
Chapter 5 

Optical diffraction in non-uniform 
cholesterics-phase grating effect 

5.1 Introduction 

In the previous chapters, we were concerned with the light scattering due to the 

dynamics of the director. The director dynamics have short characteristic time scales 

of the order of a few milliseconds. However, on longer time scales these thermal 

fluctuations average out resulting in an average helical structure which has its own 

interesting optical properties. In this chapter we consider some of these properties of 

cholesterics and effects of static structural non-uniformities in them. 

Cholesterics exhibit many interesting optical properties like selective Bragg reflection, 

anomalous optical rotation and diffraction in the phase grating geometry [I]. These 

interesting features arise from the fact that the cholesteric has a locally uniaxial 

structure whose symmetry axis twists uniformly about an orthogonal direction. Most 

of the cholesterics have a pitch comparable to the wavelength of visible light. The 

optics of cholesterics is usually studied either in the Bragg geometry or in the phase 

grating geometry. These two geometries are described in the following sections. 

5.1.1 The Bragg geometry 

In the Bragg geometry, light of appropriate wavelength and polarization, incident in 

a direction parallel or at an angle to the twist axis undergoes reflection. It is akin 

to Bragg reflection of x-rays from crystals but with a subtle difference. For example, 
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a right handed cholesteric reflects right circularly polarized light and transmits left 

circularly polarized light. Tllc cigenmodes of propagation in such a structure are 

circularly polarized states with opposite handedness. It is well known that in a 

uniform cholesteric of pitch P, the width of the reflectiori band is given by 

Where p0 and pe are the ordinary and the extraordinary refractive indices respectively 

of the local uniaxial structure. This reflection band is centered at a wavelength Xo 

given by 

where p is tlie average refractive index of tlie cholesteric. 

In the Bragg geometry there have been sorrie studies or1 rion-uniform cholesterics. 

Mazkedian and Bartolino [2], [3] produced a gradient in the pitch by compressing 

a cholesteric along its twist axis. Their experiments were performed in the Bragg 

geometry with oblique iricidcrice of light. They observed small changes in A, with 

the applied pressure. Recently, Broer et. al., [4] prepared a pitch gradient cholesteric 

and observed that the non-uniformity results in a very wide reflection band. In their 

system, the pitch uniformly iricrcases from one end of the sample to the other. These 

investigators used a sophisticated polymerization diffusion technique to create large 

gradients in the cholesteric pitch. Usual cliolesterics, typically have a Bragg width 

AX of the order of 50 nm. I11 the system studied by Broer et. al., the pitch varied 

frorn 230 rim at one end of the sample to almost double this value at  tlie other end. 

They demonstrated that in the process AX considerably increased to a value as high 

as 350 nm. For their pitch gradient cholesteric the width of the reflection band is 

given by 

AX = pmax Pe - Pmin P o  

Here, Pmax and Pmin are rcspcctively the smallest ant1 largest values of the pitch asso- 



ciated with the structure. Wide band reflectors made from pitch gradient cholesterics 

with reflection band in the visible region find many applications. 

I 

5.1.2 The phase grating geometry 

A phase grating is a structure with periodic spatial refractive index variations. If a 

plane wavefront of light encounters such a structure, different portions of the wave- 

front will traverse different optical paths leading to a corrugated wavefront on emer- 

gence. Raman and Nath [5] gave a theory to explain the phase gratings generated by 

density modulations in an isotropic liquid. The density modulations were created by 

producing a standing ultrasonic wave in the liquid. 
i 

For light of appropriate polarization and wavelength, the cholesteric can act as a 

phase grating. This is shown in figure(5.1). Here, the refractive index modulation 

occurs due to the birefringence and helical structure of the cholesteric. 

In the phase grating geometry, linearly polarized light with electric vector normal to 

the twist axis is incident in a direction perpendicular to the direction of the twist 

axis of the cholesteric. Such a beam undergoes diffraction. The diffraction properties 

have been studied extensively in the case of uniform cholesterics, that is, cholesterics 

of uniform pitch [I], [6]. Sackmann et. al., [7] were the first to experimentally study 

a cholesteric in the phase grating geometry. They found that for light polarized in 

a direction perpendicular to the helix axis, all diffraction orders are also linearly 

polarized in the same direction as the incident light. The relative intensities of the 

different orders depend on factors like sample thickness, wavelength of light and 

effective local refractive index. 

