
Chapter 1 

Introduction 

An overview of the liquid crystalline phase 

The type of ordering of the constituent molecules of condensed phases characterizes 

the phase. In condensed phases made up of anisotropic molecules one can define both 

positional and orientational ordering of the constituent molecules. In certain con- 

densed matter systems, comprised of molecules with a high degree of shape anisotropy, 

the crystalline phase melts into an intermediate phase which, on further heating un- 

dergoes a transition to an isotropic phase. This intermediate phase which possesses 

properties characteristic of both crystals and liquids like elasticity, viscosity, surface 

tension etc., is called the liquid crystalline phase. In this thesis we shall be mainly 

concerned with properties of materials in the liquid crystalline phases. Even within 

the liquid crystalline phases one can have various types of ordering leading to distinct 

liquid crystalline sub-phases. In general two types of anisotropically shaped molecules 

show liquid crystalline phases, 'rod-like' molecules and 'disc-shaped7 molecules. 

Liquid crystals have gained a lot of importance in recent times due to their practical 

applications. One of the widest areas of application of liquid crystals is in display 

technology. The performance of liquid crystal displays (LCDs) depends on the vis- 

coelastic properties of the material used in the display. This thesis describes the 

study of viscoelastic coefficients using the dynamic light scattering technique. Apart 

from LCDs, there are other applications of liquid crystals, for example, in appropri- 

ate geometries, liquid crystals can also be used as tunable phase retarders, rotators 



and diffraction gratings. Such tunable optical components are very useful in optical 

signal transmission systems. We discuss the properties of one such device, a liquid 

crystal phase grating, in chapter 5 of this thesis. 

Liquid crystals in which phase transitions can be brought about by changing the 

temperature are called thermotropic liquid crystals. A vast majority of liquid crys- 

talline compounds fall in this category. There is another class of liquid crystals made 

up of multicomponent systems which also show a rich variety of phases. These sys- 

tems are called lyotropic liquid crystals and phase transitions in them can be brought 

about by changing either the temperature or the relative concentrations of the various 

components. Typically, lyotropic liquid crystals are formed by surfactant molecules 

dissolved in a solvent which is usually water. When surfactant molecules are brought 

in contact with water they organize themselves into anisotropic structures which give 

rise to liquid crystalline phases. In the following sections we briefly introduce some of 

the main features of the commonly occurring liquid crystals, like nematic, cliolesteric 

and smectic phases. 

1.1.1 The nematic phase 

The nematic phase is one of the most commonly occurring liquid crystalline phases. In 

the nematic phase, the molecules have long range orientational order but no positional 

ordering. A schematic representation of the molecular ordering in the isotropic phase 

is shown in figure(l.1 a) 

In cases where the molecules are of rod-like shape, the long axis of the molecules 

point, on an average, along a particular direction in space. We usually use a unit 

vector n along the average direction of molecular orientation. This vector is also is 

called the director. This is shown in figure(l.1 b). The rod-like molecules are free to 

rotate about their long axis and to a much lesser extent about their short axes. The 

typical rotational frequencies about their short axes in the range lo5 to lo6 Hz and 

about the long axis in the range 1 011 to 1012 Hz. The probability of finding a molecule 

parallel and anti-parallel to the director is the same. This gives rise to the physical 



Figure 1.1: (a) Schematic representation of an isotropic fluid. Here the molecules have 
a random orientational and positional arrangement. (b) Schematic representation of 
the molecular arrangement in the nematic phase. Here, the average direction of 
orientation is along an apolar unit vector denoted by n,  called the director. 

equivalence of n and -n. Further the nematic phase has cylindrical symmetry about 

the director. The degree of orientational ordering of the molecules in the nematic 

phase can be defined by an order parameter S. The order parameter is a function of 

temperature. In literature this order parameter is defined by: 

Where Oi is the angle made by the ith molecule with the director and the angular 

brackets indicate a spatial average. Typical values of the nematic order parameters 

are between 0.4 and 0.7. 

1.1.2 The cholesteric phase 

In the case of nematics where the constituent molecules are chiral, or in the case of 

nematics doped with chiral molecules, the structure acquires a spontaneous twist. 

This results in a helical structure of a definite pitch. In such structures the director 

gradually rotates about an axis perpendicular to  itself. The cholesteric structure is 

depicted in figure(l.2). 

