CHAPTER I
IRTRODUCTION

It 32 now well known that | N many organic
compounids with long and narrow molecules, the s8o0lia
phase does not 8irectly go ovar t 0 the ordinaxy
(1sotropia) liguid phase when heated, dut pasees
through one or more intermediate phases. The term
'liquid orystal' is a general name given t o thene
intermediste pheses. They ars aleo called mesomorphie

phases or mesophases.

A substance in thiz phase exhibits some
‘orystalline’ properties smch as anisosxopy i N
di¢lectric and diamagnetic propertles, optical and
elastio properties, eto. and some 'liquid' properties
such as visoosity, surface tension, eta. Hence in
general 1t has properties which are intermediate detween
those of crystals and liquids,

Liquid orystals which are cbtained by varying
the temperature of the sample are called thermotropic
1iquid orystala. Meosomorphism can also be induced by the
influence of solvents. Such liquid erystuls a N called
lyotropic liguid orystals. In this thesis, we shall be
congerned only with thermotropic liquid crystals.



Priedel (1922) classified thermotropie |iquid
orystals broadly into three groups (1) nematic,
(2) cholesteric, and (3) smectioc.

Nematic liguid orystals

In this phase, the molecules hove NoO | ong range
translational order but have a high degree of orienta-
tional order. Hence the molecules tend to be parallel
to some common direction called the 'director', a
dimensionless unit veotor represented by Y (£ig.1.1(a))
Experimental results indicate that ¥ ki stutes x
and -B are indistinguishable. A nematic liquid
orystal is optically uniaxial, positive and strongly

birefringent.

Cholesteric 11guld ocrystals

The molecules | N this phrase are opticully aoctive.
Hence the molecules are arranged im a helix with the
screw axis (2) perpendicular to the preferred molecular
direction ( @ ) (fig. 1.1(b)). Locally a chulesteric
is similar to & nematic but is not constant i n
space. Ihe struoture i8 periodic along &£ with a period
L (half the pitch). The spiral arrengement gives rise
to some unique properties such as gelective reflection
of circularly polarized light and very large optical

rotatory powers.
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Smectic liguid crystals

The molecules are arranged in luyers withjmnﬂl
defined interlayer spacing. There are many types of
smectice depending upon the molecular arrangeacnt
within the layer. V¢ will desoribe only those, which

will be referred to i n later Chapters.

| N Smectic A the molecules are arranged normal to the
layers (fig. 1.1(c,)). 1Inaide each luyer the molecular
centres of gravity have NO lorg range tranzlational
order. The systex ic optically uniaxiul, the optic
axis being normal to the layers.

cmectic C (fig. 1.1(02)) can be considered as & tilted
smectie A. The molecules | N exch layer are tilted with
respeot to the layer normal 2. The mystem iS optically

biaxial.

In addlition to these two types of smectie ligudd
crystals, a number of other modifications have been
identified and classified ON the basis Of miscibility
studies (Sackmann and Lemus 1473) and K-ray diffruetion
studies (de Vries 1975). The structurcs of many of the
newly discovered phases are not yet known with any

certainty.

An essential requirement for mesomorphism is
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the anisotropic shape Of the molecules (usually long

and narrow). drnomoodxxxdk Usually a nematogenic
compound has molecules containing a rigid arcmatio

part with alkyl Or alkoxy group attached to one Or

both ends.

A well known compound which shows the nematic
phase 18 N-p-metheoxy benzylidene-p=butylaniline (MBEBA)

(Xelker, Scheurle 156%¢)

car e al)om

23°C 48°C
nematioc

lsotropic

Crystal

Therc are compounds which show polymesomorphiam

also. For exanple, Terephthal-bis(=p-butylaniline)
(TBBA) (Doucet et al. 1971)

c4n,1®n = nc@c& - u@c‘ag

113°¢ 144.5°C 172°C
orystal smectic B smectic C
18¢o¢ 233°C
smectic A nematic iaotropic

Order parameter

The ordcr parameter charsoterising a nematic

1iquid erystal 18 tho orientational order parameter S

AN



defined as (2Zwetkoff 1942)

5 = '%(Soosz 0 ~1) (1.1)

where @ i1s the angle that téek the long axis of the
molecule makes wWith the direction of average orienta-

tion of the moleoules i n the medium, i.6., the director
and the bar represents a statistioal average.