In the present chapter, we carry out a systematic study of the effects of non-uniformities 

in the cholesteric structure on the phase grating properties. The non-uniformity being 

in the nature of a gradient in the pitch. Cholesteric pitch Carl become non-uniform 

either due to surface effects or inherent strains. We first briefly discuss the well 

known theory of diffraction from uniform cholesterics and then develop our model for 
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non-uniform cholesterics. 

Theory of diffraction 

In this section we give an outline of the theory used by us to calculate the diffrac- 

tion pattern from cholesterics in the phase grating geometry. We consider a plane 

wavefront of linearly polarized light of unit amplitude to be incident in a direction 

perpendicular to the twist axis of a cholesteric. The direction of polarization is also 

perpendicular to the twist axis. For such a light beam the refractive index of the 

medium is a periodic function of position. The plane wavefront emerges as a corru- 

gated wave front. Thus, the cholesteric acts as a one dimensional grating. The Fourier 

transform of this corrugated wavefront gives the amplitude of the wave diffracted in 

a particular direction. Here, we make use of the Raman-Nath (RN) approximation. 

According to the RN approximation, the wavelength of the phase fluctuation in the 

cholesteric is large compared to  its amplitude and the wavelength of the incident light 

[5],[6]. This assumption allows us to neglect the internal reflections in the medium. 

The RN approximation is valid only fop small values of Ap d. An important assump- 

tion of the RN theory was that the emergent wavefront was perfectly sinusoidal. 

Hence, the entire diffraction pattern could be analytically calculated. This led to  the 

well known result of the intensities of the successive diffraction orders following the 

Bessels function law. However, in cholesterics the situation is quite different. The 

emergent wavefront is no longer purely sinusoidal and it is not possible to analyti- 

cally workout its Fourier transform [6]. The problem becomes even more intractable, 

in the case of non-uniform cholesterics where the emergent wavefront might not be 

even periodic. Hence, we seek numerical solutions to this problem using well known 

Fourier transform computational techniques. 
* 

5.2.1 Uniform cholesterics 

Let us consider a cholesteric aligned with its twist axis along the z axis and the 

direction of the incident light along the x axis as shown in figure(5.1). 



In a uniform cholesteric, the director rotates uniformly in space and the components 

of the director are given by, 

ne = cos ( q 0 x )  

n, = sin(qoz) 

Where, qo= 27r/P. For a uniform cholesteric, the effective local refractive index pio 

as seen by the incident light polarized in the y direction is given by, 

5.2.2 Non-uniform cholest erics ' 

We now consider non-uniform cholesterics where the non-uniformity is in the nature 

of a gradient in the pitch. We consider only linear variations in the pitch. We focus 

our attention to two types of non-uniform cholesterics. In one type, the pitch gradient 

is symmetric with respect to the sample center. We refer to such samples as the type-I 

cliolesterics. In the other type, the pitch gradient is asy~rlrnctric with respect to the 

sample center. We refer to these as the type-I1 cholesterics. The type-I cholesterics 

can be further classified into type-Ia and type-1b. In the type-Ia cholesteric the pitch 

decreases uniformly from the center of the sample as we move towards the end of the 

sample and in type-Ib cholesteric, the pitch uniformly increases as we move towards 

the end of the sample. In the type-I1 cholesteric the pitch uniformly increases from 

one end of the sample to the other end. The refractive index profiles of the type-Ia 

and the type-I1 cholesterics are shown in figure(5.2). 

In a non-uniform cholesteric with a gradient in the pitch, we assume the components 

of the director to bc: 



Where q' = (q, + E,) is the local wavevector of the non-uniform cholesteric and E, is 

a gradient parameter. For the pitch gradient cholesteric, the local refractive index, 

pl is given by equation(5.3) but with the above n, and n,. 

In the following sections we describe the different models of non-uniformity in cholester- 

ics. 

Type-I structures 

The type-I structures have a refractive index profile of the type illustrated in figure(5.2a). 

In our calculations we have used the following simple expression for the gradient pa- 

rameter E, to obtain the non-uniformity in the type-Ia structure. 

