### CHAPTER VI

VERIFICATION OF THE LESLIE'S EQUATION FOR THE THRESHOLD FIELD OF A TWISTED NEMATIC CELL

### Introduction

fa Chapter I we had considered the deformations in a thin film of nematic liquid crystal in three different geometries under the application of external fields. We shall now consider another geometry, viz., the deformation in a twisted nematic cell (TN cell) due to an external field acting along the, axis of twist. In the TN cell, the director is anchored parallel to the glass surfaces but the director axis is twisted on going from one plate to the other. Commonly the angle of twist is 50° (about an axis normal to the film) (Figure 6.1(a)). A TN cell acts as a retarder as well as a rotator, but because of the very large birefringence, the adiabatic theorem comes into force. In such a case a linearly polarised beam incident with its polarisation along (or perpendicular to) the director at the boundary travels with its polarisation always along (or perpendicular to) the local director (Chapter II).

Consider a TN cell with 90° twist. The light transmitted through this cell can be completely cut

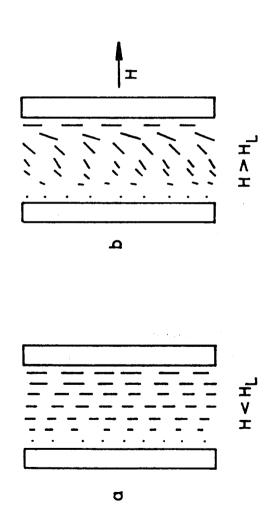



Figure 6.1

Schematic diagram showing the molecular alignment (a) when the magnetic In a twisted nematic cell (a) when the magnetical is less than Leslie threshold  $(\mathrm{H}_{\underline{\mathrm{L}}})$ , and (b) when H  $> H_{\rm L}$ . off, if the cell is sandwiched between two parallel polarizers with polarization direction along in at either of the plates. Now if a sufficiently large magnetic field is applied along the twist axis, the deformation induced in the medium is such that the director tends to be parallel (except at She bounding surfaces) to H resulting in the transmission of light through the system (Figure 6.1(b)). Similar results could be obtained if the magnetic field is replaced by an electric field and the nematic liquid crystal has positive dielectric anisotropy. Schadt and Melfrich (1971) were the first to recognise the importance of such an electro-optic effect for display devices.

A general theory of the deformation in a twisted nematic sample has been given by Leslie (1970). He has derived an expression for a critical magnetic field required to distort the sample (Leslie threshold) when it is applied along the twist axis. The expression involves all the three elastic constants and as we mentioned in Chapter If this method can be used to determine  $k_{22}$  if we know  $k_{11}$  and  $k_{33}$ . Since we have measured all the elastic constants of a number of nematic compounds, we have made measurements on a TH sample in order to compare the experimental results

medite theory. We shall now briefly outline headle a theory.

### Theory

Consider a twisted nematic sample contained between two plane glass plates. Let the rubbed directions in the two plates have an angle  $\varphi_0$  between them.  $\mathbf{x}_0$  is the sample thickness. We choose the coordinate system such that  $\mathbf{n}$  at the first plate is along  $\mathbf{X}$   $\mathbf{n}$  rotates about  $\mathbf{Z}$  axis so that at  $\mathbf{z} = \mathbf{x}_0$ ,  $\mathbf{n}$  makes an angle  $\varphi_0$  with the  $\mathbf{X}$  axis. Let a magnetic field be applied along  $\mathbf{Z}$  axis, i.e., along the twist axis so that a weak distortion takes place in the medium, in addition to the initial twist. At any distance  $\mathbf{z}_1$  ( $<\mathbf{x}_0/2$  from the origin),  $\mathbf{n}$  makes an angle  $\theta$  with the  $\mathbf{x}_1$  plane (figure 6.2). The projection of  $\mathbf{n}$  on  $\mathbf{x}_1$  plane makes an angle  $\varphi$  with  $\mathbf{x}_1$  axis. Hence  $\theta = \theta(\mathbf{z}_1)$  and  $\theta(\mathbf{z}_1)$  are  $\theta(\mathbf{z}_1)$ . In the absence of any external fields  $\theta = 0$ ,  $\varphi = \frac{\alpha_0}{2}(\mathbf{z} - \frac{\mathbf{x}_0}{2})/\frac{\mathbf{x}_0}{2}$ .

