

model (Glodreich & Julian 1969) according to which an aligned neutron star would 

act as a homopolar inductor capable of generating voltages - 1016 volts. The charged 

particles are hence pulled out of the surface and those which are not trapped in the 

magnetosphere will flow out along the open field lines which extend beyond the light 

cylinder. The amount of angular momentum carried away by the escaping charged 

particles in the case of an aligned neutron star turns out to  be comparable with that 

due to the emission of magnetic dipole radiation for a perpendicular case (Ostriker & 

Gunn 1969). 

Therefore the assumption that the spin-down rate of an aligned neutron star would 

be negligibly small and its consequence for the field decay as inferred by Ding et  al. 

(1993) has to be dismissed. Nevertheless, since a discussion of the predicted field decay 

by the FBE models for the tentatively assumed case of little spin-down torque acting 

on a neutron star serves to further elucidate the nature of the models we will discuss. 

Indeed, if the spin-down rate of a neutron star is assumed to be small the core field 

according to FBE models would not be expelled even on large time scales (>> lo7  yr). 

This is because a reverse creep phase does not occur in this case since the required 

value of IF,(w = -wa)l for a reverse creep phase to occur would be too large. The 

expected large value of F, in this case is because of its inverse proportionality on P, 

(see Eq. 3.5) and the expected small values of P, due to the assumed small value of 

the spin-down torque. However, Ding et al. (1993, the last equation in their paper) 

argued that the large value of F, in this case is a consequence of the dependence of w, 
L 

on B,. This cannot be so because IFn(w = -wa)l oc l/B,', which implies an smaller 

value for I Fn(w = -w,)( in this case. In fact the reverse creep phase starts always at a 

large value of B, even in (the non-aligned) cases where a substantial field decay does 



occur, as might be expected from the above dependence of F, on B,. The difference 

in the predicted behavior of field decay for the present case is rather due to the fact 

that in this case P, retains its assumed small initial value. This conclusion may be 

clearly verified by comparing the two cases of field evolution presented in Fig. 3.7. 

The two cases in Fig. 3.7 both are for an assumed very small spin-down torque (ie. 

that expected due to only dipole radiation for an inclination angle of 1 deg) but with 

different initial values for the spin period of the pulsar. Although in both cases B, is 

large before the reverse creep phase, however substantial flux expulsion takes place in 

the case where P, is large. Note that in this latter case the reverse creep phase starts 

from the very beginning and persists throughout the evolution of the star. This clearly 

verifies the effect mentioned above for P, in determining the conditions for occurrence 

of a reverse creep phase. 

Hence the identification of ?-ray bursters as old neutron stars having strong dipole 

magnetic fields would be consistent with predictions of the FBE models, provided they 

are not spun down to large periods 2 1 s. This conclusion is however independent of 

whether or not the surface field is aligned with the rotation axis of the star. 

Active lifetimes of pulsars : 

The active lifetimes of pulsar (defined in 5 2.3) for the predicted spin-field evolution 

in the different FBE models are shown in Fig. 3.8 against the initial field strengths for 

values of r0h = lo7 and lo8 yr, separately. Corresponding curves for the case of a 

purely exponential decay of the stellar magnetic field are also included, for comparison. 

Recall that in the latter case the total surface field is assumed to decay exponentially on 

the given time scale rOhm with no constraint. The results of the different FBE models 

are very similar as can be seen in Fig. 3.8 (this is true for the A2 and B2 models also 

but they have been omitted for clarity). This is rather unfortunate as it renders any 

attempt to choose among them by comparing their predictions against the observed 

pulsar population hopeless. Nevertheless, ,the marked difference between the results 

of FBE and SIF in contrast to those of the exponential decay, in particular for values 



Figure 3.7- The spin-magnetic field, and the velocity plots as in Fig. 3.2a and Fig. 3.1 but 
for a tentatively assumed case of a small spin-down torque (corresponding to the dipole 
radiation torque alone for a star with nearly parallel spin and megnetic axes) acting on 
the neutron star. The left two plots are for an initial value of the spin period P, = 0.01 s, 
while the right plots are for the case with initial P, = 2.0 s. 