As the tenperature of a mematie liquid erystal
is increased, 5§ decreases ocontinuously and at the
nematic-isotraopic traneition point falle discontinously
to zero. Most of the properties characteristic of a

nematic can be related with the order parameter.

In thie thesis we Shal| be mainly concerned with
the elastio properties Of nematic liquid crystals.

Elastie properties

A nematiad liquid erystal possesees curvature
elasticity. |N a uniformly oriented, monodomain sample
of nematic liquid crystal, the director m isin the
same direotion throughout the medium. \Wen a weak
distortion i S induced iN the meddum n = n (r)and the
derivatives of W exist. Wen an elastic restoring
torque comes iNto play tending to restore @ to the
undistorted state. The distortions i N a nematic can be

described by a continuum theory.
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Elasticity theory

Oseen (1¢33) gave a theory of elusticity
assuming that the intermolecular forces are of
short range nature and the density of the substance
is constant throughout the medium. The theory

was reexamined later by Frank (1¢958).

With a further assumption that the local
value of 8 rexains constant | N a weakly distorted
medium, we ¢an write down the thecry of elasticity.
V@ choose a soordinate system such that the 2
axis ia along n at the origin. For weak
distortions n, Can be assumed to be a constant

=~ 1 4n the first approximation.
We can NOW write, at any point (x, ¥, %)

ony, on ony
%“s;-:*-m;—y*n—z = 4% + a,y ¢ &33



QX + By + 2.2
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The elastio free energy par unit volume car be expressed

in the form

Ve = k,a, ¢ %kljaiad (1.2)

1.3 = 1.2-..0.6 kiJ = kdx
ki has the d4imension of force/distance and k“. of farce.

| N a medium where there are NO intrinsic
deformations k, = 0. [N a cholesteric liquid erystal
where there is intringic twis? k, ¥ 0. HMeyer (196S)
considered wedge shaped and banana shaped polar molecules
forming a nematic 1lizuid crystal and prediected flexo-
electric behaviour i n them(analogous t 0 piezo-electricity
I N certain crystals). In such cases, wi.en the director ie
oriented uniforniy in one direotion, neighdbouring
molecules arrange | N such a way as to annyl their shape
anisotropy. However, when a distortion is iznduced in
the medium, the states n and -n are NnO ionger
strictly eguivalent. Gruler (1¢74) has shown that Pa
these cases the splay and bend (contributed by the

muleculur shape anisotropy) affect the elastic comstants.
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However, for the purpose sf this thesis we
shall ignore this effeot and also assume Xk, = 0O
(Frank 1958). Taking into account the cylindrical
symmetry of the medium about o and the equivalence
of B and =m the expression for the elastic free
energy density reduces to

Vo ™ 'E"‘n(v' 7)% %":e:z(ir v xE)2 4 %kBB[(E )2

- %(1;22 + ka‘)[(v"ﬁ’ )2 + (Vv xn )2 - Vn 3 Vnj

(1.3)

2

where vn :Yn = Zan.

[Bote; Nehring and Saupe (1971) argued that the second
derivatives of B make contributions to the elastic

free energy comparable to the square of tt%rcférivative.
when this is takenm intc oocount the elastic free energy

density expression has the form
— — -— 2
W, = %kh(v-“ﬁ’ )2 + -%kaz(i’ v ox W) %1%3[ (@ -v)n ]
+ Kyg V(BEV-R ) = k., + k,,)[(v7 )2
13 2V 22 T %24

- Va : Vn) (1.3a)

where kj, = kqiq --21:13 .