 $n_x = \cos \theta \cos \phi$ ,  $n_y = \cos \theta \sin \phi$ ,  $n_z = \sin \theta$ .  $H_x = H_y = 0$ ,  $H_z = H$ .

Minimising the energy of the system (Leslie 1970) we get the following coupled equations of equilibrium:

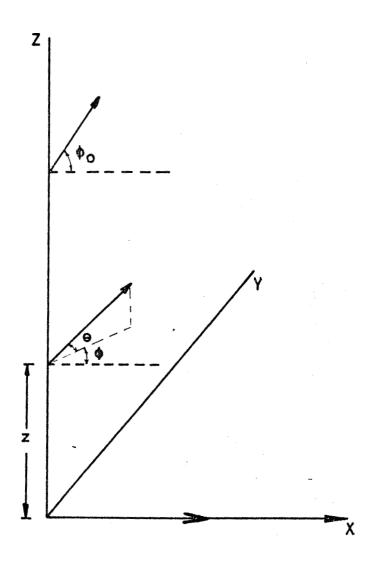



Figure 6.2

Diagram explaining the definitions of the angles  $\theta(z)$  and  $\phi(z)$ . The sample thickness is  $x_0$ . Magnetic field in applied along the twist axis (2).

$$f(\theta) \frac{d^2 \theta}{dz^2} + \frac{1}{2} \frac{d}{d\theta} [f(\theta)] (\frac{d\theta}{dz})^2 - \frac{1}{2} \frac{d}{d\theta} [g(\theta)] (\frac{d\phi}{dz})^2 + \Delta \times H^2 \sin \theta \cos \theta = 0 \quad (6.1)$$

and

$$g(\theta)\frac{d^2\theta}{ds^2} + \frac{d}{d\theta}[g(\theta)]\frac{d\theta}{ds} \cdot \frac{d\theta}{ds} = 0 \qquad (6.2)$$

where

$$f(\theta) = k_{11} \cos^2 \theta + k_{33} \sin^2 \theta$$

$$g(\theta) = (k_{22} \cos^2 \theta + k_{33} \sin^2 \theta) \cos^2 \theta$$

Integrating equation (6.2), we get

$$g(\theta) \frac{d\phi}{d\pi} = a \text{ constant } k$$
 (6.3)

Now multiplying equation (6.2) by  $2\frac{d\theta}{ds}$  and equation (6.3) by  $2\frac{d\theta}{ds}$ , adding and integrating, we get

$$f(\theta)(\frac{d\theta}{dz})^2 + g(\theta)(\frac{d\theta}{dz})^2 + \Delta^{\chi} H^2 \sin^2 \theta = a \text{ constant c.}$$

To find the value of c, we can apply the boundary conditions.

At the mid-plane of the sample,

$$z = \frac{x_0}{2}$$
,  $\frac{d\theta}{dz} = 0$ ,  $\theta = \theta_m$  and  $\frac{d\phi}{dz} = \frac{k}{g(\theta_m)}$ .

Hence

$$f(\theta)(\frac{d\theta}{dz})^2 + \frac{k^2}{g(\theta)} + \Delta x H^2 \sin^2 \theta = \frac{k^2}{g(\theta_m)} + \Delta x H^2 \sin^2 \theta_m.$$

i.e.,

$$f(\theta)(\frac{d\theta}{ds})^2 = k^2(\frac{1}{g(\theta_m)} - \frac{1}{g(\theta)}) + \Delta x H^2(\sin^2\theta_m - \sin^2\theta)$$
(6.4)

Integrating

$$\int_{0}^{\theta_{m}} \left[ \frac{r(\theta)}{\Delta^{\chi} \pi^{2} (\sin^{2}\theta_{m} - \sin^{2}\theta) + k^{2} (\frac{1}{g(\theta_{m})} - \frac{1}{g(\theta)})} \right]^{\frac{1}{2}} d\theta = \int_{0}^{\frac{\chi_{0}}{2}} dx = \frac{\chi_{0}}{2}$$

Writing  $\sin \theta = \sin \theta_m \sin \psi$ , we get

$$\int \left[ \frac{f(\theta)}{\Delta x H^2 - x^2 \left[ \frac{g(\theta_m) - g(\theta)}{g(\theta_m)g(\theta)(\sin^2 \theta_m - \sin^2 \theta)} \right]} \frac{d\psi}{\cos \theta} = \frac{x_0}{2} \right]$$

$$(6.5)$$

Now as  $\theta_m \to 0$ ,  $\theta \to 0$ , and we gat an expression for a critical field  $H_{\tau_c}$  given by

$$\Delta \chi \cdot \mathbf{x}_{0}^{2} \mathbf{H}_{L}^{2} = \mathbf{x}_{11}^{2} + (\mathbf{k}_{33} - 2\mathbf{k}_{22}) \varphi_{0}^{2}$$
 (6.6)

Thus we see that the magnetic field-induced distortion starts only beyond a threshold field, which depends an the sample thickness, the angle of twist and the elastic constants of the compound.