Here, L is the lateral sample size and Pdef is a deformation parameter whose value is 

selected to produce the required non-uniformity in the pitch. The z coordinate runs 

from -L/2 to L/2 with a spatial sampling interval of 0.5pm. 

The type-Ib structure is generated by, 

Here also the range of z is from -L /2  to L/2 with a spatial sampling interval of 

Type-I1 structures 

The type-I1 structures are asymmetric about their centers. The pitch uniformly 

increases from one end of the sample to the other. Its refractive index profile is 

illustrated in figure (5.2b). A simple form for E, that generates such a structure is, 

Here the range of z is from 0 to L with a spatial sampling interval of 0.5pm. 

- In the next section we describe features of input beams that we have used in our 

calculations of the diffraction patterns. 



Figure 5.2: An exaggerated view of the refractive index pl as a function of position 
z. (a) In a type-Ia cholesteric, the refractive index profile is symmetric with respect 
to  the center of the sample. (b) In a type-I1 cholesteric, the refractive index profile 
is asymmetric with respect to the center of the sample. In both the cases, the center 
of the sample is indicated by the arrow. 



Unifarm and Gaussian input beams 

The diffraction pattern obtained from a grating will depend on the intensity distri- 

bution of the input beams. We have computed the diffraction patterns arising out of 

two kinds of parallel input beams; a beam with a uniform intensity or equivalently 

amplitude profile and a beam with a Gaussian intensity or equivalently Gaussian 

amplitude profile. 

In the case of the uniform beam the emergent wavefront is described by 

Where X is the wavelength of light. 

For a uniform beam, the amplitude Au(k) of the diffracted wave in the direction + 
relative to the main beam is given by, 

Where k = (2~/X)sin($). 

For a Gaussian beam, the amplitude AG(k) of the diffracted wave is given by, 

Where a is the Gaussian amplitude width. When L-+ oo these integrals become 

standard Fourier transforms. 

We have worked out these integrals numerically. The numerical algorithm used to 

perform the integration is the radix-2 FFT qlgorithm [a]. In our computations, we 

used experimentally realizable parameters for the pitch, birefringence, wavelength of 

light and sample thickness. 

5.3 Results 

In this section we shall describe the salient features of our computed diffraction pat- 

terns from non-uniform cholesterics. The diffraction patterns arising out of uniform 



-. 
and Gaussian input beams are given in separate subsections. Our results are pre- 

sented as normalized intensities of different diffraction orders. We have taken an 

intensity level of as the lower limit of detection. 

We have assumed the following experimentally realizable values for the parameters 

used in all our calculations: 

Birefringence Ap = 0.07 

Lateral sample size L = 100 pitches 

Sample thickness d = 15pm 

Wavelength of light X = 0.633 pm 

In order to highlight the effects of non-uniformities, we also give for comparison the 

diffraction pattern to be expected in the case of uniform cholesterics. 

5.3.1 Diffraction of uniform beams 

In this section we describe the results obtained for uniform input beams. The input 

beam is a plane wavefront of infinite extent. In figure(5.3) we show the diffraction 

pattern from a uniform cholesteric illuminated with a uniform beam. The pitch 

of the cholesteric is 20pm. One can see six sharp diffraction orders on either side 

of the zeroth order. The orders have practically no width. We can notice that 

some of the higher diffraction orders are more intense than lower ones. This is a 

characteristic feature of phase gratings. In amplitude gratings, intensities of the 

orders monotonically decrease as we goes to higher orders. In all our calculations 

diffracted intensity has been normalized relative to that of the incident beam. In 

figure(5.4) we show the diffraction from a type-Ia sample where the pitch at the 

center is 5% more than the pitch at  the ends . One can see that the orders are 

broad and have irregular intensity profiles. When the pitch gradient is increased 

such that pitch at the center is 50% higher than the ends, the higher orders become 

so broad that they merge into each other. This is clearly indicated by the pattern 

shown in figure(5.5). We would like to point out that the diffraction pattern for the 

uniform input beam is very similar for the type-Ia and type-Ib structures. Further, 



the diffraction patterns from the type-Ia and type-Ib samples are strictly symmetric 

about the zeroth order. 

Figure(5.6) shows the diffraction pattern from a type-I1 structure where the gradient 

is such that the pitch at the center is 5% higher than the pitch at the lower end. The 

orders become broad and have regular features in their intensity 'profiles. Each order 

is very nearly symmetric about its center. Here again, as we go to  higher orders the 

widths of the orders increase. 