i3, = Xy ¢ ZKyy
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The values Of Splay and bend constants experimentally
determined are actually ki, and kéB' However t here
is N0 nethod of determining k,y separately. Hence
for the sake of simpliocity we shall hereafter take

kis = X1 ana kiy - ky3 and we Frank's expression
for W tO derive expressions for the critical magnetie

field Ha‘J

Ericksen (1962) has shown that (ved )2 +
(B9 xn )2 « Yn: Yn identically satisfies the
Euwler-Lagrange equation and hence k24 does NOt ocontri-
bute anything to the equations of equilibrium. Kk
involves surface forees and torques which we need not
consider i Fthe director is strongly anchored at the
surfaces. Hence the last term in the equation (1.3)
is ignored. Then the elastie free energy density is

Wy = 3k (Ve B )% 4 Jrpy(8 - v x )2 4 Je [ (7)) )2
(1.4)

Hence a nematic liquid orystal has three independent
elastic constante denoted by ky,, k33 and k,, correspon-
ding to splay (fig. 1.2a), bend (fig. 1.2b) and twist
(fig. 1.2¢) distortions respectively.

Measurement Of elastioc constants

For an expeéimental determination of elastic
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constants, it is convenient to induoce the dlstortions
by means of external fields such as magnetic and

electric fields.

. Nematogenic compounis are diamagnetic, with
a strong anisotropy which arises from the aromatlic part
of the moleoules. If X, is the diamagnetic suscepii-
bility along the long axis of the molecule and X, is
that perpendicular to it, then the anisctropy of
dismagnetic susceptibility AX = X,~ X, is poscitive
( A’107 C.8.8, qﬁﬁéﬁn). Because of this anisotropy,
under the influence of o magnetic field, the molecules

tend to be parallel to the field.

In the experimental set up, the sample io
sandwiched between two plane glass plates. The
molecules can be made to lie parallel to the glass
plates unidirectionally (homogeneous alignment) or
perpendicular to the glass plates (homeotropic alignment)

by proper treatment of the surfaces.

vhen a magnetic field is applied, the magnetic

torque

T . Ax(B+H)B *x & (1.5)

and the magnetic energy density
W o= -3 AX(H-1)? (1.6)
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where Ax is the anisotropy of diamagnetic suscepti-
bility par unit volume. |t ocan be noticed that if
is normal Of parallel to the undistorted 1 , then
n " 0 while w- is negative when H is parallel to
1. The distortion of the director in We sample is
determined by balancing the magnetic torque against
the elastie torque. As we shall see below, there is
N0 distortion in the sample upto a 'critical field’
Hy. At Hy the medium undergoes a *transition® to the
distorted state, known as 'Freederiockss transition'.
(Freederiokss and Repiewa 1%27). Above H, the

distortion | a t he sample inoreases with inoreasing K.

The presence of a oritical field can be shown
analytioally as follows:

Expression for oritical fields

Por a uniformly oriented director in the
undistorted state, there are three possible geometries
I N whioch t he Preederiocksz transition cam be studied.

|n all the cases we assume that there is strong anchoring

at the surfaces holding t:e asample.

Geometry I (Twist): V¢ shall consider a
homogeneously aligned sample contained between two
plane glass plates and chooese the coordinate syetem
such that the magnetic field i s applied along Y axis

13



and the undistorted direotor is along Z.{fig. 1.3a).
X, IS the sample thickness. |Nn the distorted state,

et ¢{x) be the angle between local director 7 (x)
and 2 axis. The diatortion is a pure twist. Hence
the squation (1.4) reduces to

v, = %kzz(HO v X 3)2 (1.7)

H = (o, ®, 0), s = (0, sin P» GO 9). ¢ varies
only along X. Therefore

Ve (fi’pcoo)
(R°vyx B) = %% .