If we consider the z axis to lie parallel to the helix axis and the director to be in the 

x-y plane, the cholesteric can be described by the following director components 



Figure 1.2: A Schematic figure of the molecular arrangement in the cholesteric phase, 
The director rotates about an axis perpendicular to itself giving rise to a helical 
structure with pitch I?. P = 2r/q0 here, go is the wavevector of the cholesteric. 

Where go = 2x/P is the magnitude of the wavevector of the cholesteric of pitch P.  

The sign of q, determines the handedness of the cholesteric structure. In practice, 

materials exhibit either left or right handed structures. The cholesteric pitch depends 

on the degree of chirality of the molecules and the temperature of the system. When 

the pitch becomes comparable to the wavelength of light, Bragg reflection occurs, 

resulting in the characteristic iridescent appearance of cholesterics when viewed in 

white light. 

1.1.3 The smectic phases 

In smectic phases, molecules arrange themselves in layers giving rise to a one di- 

mensional quasi-long positional ordering. Landau and Peierls showed that true one 

dimensional long range translational ordering at  any finite temperature is not pos- 

sible due to the presence of thermal fluctuations. The result is a layered structure 



Figure 1.3: The smectic phases have layered structures. (a) When the director is 
parallel to the layer normal the phase is called Smectic A. (b) If the director is 
uniformly tilted with respect to the layer normal the phase is called Smectic C. 

with quasi long range translational order in a direction parallel to the layer normal 

and liquid like positional order within the layers. 

Smectic A 

In the smectic A phase the molecules arrange themselves in layers with the director 

normal to the layers. The phase is macroscopically uniaxial with the axis of cylindrical 

symmetry along the layer normal N. This is depicted in figure(l.3a). 

Smectic C 

The structure of the smectic C phase is very similar to the smectic A phase except 

for the fact that the molecules in all the layers are tilted in the same direction with 

respect to the layer normal N,  as shown in figure(l.3b). Due to this tilt the director 

develops a component in the plane of the layers. The projection of the director n on 

the layer is called the c vector. 

Smectic C* 

In smectic C, if the molecules are chiral, or if there are chiral dopants, the structure 

develops a spontaneous twist about its layer normal leading to the Smectic C* phase 

or the chiral smectic C phase where n precesses continuously about the layer normal. 



Since the macroscopic structure lacks a mirror plane, the phase can be locally ferro- 

electric by sustaining in each layer a permanent electric dipole moment perpendicular 

to the twist axis and the c vector. 

Liquid crystalline phases can also be formed out of disk like molecules. These are 

called the discotic phases. 

Apart from the phases mentioned above, there are also some defect proliferated phases 

like the twist grain boundary (TGB) and the blue phases. The blue phases occur over 

a short range of temperatures close to the cholesteric-isotropic transition. The TGB 

phases occur between the cholesteric and smectic phases. TGB phase consists of a 

helical arrangement of smectic blocks separated by a twisted region, made up of linear 

arrays of screw dislocations. Depending upon the molecular arrangement within the 

smectic blocks, the TGB phases are further subdivided into TGBA, TGBC, TGBC* 

etc. 

1.2 Mechanical and optical properties 

The high degree of anisotropy of liquid crystals at the molecular level is clearly re- 

flected in the bulk optical, mechanical, dielectric and magnetic properties. Perhaps 

the most striking difference in mechanical properties between ordinary fluids and liq- 

uid crystals is in the nature of their viscosities. An isotropic fluid lacking preferred 

direction yields the same value for viscosity no matter how it is measured. However, 

in liquid crystals, the viscosity depends on the coupling of the director to the flow 

field. In fact, a nematic liquid crystal can have five independent viscosity coefficients. 

Liquid crystals respond to applied mechanical torques, and stresses. The elastic defor- 

mation of a nematic liquid crystal arises from torques and in general can be resolved 

into three basic deformations called the splay, twist and bend. These deformations 

are illustrated in figure(l.4). The associated elastic constants are called the Frank 

curvature elastic constants. 