For the diffraction pattern shown in figure(5.7) the gradient is. such that the pitch 

a t  the center is 50% higher than the pitch at  the lower end. We notice that the 

intensities of the orders fall and that they become much broader. Orders higher than 

f 1 have merged with one another. 

5.3.2 Diffract ion of Gaussian beams 

We shall now describe the diffraction patterns arising from the type-Ia, type-Ib and A 

type-I1 structures with various degrees of non-uniformities illuminated with Gaussian 

input beams. 

In figure(5.8) we show the diffraction pattern of a uniform cholesteric. In our calcula- 

tions we have taken the value of the Gaussian amplitude width a to be equal to lmm. 

Hence the Gaussian intensity width will be equal to  l / f imm which is much smaller 

compared to the lateral size of 2mm. We may notice that the diffraction orders are 

very sharp without any broadening. 

In figure(5.9) we depict the diffraction pattern from a type-Ia cholesteric. The 

cholesteric has a pitch gradient such that the pitch at the center of the sample is 

5% higher than the pitch at  the ends. Here the important feature to  notice is that 

each order has an asymmetric saw-tooth like profile. The direction of tapering of the 

profiles of the orders is away from the zeroth order. In figures(5.10) and (5.11) we 

show the effects of increasing the gradient to values such that the pitch at the center 

is 20% and 50% respectively more than that a t  the sample ends. We notice that with 

increasing pitch gradient, the profiles of the orders become broader and their asym- 
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Figure 5.3: Diffraction pattern of a uniform cholesteric with a uniform input beam. 
The pitch of the cholesteric is 20pm. The diffraction intensities are normalized with 
respect to that of the incident beam. 



Figure 5.4: Diffraction pattern of a type-la cholesteric structure with a uniform input 
beam. Here the pitch at the sample center is 21pm and the pitch at the ends is 20pm. 
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Figure 5.5: Diffraction from a type-Ia sample where the pitch at  the sample center is 
30pm and at  the sample ends is 20pm. 



Figure 5.6: Diffraction from a type-I1 sample illuminated with a uniform input beam. 
Here the pitch at one end of the sample is 20pm and it linearly increases to 22pm at 
the other end. 
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Figure 5.7: Diffraction from a type-I1 sample where the pitch at  one end of the sample 
is 20pm and at  the other end is 40pm. 



metry becomes more prominent. In figure(5.11) the tapering of the profiles of the 

orders f 4 and f 5 is very clearly seen. Also, the intensity of each order considerably 

drops with increase in the pitch gradient. 

We now describe the computed diffraction patterns for the type-Ib cholesteric. In 

figure(5.12) we show the diffraction pattern from such a cholesteric. Here, the 

cholesteric has a pitch gradient such that the pitch at  the center is 5% lower than 

the pitch a t  the ends. We observe that the profile of each order is asymmetric with 

respect to  its center. Like in the previous case, here also they have saw-tooth like 

profiles. But unlike the previous case they taper towards the zeroth order. Here 

again, there is a broadening of the profiles as we go to higher orders. When the pitch 

gradient is further increased these features become more and more prominent. The 

diffraction patterns for the samples with 20% and 50% pitch gradients are shown 

in figures(5.13) and (5.14) respectively. We note that each order of the diffraction 

pattern from type-Ia is a mirror image of its counterpart in the diffraction pattern 

from type-Ib. 

We now consider the diffraction patterns from the type-I1 cholesterics. In figure(5.15) 

we depict the diffraction pattern from a type-I1 sample with a pitch gradient such 

that the pitch at the sample center is 5% higher than the pitch a t  the lower end. One 

may notice that the profiles of the orders become broad and smooth. The diffraction 

pattern from the type-I1 structure appears as a convolution of a Gaussian profile with 

the diffraction pattern from a un'iform cholesteric. As the pitch gradient is increased, 

the profiles of the higher orders become broader and their peak intensities decrease. 

The diffraction pattern for a type-I1 cholesteric where the pitch a t  the sample center 

is 20% and 50% higher than the pitch at  the lower end are shown in figures(5.16) and 

(5.17) respectively. 