As we mentioned earlier, the plane of polarisation of the incident beam follows the director as it traverses the TN cell. To understand this consider a sample  $\sim$  20  $\mu m$  thick. We can imagine the medium to be divided into a number of thin sections ( $\sim 10^{-7}$  a thick) parallel to the bounding surfaces. For a 90° TN cell, the rotation per section is  $\beta \sim 10^{-4}$  rad./cm. If the birefringence of the medium is 0.2, the phase retardation between ordinary and extraordinary vibrations per section is  $\alpha \sim 2 \times 10^{-3}$ . Hence  $\alpha/\beta$  is quite large. In such a cace, as was shown in Chapter I, the polarization follows the director. Therefore, if the incident polarization is along the initial director, even when a small field-induced distortion takes place in the medium. the state of polarisation of the emergent light is practically unchanged. A significant change occurs only when a considerable distortion is induced in the medium such that \$ and a are comparable in their magnitudes. Thus the optical threshold (Ho) is higher than Leslie threshold (H<sub>L</sub>). This lo fact has been observed by earlier workers. We must point out here, that as the thickness of the sample is reduced  $\beta$  increases and consequently  $H_{\alpha}$  comes closer to H.

### Previous work

capacitance of a twisted mematic cell of MBBA in the presence of a magnetic field applied along the twist axis. It was observed that the capacitance started decreasing beyond a critical field. The experiment was repeated for 5 thicknesses of the sample. The product H<sub>c</sub>×<sub>c</sub> was found to be almost a fhis is to be expected constant except for x<sub>c</sub> < 10 μm. Since the capacitance depends on the alignment of n with respect to the field and is unaffected by the ratio β/Δ. However, it was found that when the observation was made optically the transmitted intensity started to charge sharply at a field which was higher than H<sub>c</sub>. (For example, for x<sub>c</sub> = 54 μm, H<sub>c</sub> ~ 50% larger than H<sub>c</sub>.)

Van Doorn (1973) made computer calculations for the intensity of light transmission through a TN cell using the theory of de Vries (1951) with slight modifications. The computation gave a thickness dependent values for the product  $H_{o}X_{o}$ . As we mentioned earlier, this can be easily understood in terms of the ratio  $\beta/\alpha$ .

Berreman (1973) has also made computer calculations fur the transmittance of a TN cell between

parallel polarisers (parallel or perpendicular to rubbed directions) as a function of the angle of incluence of light. The calculations showed that the transmitted intensity changed only after the applied field is considerably larger than the Leslie threshold.

when a field induced distortion begins in the sample the birefringence changes. Hence if one has an optical set up which is sensitive to small changes in the birefringence rather than changes in the azimuth of the emergent light, Leslie threshold can be detected optically. We shall describe such a set up below.

# Experimental

The experimental arrangement was the same as the one used for the measurement of  $k_{11}$  (Chapter III). A TW cell with twist  $\phi_0 = \pi/2$  was used. (The molecular alignment is shown in figure 6.1). The alignment of the director parallel to the glass surfaces was achieved by a thin film of silicon deposited at an oblique angle. The alignment of the sample with respect do the magnetic field and the measurement of the critical field, eta., were as explained in Chapter II. A light beam linearly polarised at 45°

sample. Since the twist fa the sample is small phase compared to its pretardation the ordinary and extraordinary vibrations follow the director and an elliptically polarised light emerges out of the sample. A quarter wave plate with appropriate orientation of its axis converts the light into a linearly polarised one which is then detected by a linear analyser.

To start with, both the quarter wave plate and the analyser were rotated to see a dark field of view. As the magnetic field is increased beyond the critical value, the field of view becomes bright.

In order to compare this threshold field with that when the polariser is parallel to the initial director, the experiment was repeated by appropriately rotating the polarizer, the analyser and the quarter wave plate. The threshold field in this case was found to be larger than that detected earlier.