The anisotropy in optical properties is exploited in a wide range of liquid crystal appli- 

cations. Macroscopic linear birefringence is a consequence of the dielectric anisotropy 



Figure 1.4: Illustrating the molecular orientation in a nematic sample subjected 
to the three basic deformations (a) splay, (b) twist and (c) bend. Any arbitrary 
deformation of the nematic can be resolved to be a combinat.ion of these three basic 
deformations. Splay, twist and bend are each characterized by an independent elastic 
constant denoted by K1,  K2 and K3. These coristants are of the order of dynes. 

at  the molecular level. In addition to local linear birefringence some liquid crystal 

structures like cholesterics also posses helicity. This combination of birefringence 

and spatial helicity endows these liquid crystals with properties like selective Bragg 

reflection and diffraction. 

Another important feature of liquid crystals is the intense scattering of light caused 

by thermal fluctuations of the director. The low value of curvature elastic constarits of 

the liquid crystals leads to  large thermal fluctuations even at  ambient temperatures 

to  create long wavelength distortions. These distortions result in refractive index 

variations on the length scales of the wavelength of light. Analysis shows that this 

process leads to  strong scattering of light with a scattering cross-section lo6 times 

that found in normal liquids. In chapters 3,4 and 6 of this thesis we are concerned 

with light scattering studies from nematic and cholesteric liquid crystals. We employ 

dynamic light scattering to  investigate the modes of fluctuations of the director which 

in turn lead to a determination of viscoelastic coefficients. 

In chapter 5 we discuss diffraction from cholesterics in the phase grating mode, in 

particular, the intensity profiles of the diffracted orders from non-uniform cholesteric 

gratings. 



Dynamic light scattering 

The scattering of light from any medium is due to the refractive index fluctuations 

in that medium. By analyzing the scattered light it is possible to deduce information 

about these fluctuations and the related material properties of the system. When a 

medium with such temporal refractive index fluctuations is illuminated with coherent 

light, a fluctuating speckle pattern is formed in the far field. The basic set up used 

by us for light scattering studies is shown in figure(l.5). Light from a laser, linearly 

polarized in a direction direction i is scattered by a medium. The scattered light 

passes through an analyzer which selects a particular polarization f before it enters 

a detector. The position of the detector defines the scattering angle B relative to  

the main beam. The intersection of the incident beam and the beam detected by 

the detector defines the scattering volume V involved in the scattering process. The 

speckle pattern arises because of the interference between light waves scattered from 

various portions of the scattering volume. The fluctuations in the speckle pattern are 

due to refractive index fluctuations in the scattering volume. The detector senses the 

fluctuating intensity of the speckle pattern. An analysis of the intensity fluctuations 

reveals the director dynamics in the scattering volume. 

The fluctuations are studied by analyzing the autocorrelation function of the scattered 

light intensity. In the next section we briefly describe the autocorrelation function of 

a fluctuating signal in the context of our light scattering experiments. 

1.3.1 Fluctuations and their autocorrelation functions 

Random thermal fluctuations of thermodynamic variables are commonplace in con- 

densed matter. As an example, we consider a system comprising of many particles. 

Let A(t) be some property of the system at a time t that depends on the position 

and momenta of all the particles in the system. Due to random thermal motions the 

positions and momenta of the particles change constantly and this is reflected as a 

random fluctuation of A(t) about an average value (A). When observed in the time 

domain A(t) looks like a random noise signal. The average value of A that would be 



To digital 
autocorrelator 

Figure 1.5: A schematic diagram of the basic arrangement of a light scattering ex- 
periment. ki is the incident wavevector in the direction i and k, is the scattered 
wavevector in the direction s. The plane containing ki and k, is called the scattering 
plane. 



measured as the bulk property of the system in equilibriurri is given by, 

J~ A(t)dt (A) = lim - 
T - t o o T  o 

Where T is the total time over which A(t) is measured. For convenience we take 

the average value (A) to  be zero. A temporal correlation function measures the 

degree to  which two dynamical properties are correlated over a period of time. The 

autocorrelation function (ACF) (A(O)A(r)) is a measure of the correlation between 

two values of the quantity A, A(t) and A(t + r )  at  times t and t+r.  Here, r is called 

the delay time. Mathematically the autocorrelation function of A(t) can be written 

In practice, a digital correlator is used to  analyze the fluctuating intensity. It performs 

a discrete time autocorrelation. We define the following symbols for the discrete time 

autocorrelation function in analogy with the continuous time version discussed above. 