In the experiments, it may not be possible to exactly match the centre of the Gaussian 

beam and the centre of the cholesterics of the type-Ia or the type-Ib. Hence, we have 

also performed computations to check the effect of a shift between the center of 

the Gaussian beam and the center of the structure of the type-Ia or the type-Ib 



Figure 5.8: Diffraction pattern of a uniform cholesteric with a Gaussian input beam. 
Here, the cholesteric structure has a pitch of 20pm. Here, the lateral sample size is 
100x20 pm=2mm. The input beam has a Gaussian intensity width of o l d ,  where 
a=lmm. 





Figure 5.10: Diffraction from a type-Ia sample with a Gaussian input beam. The 
pitch at  the center is 24pm and a t  the ends is 20pm. Here, the Gaussian intensity 
width is the same as that given in figure(5.8). 



Figure 5.11: Diffraction from a type-Ia sample with a Gaussian input beam. The 
pitch at  the center is 30pm and at  the ends is 20pm. Here, the Gaussian intensity 
width is the same as that given in figure(5.8). 



Figure 5.12: Diffraction from a type-Ib sample with a Gaussian input beam. The 
pitch at  the center is 19pm and a t  the ends is 20pm. Here, the Gaussian intensity 
width is the same as that given in figure(5.8). 



Figure 5.13: Diffraction from a type-Ib sample with a Gaussian input beam. The 
pitch a t  the center is 16pm and at  the end is 20pm. Here, the Gaussian intensity 
width is the same as that given in figure(5.8). 
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Figure 5.14: Diffraction from a type-Ib sample with a Gaussian input beam. The 
pitch a t  the center is 10pm and a t  the end is 20pm. Here, the Gaussian intensity 
width is the same as that given in figure(5.8). 



Figure 5.15: Diffraction from a type-I1 sample with a Gaussian input beam. The 
pitch a t  one end of the sample is 22pm and linearly reduces to 20pm at the other 
end of the sample. Here, the Gaussian intensity width is the same as that given in 
figure(5.8). 



Figure 5.16: Diffraction from a type-I1 sample with a Gaussian input beam. The 
pitch at  one end of the sample is 28pm and linearly reduces to 20pm at the other 
end of the sample. Here, the Gaussian intensity width is the same as that given in 
figure(5.8). 



Figure 5.17: Diffraction from a type11 sample with a Gaussian input beam. The 
pitch a t  one end of the sample is 40pm and linearly reduces to 20pm at the other 
end of the sample. Here, the Gaussian intensity width is the same as that given in 
figure(5.8). 



cholesterics. We find that shifts up to 10% of the Gaussian width do not alter the 

diffraction profiles considerably. 

Discussion 

In practice, cholesteric samples are always of non-uniform pitch to some extent. For 

certain applications, the non-uniformities in the cholesterics can be carefully engi- 

neered to obtain specific optical properties [4]. Our computations of the diffraction 

pattern in the phase grating geometry with uniform and Gaussian input beams yield 

some very interesting results. We find that the diffraction orders are very sensitive 

to pitch gradients as small as even 5% of the uniform pitch. We have considered 

two types of non-uniformities, one, with the pitch gradient symmetric with respect 

to the center of the sample and the other, with the pitch gradient asymmetric with 

respect to the center of the sample. In both cases, we find that the peak intensities of 

the diffraction orders drop significantly accompanied with a marked increase in the 

widths of the diffraction orders. 

With uniform input beams, the diffraction patterns for the type-Ia and the type- 

Ib structures are nearly indistinguishable. On the other hand, with Gaussian input 

beams, the patterns for type-la and type-Ib structures are very different. Here, each 

diffraction order exhibits a tapering saw-tooth profile and the directions of tapering 

are opposite in the two cases. This difference in the profile shapes is a clear indication 

of the type of structural asymmetry in the cholesteric. 

In practice, laser beams have Gaussian intensity profiles. The widths of these profiles 

with respect to the lateral sample size, L, is important to observe the characteristics 

of the diffraction profiles. In our calculations we have taken the value of the Gaussian 

amplitude width 0 to be equal to lmm. Therefore the width 014 of the Gaussian 

intensity profile is much smaller than the lateral sample size of nearly 2mm (given by 

the product of the average pitch and the number of pitches). Our computations show 



that when a is increased, as is to be expected, the diffraction pattern approaches that 

of a uniform input beam. 