# Results and scussions

We have made measurements on 7GB for different thicknesses of the sample. Since all the three elastic constants are available (Chapter III) for this compound, Leslie's equation (Eqn.(6.6)) could be verified.

Table 6.1 contains values of H.X. from five independent samples, for various temperatures. We have 3 sets of values for 25 um samples and 2 for 50 um samples. The maximum spread in the product Hrx, at any temperature is ±3.0% (figure 6.3). In general the values for the 50 µm sample are slightly Since the error in the measurement of magnetic field is  $\sim$   $\pm 25$  gauss, the lower the critical field the larger is the error involved. Hence for tho 50 um sample the error is larger ( $\sim \pm 2\%$ ) compared to that for the 25  $\mu$ m sample ( $\sim$   $\pm 1\%$ ). Moreover the procedure followed to detect H, was to decrease the field in steps of 25 gauss and hence one tends to take slightly lower values (but within the error limit) for Hz. This is probably the reason why we get consistently lower values of Hrx, for 50 µm sample. We must mention here that the error involved in thickness measurement is small ( $\pm$  0.1  $\mu$ m). Allowing for these errors, the product H,x, is a constant at any temperature. This indicates that the measured value of H, is the Leslie threshold.

Using  $k_{11}$ ,  $k_{22}$  and  $k_{33}$  values from Chapter III we have calculated the values of  $H_{L^2}$  using equation (6.6) for various temperatures. The calculated variation is shown as the solid curve in figure 6.3

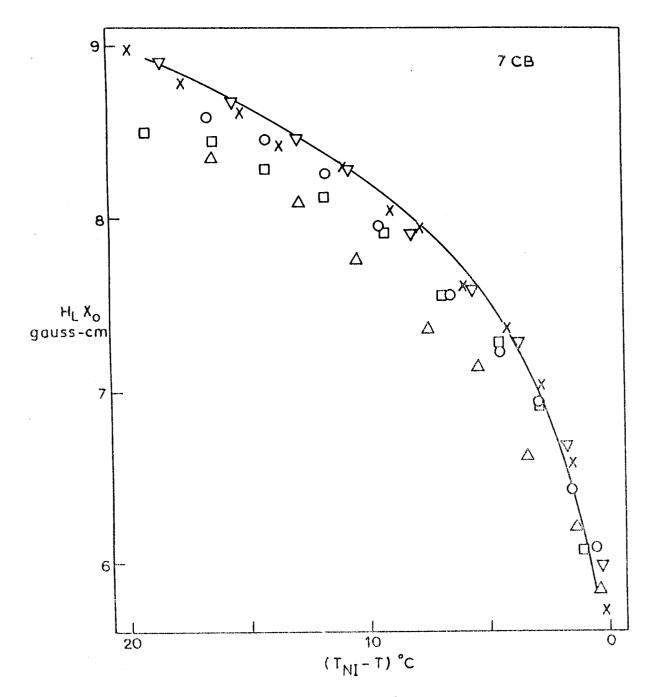



Figure 6.3

The product of the threshold field (H<sub>L</sub>) and sample thickness (x,) as a function of temperature. The different symbols represent the values obtained far different samples :  $\sim 25~\mu m$  (0,  $\forall$ ,  $\times$ ),  $\sim 50~\mu m$  ( $\square$ ,  $\triangle$ ). The solid curve shows the variation according to Leslie's equation.

along with the experimental values. Now taking typical values of elastic constants, we have for 70% at  $T_{\rm KI}$ -T = 10°C,  $k_{11}$  = 1.3 x  $10^{-6}$ ,  $k_{22}$  = 0.7 x  $10^{-6}$ ,  $k_{33}$  = 1.7 x  $10^{-6}$  we see that  $(\frac{k_{33}-2k_{22}}{4})$  is small compared to  $k_{11}$ . Therefore in equation (6.6) the major contribution is from  $k_{11}$ . Hence the error in the theoretical estimate of  $K_{\rm LX}$  is  $\sim \pm 1\%$ . Considering the spread in the mean experimental value of  $K_{\rm LX}$  ( $\pm 3\%$ ), we observe in the figure 6.3 that the theoretical and the mean experimental values agree within the limits of error. Thus Leslie's equation is experimentally verified.