The time axis is divided into discrete equally spaced intervals St such that t = jAt.  

Samples of A(t) are obtained at  these intervals. 

Time is now expressed as t = j At Where j is a running index that takes values 

1,2,3 ... Delay time is expressed as r = n At. The two samples of A(t) are delayed 

by n samples. The quantity analogous to the total measurement time T is N At. 

Where N is the total number of samples. The delayed sample A(t + r )  is taken a t  

( j  + n) At. The time variation of A in time is shown in figure(l.6). The sampling 

interval St is chosen to  be small enough such that A(t) can be faithfully reproduced. 

The discrete time version of the average value is given by, 

I 
(A) cz - lim 1 Aj 

N N - t a  j=l 

The autocorrelation function is given by, 

For the zero delay i.e., n=O all the terms in equation(l.1) have positive values. For 
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Figure 1.6: A continuous signal sampled at  an interval of At. 



n # 0, the summation will have both positive and negative contributions. As n --+ N 

for truly random signals we can expect the total positive contribution to  be almost 

equal to  the total negative contribution. This causes the autocorrelation function to  

decay to  zero at  longer times. For a random signal the ACF starts with a value 

(A(O)A(7)) = (A2) (1.2) 

at  r=0. As T -+ 00, A(0) and A(T) become more and more uncorrelated hence 

A(t) being a stationary property. In figure(l.7a) we show a random signal and in 

figure(l.7b) its autocorrelation function. By examining the nature of the decay of 

the ACF from (A2) to (A)) one can obtain the relaxation time of the randomly 

fluctuating quantity A(t). For example if A(t) represents the intensity of the light 

scattered by a collection of mono-disperse spherical scatterers suspended in a solution, 

a single exponential function will describe the decay of the ACF of A(t). 

Typically the autocorrelation function decays as 

Here TA is the characteristic relaxation time of the fluctuating quantity A(t). The re- 

laxation time is the key quantity we will be concerned with in most of the forthcoming 

discussions on dynamic light scattering. 

In DLS experiments the aim is to extract the relaxation time by analyzing the decay 

of the intensity autocorrelation function. In practice, the detector of light intensity, 

used in the DLS experiments is a square law detector. It measures the intensity 

autocorrelation function of the scattered light. In the next section, we discuss the 

Gaussian light scattering theory which relates the experimcntally measured intensity 

autocorrelation function to  the electric field autocorrelation function. 
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Figure 1.7: A random signal and its autocorrelation function. 

1.3.2 Gaussian light scattering theory 

We consider a beam of a finite width illuminating the sample under study. We shall 

consider the case of homodyne light scattering or single beam light scattering where 

only the light scattered from the sample reaches the detector. The scattered electric 

field E,(t) is proportional to the instantaneous change in dielectric constant in the 

scattering volume. In a liquid crystal, the fluctuations arise due to the incessant 

thermal motions of the director. The scattering volume V is sub divided into sub- 

regions of volume small compared to the wavelength of light. The scattered field E, 

arriving at  the detector can be regarded as a super position of fields from each of 



these sub-regions 

Where E?) is the scattered field arriving at the detector from the nth sub-region. 

An important assumption made here is that the director or particle motions in a 

given sub-region are independent of those in the other sub-regions. This assumption 

implies that the fields emanating from each sub-region are independent of each other. 

E, can be regarded as a sum of independent random variables EL'), E?), E ! ~ ) . . .  which 

represent the fields emanating from the various subregions 1,2,3 .... We can now 

invoke the central limit theorem [ I ]  which states that the sum of .a large number of 

independent random variables with unknown individual distribution functions must 

have a Gaussian distribution with zero mean. It might not always be possible to apply 

the central limit theorem. The scattered fields will be non-Gaussian in the presence 

of laser source correlations and number density fluctuations where scattering volumes 

are very small [2] 

We shall now derive the expression for the intensity autocorrelation function that is 

measured in the experiment. The intensity autocorrelation function is defined as 

We drop the subscript "s" with the understanding that E stands for the scattered 

electric field henceforth. 

The intensity autocorrelation function is a 4th moment of the Gaussian random vari- 

able and can be written as a sum of the products of all possible 2nd moments [3].  