Figure 3.8- Expected radio-active lifetimes of radio pulsars versus the  initial surface 
fields, as predicted in the different field decay models represented by the  different curves. 
Results for the two different values of  TO^ are shown in the two plots separately. 



of 70hms lo7 yr, seems to furnish further support to the core-field expulsion scenario 

in general. This is because the much larger lifetimes predicted in these models (FBE 

and SIF) for pulsars with initial values of B,5 1012 G (Fig. 3.6) seems to offer new 

insights into some of the problems with the statistics of pulsar population. Since the 

effect is exactly similar to that already discussed in chapter 2 for the results of the SIF 

model we refer to sections § 2.3.1 and fj 2.3.2 for the observational consequences of the 

predicted increase in the lifetimes of pulsars. 

3.4 Recycled Pulsars 

As we saw in the earlier chapters the spin evolution of a neutron star in a binary 

system with a mainsequence star is expected to be quite different from that of a single 

pulsar. The interaction of the neutron star magnetosphere with the stellar wind of the 

companion star is believed to result in large values of P, - lo4 - lo5 s, in contrast to 

the much smaller values achieved in the case of single pulsars. Prediction of any of 

the field expulsion models (FBE and SIF) for the magnetic evolution of binary neutron 

stars are therefore expected to be in principle different than for the single stars. In fact, 

simulations of the spin and magnetic evolution of binary pulsars based on SIF have 

been already shown to reproduce the observed properties of the recycled pulsars in low- 

mass binaries, as noted in chapter 2. In this section we apply the FBE models for the 

first time to neutron stars in binaries. In order to extend the results of the FBE models 

to the case of binary evolution of neutron stars, we have adopted a similar prescription 

for the spin evolution of a neutron star in a binary system as that in chapter 2. The 

computations were repeated, in the case of each of the FBE models, for the different 

combinations of the following values of the parameters and initial conditions: 



Porb: 2 - 600 (day) 

(: 1, 10, 100 

l ~ g ~ ~ ~ ~ :  7.0, 8.0, 9.0 (yr) 

1 M: -15, -14, -13 ( M,/yr) 

initial P,: 0.1, 1.0 ( 4  

initial B,: 3 x 10" (G) 

initial B,: 2.7 x 10" (G) 

where Porb is the binary orbital period, M is the mass-loss rate of the companion star, 

and J is a scaling factor for the rate of the angular momentum transferred out of a 

neutron star in a spin-down phase. A value of J = 1 corresponds to that due to the 

difference between the Keplerian and the co-rotation velocities at the magnetospheric 

radius. Larger values of J associated with a more effective loss mechanism might be 

expected for assumptions different from those adopted (eg. a spherical rather than the 

disc-like geometry assumed for the accretion flow, etc.; see § 1.3 for details). A spin-up 

phase of the star is assumed to have no further effect on its magnetic evolution, and 

the core field is kept constant during such a periodof time. The evolution of a neutron 

star in a binary with a low-mass companion (of a mass M = 1.0 Ma) is followed for 

a period of 10" yr, and its final surface field as predicted in each of the field decay 

models has been determined, for different combinations of the parameter values. 

The predicted distribution of the final field strengths versus initial orbital periods 

are plotted in Fig. 3.9. The results due to the different FBE models are found to be 

similar in many cases; however large differences are also observed in some cases. The 

observed low-mass binary pulsars with existing estimates for their field strengths and 

orbital periods are again compared with the model predictions (as we did for the SIF 

model in chapter 2, in Fig. 2.8 and Fig. 2.9). Data on 8 binary pulsars which are 

expected to have been recycled in low-mass binary systems are presented in Fig. 3.9 

(cf. Table 2.1). The observed orbital periods in these systems have been corrected 

for the expected change in the orbital period during a final Roche-lobe overflow mass 

transfer phase as indicated in Table 2.1. Within the uncertainties associated with the 



Figure 3.9- Final values of the surface magnetic field strengths of neutron stars evolved 
in low-mass binaries with different orbital periods, as predicted in the FBE models. The 
other models (namely A2, B1, and B2) also produce similar results. Predictions for the 
different assumed values of the companion mass-loss rate M~ (in units of Mo/yr) are 
indicated by the different curves. Encircled dots represent observed binary radio pulsars 
that are descendants of wide low-mass binaries, for which the initial orbital periods can 
be estimated. Initial values of B. = 3.16 x 1012 G, B, = 2.85 x 1012 G, and P = 0.1 s 
have been assumed. Values of rOhm = l o7  yr and [ = 10 have been used. 