The magnetic energy/unit volume Wy = = % AX ( -1 )2.
Therefore the total emergy/unit vol

Wea %kzz(%)z - % AX 32 8132 ] (1',8)

The free cnergy per unit area across the sample thick-

neas is fwdx "

For egquilibrium this energy should be a minimum. The
Euler~-Lagrange equation is

4 o2r
ax (a(u!i)) ;- 0 (1-9)
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Therefore

2,
2 . - .
Koo g;% + AX H® cos 9 *» 8in p 0

Multiplying by 2%-} and rewriting,

2

4 de)2 2 .
ax [kz?_(dx) + AX HS 8in® ¢]= C

where C is a constant.

T0 determine the walue of ¢, We can make use of the

boundary condition,

x dop
st x=32, 9=9p = = O

Thercfore
¢ = Ax H® sin® Py
Therefore
kep (39)2 + A% #3(sin® ¢ - sin® g ) = ©
i.e.,
2. @ -l
Integrating
Qu d. N;Q - lx
J/ (Eiﬁzﬂﬁmiain2~;;i ./( (ﬁiﬁ)?.u dx = (ﬁii)%. —°
0 0

16



H< Hc H>H,

R
| |
llllil ] [l Co |
I:H'H ! IR
gy

(ar) (a2) l .

Tty AN
! NN

. |
—
- |

-

—

|
N

]

\\ \‘ —= H
N PN
REN e\
N \
NN\

(by) (b2)

| -
—
—
P
—
—_—
—
—_—
| -

=

_J

T

= ==
- s
_ = e r H

|

H
m
|

L1
Hll
L

N

|
|

\
\
|

(<1) (<)

giggﬁ ‘0§§

The three princi pal geometries for studying the

Preedericksgz transition related to the (a) twst,
(b) splay, (c) bend elastic constants. Molecular
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| n the usual experimental configuration, the |ight
beam 1a incident normal to the glass platea.
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low putting Sin ¢ = sin g, *8iny , equation (1.10)
can be writtem or

ol

| oy e (LX)} | 4 X0 (1.11)
of (1 - s1n? ¢_ sinv)? %2 2

TO determine the oritical field corresponding to
Freederickss transition, ¢, — 0.
Then t he equation (1.1 |) reduces to

%/2

[ areg- EEt - n, 52 s

Therefore, t he exitical field

H = (%2)?2)%._ (1.12)

T
o X,

Kow, the L.H.S,. Of eqn. (lll) iz an e||IptIC inteﬁral

of the f£iret kind. Using equation (1.12) we can write

p.§

2

B:lm
[ ]
nin

ay
¢ f (1 = 81n? Pm sinzﬂfr)i‘
5

|f (B - Kc) is small, ¢, is small. Then

17



%- = (1 + %vi + fg% q: + eeeen ) (1.13)
c

For any value of A above H,, the deformation at the

mid.plane of the sample 18 given by this equation.
(see e.g., Gruler et al. 1972).

Geometry II (splay and bend): Consider a
homogeneously aligned sanpl e between two plane glass
plates. The geometry in this case is gilven | N figure
(1.3b). The magnetioc field is applied along X axis.
The undistorted director ie along z axis. Let ¢(x)
be the angle between the local director and g axis.

Then

B = (esdng, O, cop 9), B = (H, O, 0).

In general the distortion is a combination of splay
and bend. 1 varies along X only, Therefore

ve &, 0o, 0).

Prom equation (1.4), the elastic energy/unit volume is

—

Wo = iy (Ve 8)2 4 Jgg[( B V) H ]

) 2
- %(k,, cos? ¢ + sin? ¢) (%%)
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, 2
The magnetic energy/unit volume W, = = 3 A% H2sin® ¢.