Here E(t)  has the usual time dependent part e-iwt times a slowly varying contribu- 

tion due to  the inelastic scattering. The product E(O)E(T) oscillates at the optical 

frequency 2w and its time average over the time scales of interest is practically zero. 

Dropping the second term, the intensity autocorrelation function can be written as 

This is the well known Siegert relation that relates the electric field autocorrela- 

tion function to the intensity autocorrelation function. We now define the following 

correlation functions, 

The normalized form of g2(7)is defined as, 

Here, g2(oo) is the value of electric field autocorrelation function at very large delay 

times i.e., as T -+ 0 and is known as the base line. 

The basic quantity of interest here is the intensity autocorrelation function g2 (7). 

Usually g2(T) decays exponentially with the delay time T, with a relaxation time say, 

T ~ .  

Equation~(l.7)~ (1.8) and (1.9) are the theoretical expressions for the autocorrelation 

functions involved in DLS experiments. In real situations, experimental conditions 

play an important role in the measurement of these quantities. The geometrical 

parameters introduced by the experimental conditions are considered in the following 

section. 

1.3.3 Effect of spatial coherence 

The result obtained in the previous section assumes that the detector can sense 

intensity fluctuations strictly in a given direction. This means that the detector 



collects light from single scattering wavevector. In practice, the detector has a finite 

spatial extent and collects light from a range of wavevectors Ak given by[4], 

Since the detector has a finite area many individual speckles would illuminate this 

area. This would result in an averaging out of the intensity fluctuations [5] . It is 

desirable to  have an effective area of the order of the average speckle size. But this 

poses other problems like the count-rate falling to levels lower than the dark count of 

the detector. Thus, the effective area of the light detector has a significant bearing 

on the signal to noise ratio of the experiments. To analytically determine the effect 

of the detector area one requires detailed information of the experimental geometry. 

In DLS experiments, the scattering volume can be thought of as an extended in- 

coherent source. If we consider the source to be a linear object, each point on this 

object emits light that arrives at  the detector with a random phase. The net intensity 

recorded at  detector depends upon the total phase. We consider the electric fields 

E(r)  and E(rl)  a t  two points r and r' on the detection plane, 

Where E(i)  and E1(i) are the electric fields arising due to  the ith discrete source. A 

rough estimate of the coherence distance of this one-dimensional case is the distance 

beyond which the (E(r)E(rl ) )  correlation function decays appreciably. It has been 

shown that this distance is approximately given by [6], 

Where X is the wavelength of light and O is the angle subtended by the source at a 

point on the detector plane. 

If Ir-r'l > lo the signals at these two points are uncorrelated. The coherence area can 

be defined as the area around the point r such that all points within it are partially 
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coherent with the point r. An estimate of this coherence area for three dimensional 

sources is [7, 81 is given by, 

Where Q is the solid angle subtended by the source at  r. 

When spatial coherence effects are taken in to account the intensity correlation func- 

tion g2(7) derived in the previous section gets modified in the follotving way 

Where ,8 is a coherence factor and its value is less than one.. In principle, though it 

is possible to calculate ,f? for a given geometry, its value is usually obtained directly 

from the correlogram. When P is close to unity the correlation function decays from 

a high initial value. This implies a high signal to noise ratio. When ,B --+ 0 there is 

very little decay of the autocorrelation function implying a low signal to noise ratio. 

In experiments, to  get a high signal to noise ratio, a compromise has to be made 

between the effective detector area and the intensity of the scattered light falling 

on the detector. The effective area of the detector should be close to the coherence 

area but the intensity on the detector should be well above the noise level of the 

instrument. 

In the next section we describe some of the methods we have used to analyze the 

scattered light intensity correlation functions. 

1.3.4 Relaxation time from intensity autocorrelation func- 
t ions 

The analysis of the intensity autocorrelation functions obtained in the experiment 

has to be done without having a priori knowledge of how many relaxation processes 

are present in the system and their respective strengths. The inversion of the au- 

tocorrelation function g2(r) to obtain the relaxation time distribution function is 

mathematically an 'ill-posed' problem. When there is only one relaxation process 

in the system, l g l  (7) l 2  decays as a single exponential. In the presence of multiple 
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relaxation processes, $1 (7) can be written as, 

Where G(7-r) is the relaxation time distribution function that we seek to  determine. 