value of M which could be, as well, varying with time and also have a dependence 

on the orbital period in the case of close orbits the computed curves in Fig. 3.9 seem 

to agree with the observed data. As was discussed in chapter 2 for the case of SIF, 

one has also to take into consideration the dependence of the results on the various 

other parameters (namely initial spin period and field strength of the neutron star, 

companion star's wind velocity, efficiency of the imparted torque on the neutron star 

during spin-down phase, and the unknown decay time scale of the field in the crust) 

while judging the success of the models. Qualitatively similar results are produced for 

many other choices of the parameters values different than those in Fig. 3.9 (and also 

by the other FBE models namely A2, B1, and B2 which are not shown). Comparing 

the predictions of the FBE models for the final field strengths of neutron stars recycled 

in low-mass binaries with those of the SIF model discussed in chapter 2 we find larger 

values of r o b  and/or larger values of ( are preferred by the SIF model as compared 

to the FBE models, for the same given initial values of B,, B,, and P,. We recall 

that, the results in chapter 2 showed that values of r o b s  lo9 yr together with ( 5  1, 

or r0hm? lo7  yr together with (2 10 were preferred by SIF as far as the data on the 

low-mass systems were concerned. 

Nevertheless, the diverse values of the final field strengths in each of the panels in 

Fig. 3.9 clearly show the dependence of the predicted field evolution of binary pulsars on 

their orbital evolution: for the same initial spin period, core and surface field strengths, 

and the crustal decay time scale, the predicted unique value for the final field of a 

single neutron star is to be contrasted with the largely diflerent final values obtained in 

binaries, seen in Fig. 3.9 along each curve and among the different curves in each plot. 

In addition to the dependence on orbital period and mass-accretion rate demonstrated 

by the plots in Fig. 3.9 the field evolution of binary pulsars as predicted in FBE models 

is found to depend also on the other parameters (see above) as well. Hence, as remarked 

earlier one may not apply the results for the solitary pulsars to those evolved in binaries. 

As discussed earlier, the pinning force on fluxoids acts as an obstacle against an . 
otherwise more rapid and enhanced flux expulsion out of the core of solitary pulsars. 



The same is true for neutron stars evolved in many of the assumed binary systems 

which we have tested. This may be verified again by comparing between the predicted 

field evolution for a binary neutron star according to the FBE models (say the DCC 

model) with what is expected if Fb + Fc = 0 as we did for the case of solitary pulsars 

in Fig. 3.5. In Figs 3.10a the predicted evolution of spin-magnetic fields according 

to DCC for a neutron star in a binary with Porb = 20 day are contrasted with that 

expected for the same binary if the pinning force were the only driving force present, 

namely assuming Fb + F, = 0. Fig. 3.10a shows that setting Fb + F, = 0 result in a 

much smaller flux expulsion than otherwise. This, in addition to the fact that in the 

absence of F, all of the flux would be expelled (see 5 3.3) proves the braking role of F,. 

Comparing between Fig. 3.10a and Fig. 3.5b the results for the case of setting 

Fb + Fc = 0 are seen to be similar. This might imply that if the pinning force were to  

be considered as the only existing cause for the flux expulsion (namely Fb + Fc = 0) 

then field evolution of neutron stars recycled in binaries would be same as that of the 

single stars and their fields would never decay by more than an order of magnitude. 

This is not so. Fig. 3.10b is similar to  Fig. 3.10a except that for the orbital period 

Porb = 120 day. In Fig. 3.10b the field is seen to decay due t o  the pinning force alone 

down to a value N 1010 G from its initial value 1012.5 G. The binaries for which such 

an expulsion of core flux by the pinning force might occur are those of an intermediate 

orbital periods depending on the values of the other parameters. In wider orbits an 

effective spin-down would not occur and hence the essential fast outward motion of 

vortices accompanied by the fluxoids is not realized. In the very tight orbits on the 

other hand the spin-down of the neutron star to very large periods does not allow the 

fluxoids to be pulled out along with the vortices during the spin-down phase (notice 

the much smaller values of the fluxoid velocity, v,, than that of vortices, v, during the 

late spin-down phase at times 2 10' yr in the results for the case with Fb + Fc = 0 in 