Therefore the total energy per unit volume is

Wa %[ (k”coaz 9+ ltc33 ain2 q;)(%g)‘? - A% 112 aj,nz 9]

(1.14)
Using Euler-Lagrange equation and simplifying ae in
the previous case, the deformation st the nid-pl ane
of the saxple ean be calculated using the relation

Ya
j k”cost@ + ksgﬂina @)i
sin® 9y = 840" Q

4
dp = ~539 (&%) (1.15)
0

Putting 8in ¢ = sin g, ein / and eimplifying,

n/2 4
1 -4 a1n2 Pm sinaw{r] X, (Ms ¥
- a4 ——
| - sin? g ein’y r= K, (1.16)
O
wher e
A = 33
k4

The eritical field is given by letting pp— O 4n
equation (1.5) yielding,

ko, &
Hy, = §: (Z%}) (1.17)
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Using this equation k;, can de calculated. Now

equation (9.16) can be written as

%/ 2
( 1 - & 8in® ¥p ein®y 1 ¥

a
1 - 81n? g sin‘?v,l

-% \r

H
i
o

The distortion g al the mid plane of the sample at
any field H above H, can be obtained from shie equation.
The integral i S an elliptic integral of the second kind,

For small values of Pm’

%""‘ - 1"'%(1 ‘A)‘?i'f' ssecoe
c
= 1"’ ;22?2’0.0..- (1.18)

The equation involves both k,, and kg, Henoe by

etudying the distortions above Hoo k,j3 oM also be

dotermined. (see Gruler et al. 1¢72).

Geometry III (bend and splay): Consider a
homeotropically aligned sample between two plane (gl ass
plat es. 2he geometry for this case is shown in figure
(1.3¢). The director in the undistorted sample is

along X axis. B is aong 2 axis. |f ¢(x) is the

20



angle made by the local director with X axis

2 = (cos 9, 0, 8in ¢) " = (0,0, H)

" varies along X only. Therefore

e (£ ,0,0

| N general, the distortion is a combination of bend

urd splay.

The elastic energy per unit volume from eguation (1.4)

is

W o= o (V-K)2+-1k [(K-V)ﬁ]z
e %19 2733

In this case, the equation of equilibrium i s obtained

by merely interchanging k., and kyq | N the equation

of equilibrium of the previous section. lience we get

®/2

1 -4 s.m2 Pm ainaﬁf b AT B x
oy = ) H PP
2 33

1 = ein Pey nin‘?”yf

where Koo = k

A"ﬂ'Eg;u .

The oritical field

21
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B, = L (2 (1.20)
For small value oOf Pa’

} - 1 + %(k‘”/k}’)': 4+ sssee (1.21)
)
which equation involves both k35 and k11 (tee Grulerx
et al. 1972).

Deteotion of twist deformation

There has been considerable interest of later
I N the measurement of elastic conestants of nematic
liquid orystals since short range order i n the medfium
has & profound influence on the magnitudes of some of
these constants. |N simple nematics the elastic
constants can be related directly to the orientational
order parameter S by using the mean field approximation
(saupe 196U). Ignoring the weak volume dependence
kil o< 32. Hence the ratios of the elastic constants
should t hen be essentinlly temperature independent.
Thie 18, IS fact, found to be marly eo for PAA and
PAP (Cruler 1573).

A simple and direct method of determining

elastic constante iS t o measure t he eritical field Ho

22



using an optical set up to detect the distortion.
Optleal detection of H, has the advantage i N that

a small well aligned region | N the sample can be
chosen for observation., For splay and bend, the
sample it taken between two plane glass plates. The
light 18 allowed to £all on it normally. A pair of
polarizers and a quarter wave pl ate are sufficient
to detect Hg. kawﬁfg under normal conditione of
cbaervution Whereih.Z light falls normally on the
sample contained between two plane glass plates, this
method is not suitadble for determining the twist

constunt k22 for reasons which will be discussed NOW

Let 2 homogeneously aligned panple he contained
between two glass plates, W can think Of the sample
as xade up of a number Of thin sections (each Of
thickness ~ 1077 cm, say) parallel to the glass
plates. Ccnaider & case | N which a magnetic field
Just above the critical field is applied normal to
the undistorted director as i N figure (1.3a) to
produce a twist deformation. The director orientation
within each seotion is taken Lo be constant. The
mid —plane of the sample has the maximum deformation

(94) siven by the eguation (1.13)