The ill-posedness of this problem means that widely different models G(rr) can be 

worked back to give nearly similar gl(r). We now discuss two commonly used tech- 

nique.~ to analyze intensity autocorrelation functions. 

Direct fitting of intensity autocorrelation functions to single or double 
exponential decays 

This is the simplest way of obtaining the relaxation time from the intensity autocor- 

relation function. This method should be used only when one is certain about the 

number of relaxation processes present in the system. For example, we consider the 

case when only one relaxation time is present in the system. As the name suggests 

this method involves fitting g2(7) to a three parameter function of the form 

Where a is a baseline parameter, b is the amplitude of the decay that includes the 

coherence factor (a measure of the signal to noise ratio) and c is the relaxation time. 

This fitting would involve the use of non-linear fitting algorithms that require guess 

values of the parameters to be supplied at the beginning. Alternatively, since we are 

mainly interested in the relaxation time parameter c we can take a natural logarithm 

of (g2(7) - a) and perform a straight line fit to  the resulting equation. 

The slope of this line is the inverse of the relaxation time. If the system has two 

relaxation times not very different from each other then one fits a sum of two expo- 

nential~ to g2(7). On the other hand, if the two relaxation times are well separated, 

it would be preferable to perform a piece wise linear fit to the two linear portions of 

ln(g2(r) - a) since polynomial fitting is more reliable than nonlinear fitting. 



Method of cumulants 

This method is best suited to analyze particle sizing data where there is a narrow 

polydispersity in the size distribution. Here the natural logarithm of (g1(~)I2 is ex- 

panded as a power series in delay time T. 

When plotted against T, the Y intercept equal to A, is a measure of the coherence 

factor p discussed previously and the slope equal to B is a measure of the average 

particle size. The coefficient C is a measure of the deviation from linearity and the 

polydispersity in the system. In fact, C/B2 is the polydispersity. 

1.4 Dynamic light scattering from nemat ics 

Nematic liquid crystals generally appear turbid. The turbid appearance of a nematic 

sample is due to the thermal fluctuations in the director. These director fluctuations 

are coupled to the dielectric tensor of the nematic. Each mode of the director fluctua- 

tion is characterized by a viscoelastic coefficient. By using the appropriate scattering 

geometry, it is possible to selectively detect intensity fluctuations due to a particular 

mode. An analysis of the intensity autocorrelation function yields the value of the 

viscoelastic coefficient associated with the particular mode. In the following section 

we derive the expression for the electric field scattered due the dielectric constant' 

fluctuations in the medium. This expression is later used to analyze light scattering 

from nemat ics. 

1.4.1 Light scattering due to orientational fluctuations in the 
local dielectric tensor 

We consider the scattering of light from a non-absorbing, non-conducting and non- 

magnetic medium [9]. The light incident on this medium is a plane wave whose 

electric field is given by, 

Ei(r, t )  = i ~ , ~ ~ i ' ~ - ~ ~ ~  



where i is the direction of polarization of the incident plane wave front and w is 

the angular frequency of light. We assume that the sample has spatio temporal 

fluctuations of the dielectric constant causing the incident plane wavefront to  get 

scattered. The local dielectric tensor of the medium can be written as a sum of a 

constant part and a fluctuating part. 

Where I is a second rank unit tensor and Gg(r,t) is the spatio-temporal dielectric 

tensor at  r. The field at  the location of the detector R is a sum of the incident and 

scattered fields. The total field is given by, 

Where Di and Ei are the incident displacement and electric fields, D, and E, are the 

scattered displacement and electric fields. 

The second rank dielectric constant tensor f relates the displacement and electric 

fields. 