Fig. 3.10a). Namely a co-moving state of flwoid-vortex motion during the spin-down 

phase which is realized for the wider orbi4s (as in Fig. 3.10b) is not ~ossible due to  

the inverse dependence of the fluxoids velocity on P, discussed earlier in 5 3.3 (see 



Figure 3.10(a)- The left two panels show the spin-magnetic field, and the vortex-fluxoid 
velocity evolution for a neutron star in a binary with a 1 M2companion star and an 
orbital period Porb = 20 days. The results for the assumed case of Fb + Fc = 0 throughout 
the evolution of the star for the same binary and initial conditions are shown at the  right. 
Initial values of B, = 3.16 x 1012 G,  Bc = 2.85 x 1012 G ,  and P, = 0.01 s have been 
assumed. Also values of ~2 = lo-'* Mo/yr, 7ohm = l o 7  yr, and [ = 10 have been used. 



Figure 3.10(b)- Same as Fig. 3.10a, but for the case of a binary with Porb = 120 days. 



also Eq. 3.5). This dependence is understood as the larger spin periods means larger 

inter-vortex separation and hence smaller pinning force per unit length of the fluxoids. 

Notice that in the absence of Fb + F, the two binaries (with Porb = 20 and 120 days) 

are predicted (Fig. 3.10a versus Fig. 3.10b) to result in different values for the final field 

strengths. However this difference is washed out in the FBE models by the dominant 

role of Fb + F, over F,, and the final field values are similar for the two cases shown 

in Figs 3.10a & b. Although the case in Fig. 3.10b is not sufficient to explain field 

values as low as that of millisecond pulsars by a model which discards the buoyancy 

force (in presence of the assumed viscous drag force) the possibility of such a model 

does not seem to be ruled out. However, as remarked earlier the role of the pinning 

force which was argued above to be one against the expulsion of the flux driven by 

the buoyancy force is essential to stop the field decay in binary neutron stars at  values 

comparable to those observed in old recycled pulsars. I n  other words the possibility of 

a model which discards the pinning force and relies only on the buoyancy is absolutely 

ruled out. Thus, while the pinning between fluxoids and vortices provides a means for 

explaining the residual fields of old binary and millisecond pulsars, it also serves to 

establish a dependence between the final field of the star and its spin period history 

driven by interaction with matter accreted from its binary companion. 



3.5 Main conclusions of the chapter 

In the second chapter we explored the scenario of spindown-induced flux expulsion 

model (SIF model). In that model - in which the flux expulsion occurs due to the 

interpinning of the vortices and the fluxoids - it was explicitly assumed that the flwoids 

will move with the same velocity as the vortices. The outward velocity of the vortices 

is, of course, determined by the spindown rate of the neutron star. This led to the 

conclusion that in the case of a neutron star in a binary system very low fields can 

be attained due to the dramatic flux expulsion during the stellar wind phase of the 

companion. 

In this chapter we have tried to improve upon the SIF model by including not only 

the pinning force on the flwoids but also the viscous drag force on it due to electron 

scattering, possible buoyancy force acting on the fluxoids, and also curvature force 

on the fluxoids should their geometry deviate very linearity. In previous sections we 

have systematically presented the results obtained. In all this, of course, it h a s  been 

assumed that  the  jluxoids m o v e  independently of one another. Within this assumption 

we have explored several variations of the theme. For example, in one of the models 

the vortex is assumed to remain straight as it creeps outwards. In an alternative model 

each segment of the vortices between successive pinning centres is allowed to  move 

independently. For the sake of convenience we would like to briefly summarize some of 

the more significant results and conclusions obtained in this chapter. 

a The main consequence of the inclusion of the drag forces on the vortices is that 

in the early phase of evolution - when the spindown rate is quite large - the 

fluxoids are not able to keep up with the vortices. In other words, unlike in 

chapter 2 one encounters a phase where the velocity of the fluxoids is less than 

the outwards velocity of the vortices. 

a But eventually, as the vortices slow down they are able to drag the fluxoids with 

them. It is during this co-moving phase that a substantial fraction of the flux 

expulsion occurs. 