H_ 12 11 4
Ho =» 1 +ﬁm "Pm?m"‘ s0ss s

21’;



1f the applied ficld is 1% above Hy» them 9, ~ 0.2
radians. If the thickness of the medium |. ~ 20 x 10~
am then as a rough order of magnitude the average

twist PEr layer p ~ 2 x 10™° radians. If the
birefringence of the nematic |a ~ 0.2, the phase
retardation a betwesn the ordinary and extraordinary
rays pPer layer ~ 2 x 1072 radians, so that «/f 102,
Aocording t0 the 'adiadatioc theorem' (Mauguin 1$11)
under such circumstances { he normal waves are two
linearly polariszed waves (one parsllel and the other
perpendicular to the director) and hence these two
directions Of polarization rotate with the director.
This oonoclusion can alme De drawn from the opticel
theory of 1ight propagation through such media. [Por
instance, see de Vries (1951), Chandrasekhar gt 281.(1$73),
Rangsnath et al.(1973)]. As a result ever whem B 7 H_
the emergent light has the pame ptate of polarization
as that in the undistoried sample. It {s particularly
simple to appreciate this result in terus of the

'Poincare svhera' (see Appeniix I).

Let the incident iight beam, ropresented by
P (figure 1.4) be 1imesr/polarized along the director
axis Of the first seation. Iach mection of the
8axple 1s & relarder. 1f s magnetic field
8lightly above Ho is applied the directors

24
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(a)

FPigure 1.4

(a) The states d' polarization of light beam which i S
incident normal to the plates, as it traverses a weakly
distorted nematic | N the conventional geometry shown
In figure 1.3a. The details ate shown I N (0):." see text.
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in sdjacent sections areg slightly tilted with
respeot to eaoh other. %he tilt i s emall compared

to the retardation produced by each section. FOI
example, PA, (figure 1.4b) ie t he rotation by the
first sectiom. wWith 4, a& centre, P is rotated on

t he sphere t hrough an angle equal to the retardation
due tO the first section. P, represents the state Of
polarization When the light emeages out of the first
layer. Similar statemente hold good for the points
P,y Pge et0, P, represente the state of polari-
pation when the 1ight beam reaches the mid-seation.
As can be seen i n the figure when a>> B, as the
1ight traverses a \\eakly deformed medium, the
polarigation i S dragged along by the director. 1In
tha other half of the sample, the tilt of W between
ad Jacent sections is in the opposite direotion while
the retardation continues to be in tho same sense,
The dotted line sho»??Fr?é p&ization as tho light
traverses the medlum beyond the mid plane. Therefore,
as the 1ight emerges out of the last section the
polariszation is practicaelly a P. [N othexr words,
the director drags thoZuh::t of polarization. An
exactly Siml|ar argument can be used for the polari=
zation perpendicular tO the diresctor. Thus With the
experimental set up i N which t he direoctor ic anchored
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to the walls, when light IS incident normal to the
sample film, the state of polarization of the emergent
beam i s practically the same as for the untwisted
medium and the twist deformation cannot be detected
optically. Because 0of this difficulty these have

bean very few attempts i n the past to determine K,,e

The aim Of the present work i S to determine
all the elastic constants of two homologous
series of compounds (Chapters 3 and 4). We chose the
Freedericksz transition technique as it IS eimple and
yields pood results. |n the ncxt Chapter we? shall
describe a simple and direct method to determ ne ;o
by allowing light to enter the saaple at anr oblique
angle thereby making a and 8 of comparable magnitude

in the direction of observation.

| N eimple nematics the elastic constants are
expected to follow the prediction of the mean field
theory, However, in the case of a nematic liquid
erystal which exhibits emectic A phase at | ower
temperatures, the short range order or the molecular
distridbution functionis temperature sensitive. As
the smectic A-nematic transition point (TAN) is
approached, smeetic |ike short range order builds up

inthe nemtic.