It is through this equation that fluctuations enter the analysis. The dielectric dis- 

placement at the detector depends not only on the scattered field but also on the 

product of the incident field and the local dielectric fluctuations. Using Maxwell's 

equations we can write a wave equation for the scattered displacement field vector 

as, 



In terms of the Hertz vector the wave equation becomes 

Where the Hertz vector is II is defined as 

We can solve the above equation using the Fourier transform method. The wave 

equation can be reduced to  the Helmholtz equation using the properties of the Fourier 

transforms of derivatives [lo]. The expression for the electric field at the detector 

polarized in the direction f is given by 

E0 eqkf "") f + (kf x k x &(r, t ) )  . i ehg.' E, = - 
4nco R 

where V is the scattering volume and q =ki - k,, is the scattering wave vector. The 

unit vectors i and f denote the initial and final directions of polarizations. Simplifying 

the double cross product in the above equation we get the final expression for the 

scattered field 

Where 

is the if component of the fluctuating part of the dielectric tensor for the initial(i) and 

final (f) polarization directions. Thus, one can obtain the magnitude of the scattered 

electric field arising due to  the dielectric constant fluctuations in the medium. This 

relation is used while calculating the coupling between the director comporients and 

the dielectric constant tensor in a nematic liquid crystal. 

1.4.2 Orient at ional fluctuations in a nematic liquid cryst a1 

The equilibrium configuration for a nematic liquid crystal is one in which the director 

is uniformly aligned in a particular direction. Any deformation of this equilibrium 
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state costs excess free energy. This elastic distortion free energy is called the Frank 

free energy [ll] given by, 

Where n r n(x,y,z) is the director field. The three terms in the integral represent 

the three basic distortions of the nematic, viz., the .splay, twist and the bend. K1, 

K2 and K3 are the splay, twist and bend elastic constants respectively. Any arbi- 

trary distortion of the nematic can be resolved in terms of these three independent 

distortions. We shall now consider small fluctuations of the director. This is shown 

in figure(l.8). We assume that in equilibrium the director, no, is aligned along the 

z-axis. 

Where 6n(r) is the fluctuation. The components,of dn(r) are 

The different terms of equation(l.11) now become, 

an, an, 
( V - n ) = - + -  

ax 8y 

an, any 
( n x V x n ) = - - -  

a x  a x  

The components of director fluctuation can be expressed as superpositions of indi- 

vidual modes. 

1 
n, (r) = 5 n, (q) e-'q'I 

q 

1 
n, (r) = 5 nu (q) e-'q" 
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Figure 1.8: Schematic illustration of the director fluctuation at  r 

Where R, is a volume element and q is the scattering wavevector. 

Using equations (1.12) and (1.13) in the expression for free energy density we get, 

We now make a transformation into a co-ordinate system where Fd is diagonal and 

the energy in each mode can be written down. 

The new co-ordinate system is obtained by rotating the old one about the z axis in 

such a way that q lies in the x-z plane This is shown in figure(l.9). The basis vectors 

in the new co-ordinate system are (el, e2). The directions of the unit vectors el and 

e2 with respect to the direction of the scattering wave vector q is given by 



Figure 1.9: Illustrating the basis vectors in the el, e2 frame. q is the scattering 
wavevector. 

The fluctuation component in the new basis can be written as 

6 4 4 )  = e ln l (q)  + e2n2(q) (1.15) 

The coefficients of K1 and K2 terms in equation(l.14) can be written respectively as, 

{Inz(q) I9Y - lnY(q)lqx}2 = {l6n(q) x qo2 

In the expansions on the right hand sides 

and 

n~ (q)el  x q + n2 (q)e2 x q (1.17) 

The second term in equation(l.16) is zero since e2 I q and the first term in equation(1 .l7) 

is zero since el 1 1  q.  

24 



Thus the diagonalized form of the free energy density is, 

It can also be written as: 

Where a=1,2 are the two decoupled modes and K, is the elastic constant of the 

mode a . According to the equipartition theorem each mode has the energy ikBT 

and the thermal average of the square of its amplitude is given by, 

In nematic liquid crystals, fluctuations in the dielectric tensor are decided by director 

fluctuations. The restoring force for long wavelength fluctuations tend to zero as 

q -+ 0. Thus, long wavelength fluctuations are easily excited in liquid crystals. The 

modes 1 and 2 represent the two decoupled modes of director fluctuations in nematics. 

The physical meaning of these modes in terms of the basic nematic deformations are 

discussed in the next section. 

1.4.3 The decoupled modes of director fluctuation 

In the (el, e2) coordinate system the scattering wavevector q is confined to  the el - z 

plane. The sample is aligned with its director along the z direction. The tilt of 

the director due to any arbitrary fluctuations with scattering wavevector q can be 

resolved in terms of displacements in two orthogonal planes, the el - z plane and the 

e2 - z plane. These orthogonal modes have been referred to as mode 1 and mode 2 

in literature. These modes are illustrated in figure(l.10). 