We have also measured the optical threshold in the usual optical set up. The polarizer axis was set parallel to the initial director. The analyzer were rotated to observe a dark field of view. As the magnetic field was increased, the field of view started brightening at a field Ho. For 25 µm sample at  $T_{\rm RI}-T=1^{\circ}{\rm C}$  we found  $\frac{{\rm Ho}}{{\rm Ho}}=1.24$ . For 50 µm sample at  $T_{\rm RI}-T=3^{\circ}{\rm C}$ ,  $\frac{{\rm Ho}}{{\rm Ho}}=1.35$ . Calculations of Van Doorn (1973) show that for  $x_0=54$  µm, the transmitted intensity for a TH cell containing MERA changed for  $\frac{{\rm Ho}}{{\rm Ho}}\sim 1.4$ . This number agrees well with the experimental value. (We cannot really compare the two in a precise

quantitative way because the material constants in two compounds are different.) As we have explained earlier, and as is to be expected from computer calculations, we obtain a thickness dependent H<sub>0</sub>

method to detect H<sub>L</sub>, the optical method described in this section is better. While in the former method the whole sample must have perfect alignment, to get a sharp decrease in the capacity at H<sub>L</sub>, in the latter a small area with good alignment could be chosen for observation. Moreover this minimises any errors due to the non-uniformity of the sample and temperature gradients. In addition, the measurement of thickness by optical method is quite accurate.

### Conclusions

- 1 An optical set up consisting of a polarizer,

  1/4 plate and analyzer sensitive to small changes
  1/4 in the birefringence of the sample has been used
  1/4 to get the Leslie threshold.
- 2 The experimental values of H<sub>L</sub>x<sub>o</sub> agree with those calculated using Leslie's equation within the experimental errors, thus experimentally establishing Leslie's equation.

- 3 The optical threshold determined by the usual method is dependent on the, thickness of the sample. This la in accordance with the calculations of Van Boorn.
- 4 This optical method in which measurements could be confined to a small region of the sample is probably more accurate than the capacitance method which senses the, gross property of the whole cell.

## References

Berreman, D.W., 1973 J. Opt. Soc. Am. 63, 1374.

de Vries, R. 1951 Acta Crystallogr. 4, 219.

Gerritsma, C.J., De Jeu, W.H. and Van Zanten, P. 1971 Phys. Lett. 364, 389.

Leslie, P.M. 1970 Mol. Cryst. Liq. Cryst. 12, 57.

Schadt, H. and Helfrich, W. 1971 Appl. Phys. Lett. 18, 127.

Van Doorn, C.Z. 1973 Phys. Lett. 42A, 537.

Table 6.1

The product (HLX3) at different temperatures in 703

| III.         | H.X. cm.          | Thie                 | Eaust om          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 25003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|-------------------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19.3         | 8.50              | 16.5                 | 8.35              | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16.4         | 8.45              | 12.9<br>10.5         | 8.09              | 14.3<br>31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14.3<br>11.8 | 8.29<br>8.13      | 7.3                  | 7.77<br>7.55      | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.3          | 7.92              | 5.4                  | 7.14              | ē. ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.8          | 7.55              | 3.3                  | 6.62              | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.5          | 7.29              | 1.3                  | 6.20              | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¿:\$4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.9          | 6.92              | 0.5                  | 5.83              | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.1          | 6.07              | -                    |                   | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| c = 52.8 μm  |                   | <b>x</b> o = 52.5 pm |                   | x <sub>0</sub> = 26.1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · ••• ••• •  | 400 mgs also 1004 |                      | ngs 1969 and 623p | <b>化沙 《本 金田 沙</b> 华                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the same was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19.9         | 8.97              | 18.5                 | 8.91              | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17.8         | 8.79              | 15.6                 | 8.66              | Value B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.3         | 8.61              | 12.9                 | 8.43              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.6         | 8.43              | 10.7                 | 6.56              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10.9         | 8.31              | 8.1                  | 7.91              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.0          | 8.05              | 5.6                  | 7.58              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.7          | 7.95              | 3.7                  | 7.20              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.9          | 7.62              | 1.7                  | 6.68              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.2          | 7-37              | 0.3                  | 5.97              | garge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.8          | 7.04              | 66                   | t di come         | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.4          | 6.58              | Xo = 25              | ).                | ∑<br>≪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.58<br>7.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V • 1        | 5.72              |                      |                   | 13197531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| x° = 5;      | 5.4 μm            |                      |                   | (株式を含めていってくいた中心が、パタンがやなりますのない。 中心 はいましょう はいましゃ はい はい はいましゃ はい はいましま はいましま はいましま はい はいましま はいましま はいましま はい はいましま はい | TOP TO THIS THE STATE OF THE ST |