The gmeectic structure is layered. Dend and
twist deformations which tend to alter the layer
thickness, are forbidden in this phase. Therefore,
as T,y 18 approached, bend and twist deformations
become difficult because Of t he smeotic |ike domains
building up in the nematic. 48 a result k,, and k33
diverge as T,y 18 approached and tend to infinity if
the transition is quasi second order (de Ucnnes 1472).
The splay deformation does not alter the layer thilck-
nege and hence is allowed | n the smectic phase. Hence
k4, 48 NOt renormalized as 1, i S approached. This
was experimentally veriiied for k33 by Cheung et a1.
(1573). We have made soms measurements ON k,, and
k33 for some compounds which show smectic A and nematic

phases. The results are discussed in Chapter 5.

in principle an electric fieid can be used
instead of a magretiec field to deform a nematic liquid
crystal (Zwetkoff 1¢37) and hence t o0 determine its
elastic conctante. Thereis an exact analogy between
the elcctric and magnetic fields as far as the
threshold condition is concerned, but at higher fields
the problem is more complex in the electric field case
becauce Of local field corrections: tho clectrie
field at any point i n the sample ig noct Pa the same
direction as the applied electric field.(Cruler ow

28



Meler 1972, Deuling 1S72).

Freedexioksg transition under an electrio
field has been detected by optical method (Zwetkoff
1937, Grulerd Meier 1972). 4in important precaution
to be taken in these Freedericksz transition measure-
ments 4s that the scample has to be very pure to avolid
conduotion induced instabilities. Electrical
conductanoe measureaents (Greulich et al. 1575) and
capacitance measurements (Gerritsma et al. 1S71)
have also been used to detect the eritical field.
However a elight disadvantage with the last two methods
is that they need a sample which ie Wel| aligned in

the entire area botween the electrodea.

In general, when an eleotric field i S used to
deform the sample the dielectric alignment iz frequency
dependent (Gruler and Cheung 1575). Vhen & component
d' the electrie dipole along the long axis of the
wolecule exieta, the rotation of the molecule about a
short axis Of the molecule becomes difficult as the
frequency | S increased (Meier and Saupe 1966). 48 &
result, c,, (dielectric constant parallel to the

director) relaxes at a fairly low frequency ( ~ MHz)
conpared to €, (Maler & Meler 1%61) . Therefore the
aniectropy of dielectric oconctant and hence the
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vritioal field for a Freederickez transition is

frequency dependent. By studying the oritical field
as a function of frequency the dielectric relaxation
can be studied. This will be discussed | N detail in

Chapter 7.

Usually a nematie liquid erystal is a good
eleotric insulator. However, there are always oome
ionic impurities which give rise to electrical
conduction in the sample. |N simple nemutics these
ions move along B more eanily thun normal to it.
This causes an anisotropy in the electric conduction.
d9, > ¢, (Svedberg 1514) where o, and o, are the
conductivity along and normal to a reepectively.
lIowever, in compounds exhibiting bcth smectic and
nenatic phases, there is considerable smectic-like
short range order i N the medfum slightly above T, N
| N such cases ifone find themeslves casier t 0 move
parallel to the layers than along a , as a resuls
of which g, < o, (Rondelez 1¢72).

when the anisotropies Of dielectric constunt
and eleciric conductivity are of opposite sign, the

aligning effect Of one i s opposed by the other, giving
ripe t0 electrohydrodynamie instecbility above a
voltage threshold (Freedericksz 2nd Zolina 1933).
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Striations ocalled '¥illiamsdomains' (wWilliams 1963)
are ceen inthe field Oof wiew in a 'sandwich geometry
with a nematic 1igquid eryetal of negative dielectric
anisotropy and positive conductivity anisotropy taken
between two glass plates. Therefore, in oritical
field measurements the, frequency of the electric
field and the compound should be properly chosen 8¢
that the effects due to dielectric reiaxation and
electrohydrodynamic instubilities can be neglecoted,
We have made aome new observations of electrohydro-
dynamia instebility in one particular gecmetry which
will be discussed in Chapter 8.
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