M o d e  1: Here the director fluctuations are confined to the el - z plane. When q is 

completely along el  the mode is a pure bend mode and when q is along z the mode 

is a pure splay mode. In general the scattering wavevector will have both the el and 

z components and the mode is the splay-bend mode. 





Mode 2: If the director tilt is confined to the ez-z plane, then a mode with wavevec- 

tor along el represents a pure .twist mode and one with a wavevector along the z 

direction will represent a pure bend mode. Hence in general, this is twist-bend mode. 

Experimentally, it is possible to detect these modes individually by employing appro- 

priate scattering geometries. 

Having resolved arbitrary director fluctuations in terms of the decoupled modes 1 

and 2 we now discuss the relation between the autocorrelation functions of the di- 

rector components and the dielectric tensor of the nematic medium. The following 

section establishes the important relation between light scattering and the director 

fluctuations. 

1.4.4 The coupling between the director components and di- 
electric tensor 

In a reference frame attached to the director, the dielectric tensor grn is given by, 

Here, € 1 1  is the extraordinary refractive index and EL is the ordinary refactive index. 

The dielectric tensor for arbitrarily oriented director in the lab frame g is given by 

the unitary transformation, 

Where R is the Euler rotation matrix. 

In tensor form, the nematic dielectric tensor in the lab frame (z, y, z )  can be written 

=, 

AE is the dielectric anisotropy, Ae = - EL and 6,,, is the Kronecker delta. 

Let the directions of polarization of the incident and scattered light be i and f re- 

spectively, in the lab frame. The (i,f) component of g is given by, 



When the director fluctuations are included, the dielectric tensor can be written as a 

sum of a spatially constant part (which does not contribute to light scattering) and 

a fluctuating part which can be written as, 

sfif = A6 [(i . no) (f -6n )  + (i . 6n) (f . no)] (1.23) 

Where the term, (i . 6n)(f . 6n) which is of second order in fluctuations has been 

neglected. 

Writing &(q) in terms of the basis vectors el and e2 we can write, 

6f(q, t )  = (A€) [(i ' no) (f) ' (elnl  (q) + e2n2(q)) + (f ' no) (i) ' (elnl  (q) + e2.2 (q))] 

(1.24) 

Where GI and G2 are purely geometrical factors given by, 

We can now relate the electric field autocorrelation function with the autocorrelation 

functions of the director fluctuations of the two independent modes. 

The relaxation dynamics of the director fluctuations given by equation(l.15) is de- 

cided by the hydrodynamic theory of nematics. In the next section, we derive the 

final relation between the electric field autocorrelation function and the relaxation 

times of the different viscoelastic modes of the nematic. 



1.4.5 Nematodynamics 

We appeal to  the hydrodynamic theory of relaxation of the director field as developed 

by Leslie and Ericksen to obtain the equation of motion for the director [12], [13] 

[14]. For this we need five viscosity coefficients to describe the viscous behavior of 

the nematic phase. The dynamics of the director is modeled on the damped simple 

harmonic oscillator. Hence the equation of motion of the component n, of the director 

can be written as. 

a 
% (q) (q, t )  + Kana (q, t )  = 0 (1.28) 

Where %(q) is a component of viscosity and K, is the elastic term defined in 

equation(l.18). 

We assume this equation to  have a solution of the form 

n, (q, t) = n, (q) e-@ITa) 

Where T, is the relaxation time for the mode a. 

The final expression for the electric field autocorrelation function becomes 

Where C is a time independent constant. In general the autocorrelation function 

will contain two relaxation times. By choosing the appropriate scattering geome- 

try either GI or G2 can be made to  zero and the splay-bend or twist-bend modes 

can be observed individually. In experiments, modes have varying contributions to  

autocorrelation function at  different wavevectors. In addition to  choosing the right 

scattering geometry one should also chose the right scattering wavevector (equiva- 

lently the scattering angle) where the mode of interest has maximum contribution. 
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Equations(l.29) and (1.30) derivccl in this chapter will be used in the analysis of data 

in the experiments described in chapters 3,4 and 6 of this thesis. 
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