In the later phase buoyancy force becomes the dominant one. If this concept 

of buoyancy is relevant (at the moment this is a controversial point) then it 

leads to a situation where the fluxoids lead the vortices. As discussed earlier, 

there has been a suggestion in the literature that the magnetic field decay can 

be explained solely in terms of buoyancy of the fluxoids and the consequent 

outward migration. We would like to forcefully argue that this cannot be so. 

Even if buoyancy is relevant, one cannot do away with the role of the pinning 

force. Quite simply, if pinning force is not present then buoyancy will result 

in vanishing field strengths for very old pulsars, in particular the millisecond 

pulsars. In the models we have discussed in this chapter we have been able to 

obtain reasonable field strengths for recycled pulsars, including the millisecond 

pulsars - this in spite of the inclusion of the buoyancy - because interpinning 

of fluxoids and vortices makes buoyancy less effective. Pinning force acts as a 

brake. 

In our opinion this provides the strongest argument for pinning interaction 

between fluxoids and vortices. In the absence of it the only way to explain 

the decay of the magnetic field trapped in the core of the star is to invoke 

buoyancy. Unfortunately, while buoyancy is admittedly a possible mechanism of 

flux expulsion it is too effective! The only way one can understand the observed 

low but significant fields of millisecond pulsars is by invoking the pinning force. 

Either the pinning alone does the job (viz., the vortices drag the fluxoids) or 

pinning reduces the efficacy of the buoyancy force. Either way pinning i s  a n  

essential ingredient. W e  feel that this i s  one of the most  significant conc~usions 

of this chapter. 

We explored four different models in this chapter with the hope that we will 

be able to discern the relative importance of the various forces acting on the 

fluxoids. Unfortunately this was not possible since all the models produce more 

or less the same results. There are some differences, but given various uncer- 

tainties we would not like to draw any conclusions from them. Some general 



statements can however be made. 

The model where the vortices are assumed to be infinitely rigid dismisses the 

possibility of different segments of a vortex to move independently of the other 

segments. This in effect reduces the role of the pinning force. The common 

feature of all the models is the role of the pinning force in making the outward 

migration of the fluxoid less efficient at late times greater than - lo7 yr. At 

these late times the role of the buoyancy would have been more significant had 

it not been for the pinning force. 

Having explored various models we are eventually led to the conclusion that the 

simple SIF model which assumes that the flwcoids and vortices move with the 

same velocity is not so bad after all! This is because much of the flux expulsion 

occurs during the co-moving phase. 

Having discussed various forces acting on the flwoids we are left to  conclude 

that the force whose inclusion makes a significant difference to the results ob- 

tained in the previous chapter is the drag force. Consider neutron stars with 

binary companions. In chapter 2 in which we had ignored the drag force there 

was a dramatic flux expulsion during the propeller phase when the neutron star 

was dramatically spun down. This is because there was no limitation to the 

velocity with which the flwoids could migrate - they could move as fast as the 

vortices are able to move. The inclusion of the drag force significantly alters 

the conclusion. Since the flux velocity is limited by the drag force, the flux 

expulsion during the propeller phase is far less effective. The situation is very 

similar to the very early phase in the life of a pulsar when its spindown rate is 

so much that the fluxoids lag behind them. 

Collective eflects: As already remarked earlier, in this chapter, like in the pre- 

vious one, we have assumed that  the fluxoids can move independently of each 

other (although one of the models ye  have explored mimics collective effects). 

Although there is no consensus as yet it is quite likely that collective rigidity of 



the flux lattice as a whole may be profoundly important. Such collective rigidity 

arises due to coherent scattering of the electrons. Quite simply, a classical orbit 

of an electron will encompass a very large number of fluxoids. Therefore one 

may have to consider motion of not single fluxoids but large bundles of flux- 

oids. According to M.Ruderman (unpublished remarks), the force acting on N 

fluxoids moving together may be very much larger than N times the drag force 

on a single flwoid. The arguments are very similar to the classical arguments 

for flux freezing in a conductor. If this is indeed so then i t  is very hard to 

understand how the magnetic flux can be expelled from the superconductor at 

all. This is a question that obviously requires very careful study, and we have 

nothing concrete to suggest at  this stage. 