The diffraction patterns from the type-I1 cholesterics will have an overall asymmetry 

about the zeroth order, because this is always true of phase gratings which are asym- 

metric about their centers. This asymmetry is too small to be seen at  the intensity 

level It is worth mentioning here that our results do not show the presence of 

satellites found in amplitude gratings with gradients in the lattice parameter [9]. 

It is well known, from the theory of diffraction that broadening of diffraction spots 

can also occur due to the finite size of the diffraction grating. In an ideal situation, 

the incident plane wavefront and the lateral sample size L should be infinite. In 

such a case, the Fourier transform of the corrugated wavefront has to be carried out 

from -00 to  +oo. Such a condition is difficult to impose in a numerical technique, 

where one considers finite array sizes, or in experiments where one has a finite lateral 

sample size. This gives rise to the broadening of the diffraction orders even in the 

absence of non-uniformities. We have computed the diffraction patterns for different 

lateral sample sizes for uniform input beams using equation(5.8). This is shown in 

figure(5.18). We find that the effect is pronounced only when the sample size or 

equivalently number of pitches is of the order of 20. Our computations are carried 

out for 100 pitches where the finite size effects on diffraction broadening are found 

to be negligible. 

There is one another process that can again lead to broadening of a diffraction order. 

This process is well established in crystals. X-ray diffraction from crystals with 

thermal fluctuations of the lattice give rise to a diffuse background and the broadening 

of the sharp diffraction spots. To find this contribution in cholesterics, we have 

investigated the thermal effects, on the diffraction orders. We have considered for 

simplicity only the in-plane thermal fluctuations of the director which in turn lead to 

fluctuations in the pitch. 

The distortion free energy density of a planar cholesteric for pitch changes is given 



where 8, is the director orientation at z and K2 is the twist elastic constant. In an ideal 

cholesteric 8, = qox. Let a dimensionless quantity u(z) represent the instantaneous 

spatial non-uniformity in orientation caused by the random thermal fluctuations [lo]. 

The director configuration is then modified to, 

8' = qoz + u(x) 

u(z) can be decomposed into its individual Fourier components 

Qmas 

U(Z) = C uqeUlZ 

where the cut-off wave vectors are given by 

where p is of molecular dimensions. 

Equations(5.10), (5.11) and (5.12) lead to the energy of a mode of wavevector q. 

According to  the equipartition theorem, the energy of each mode is, 

Here kB is the Boltzmann constant and T is the absolute temperature. 

This leads to the average amplitude square of a thermal fluctuation of wavevector q 

[lo]. It is given by, 

Using this model for the thermal fluctuations with typical values of K2 we have calcu- 

lated the diffraction pattern at  a temperature of 300 K. We find very little detectable 

change in the widths of the diffraction orders due to  the thermal fluctuations. Our 



results indicate that the thermal fluctuations of the pitch of a cholesteric have no 

appreciable effects on the widths of the diffraction orders. 

These results indicate that the usually observed broadening of the diffraction orders 

in cholesterics are mainly due to the gradients in the pitch arising due to the local 

strains rather than the thermal fluctuations of the pitch or the sample size effects. 

Cholesteric phase gratings find applications in signal processing where the intensity, 

direction and other features of the diffraction orders are exploited [ll]. Our results 

show that the gradient in the pitch drastically changes the intensity and profile of 

the orders and thus adds a new dimension to tuning the signal. The gradient in the 

pitch of the cholesteric can be easily manipulated by the application of weak electric 

fields, temperature gradients, mechanical stresses or even by chemical means. Such 

external stimuli can modulate the features of the diffraction orders in a controlled 

fashion. This additional property can be exploited to add more tunability in signal 

processing. 



Figure 5.18: Illustrating the finite size effects on the width of the fourth order diffrac- 
tion from a uniform cholesteric of pitch 20 pm. Diffraction intensities of the fourth 
order for samples with 20, 50, 100 and 150 pitches are shown. It can be seen that 
the difference in the widths of the profiles between the 20 and 50 pitch samples is 
much more than the difference between the widths of the profiles calculated for the 
100 and 150 pitch samples. For smaller sample size, there is a decrease in the peak 
intensity but it is too small to be seen in the figure. 
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