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INTRODUCTION 

1.1 Gravitational waves and their properties 

.According to Einstein's general theory of relativity, gravitation is curvature of space- 

time. In this picture, gravitational waves are ripples in the curtature of spacetime 

that propagate with the speed of light. In general, due to the non-linear nature 

of gravity, it is not possible to separate the contribution to the spacetime curva- 

ture due to  the gravitational waves from that due to  the background geometry in 

a fully rigorous manner. However, in realistic astrophysical scenarios, where de- 

tectable gravitational waves are generated, the length scales over which the waves 

vary, roughly their wavelength, is very small compared to the length scale over which 

the background curvature varies. This difference in length scales allow the follow- 

ing highly accurate, though approximate split of the the metric g,, describing the 

spacetime outside the material source 

where h:, and hFy represent the contributions to spacetime metric arising from the 

background material sources and the gravitational waves respectively. In this thesis, 

greek indices range from 0 to 3 while latin indices i, j ,  I c ,  m. . . range from 1 to 3. Fol- 

lowing [I], one can argue that for all types of sources, in the local wave-zone whose 

radius is much smaller than the wavelength of the wave, h = IhFy,Wl << 1. The other 

contribution to g,,, h:, will be important only when one deals with the propagation 
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effects. As regions of very strong curvature are very rare in the universe, waves from 

most of the sources will propagate to earth via pure geometric optics. For distances 

small compared to  the Hubble distance, the universe is almost globally Lorentz in 

its background geometry. Then the geometric optics propagation will preserve the 

structure of 1 h:y 1 .  However, for sources a t  cosmological distances, the background 

geometry is Friedman-Robertson-Walker and the geometric optics propagation pro- 

duces the same effects for gravitational radiation as for electromagnetic radiation. 

This implies, in this case, the length scales and the mass scales appearing in 1h:YI 

will contain cosmological redshift corrections. 

The arguments presented in the last paragraph allow us to use linearized ap- 

proximation to general relativity where 

X - 
S P U ( X  ) - vpu + hpu (x*) . (1.2) 

In the above the Minkowski metric qp, = diag(-l,1,1, I) ,  h,,(xX) is a compact 

notation for hE7 and lh,l << 1. The Christoffel symbols r';? are of the order of 

h and the Riemann curvature tensor RFY6 is of the order of h2. Then the Bianchi 

identities yield, 

Rtap,t6 + R t f i , a 6  + Rtya,b6 = 7 

which on contracting over p and ,O yields in vacuum 

Further, contracting over y and S yields 

where - f pud,du is the D' Alembertian. Under small coordinate changes is 

invariant. Thus, in this approximation there exist curvature waves with an invariant 

meaning. The more familiar form is obtained in the transverse traceless (TT) gauge 
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or synchronous coordinates. Under the transformation, 

xtp = xp + tP, 

we obtain 

TT - hold oz o , i - < i , o ;  h ? . T = h ? ! d - ( . . - < . .  h;f,T = h;Ld - 2<0,0; hOi - . - < 23 23 2 3 3  3,Z 

By simple time quadratures one can make 

1 TT whence Roioj = -2hij,oo which can be integrated to yield, 

From the equations for Rap+ we get the following equations for h y  : 

From Eqs.(l.9) and (1.10) it is evident that h y  are the double time integrals of 

the components of the Riemann curvature tensor that propagate through spacetime 

with the velocity of light. From general counting, we see, that  finally we are left 

with - (10 - 4 - 3 - 1 = 2) - i.e two independent components for hzT, corresponding 

to the two polarization states for the gravitationa.1 wave. This derivation is adapted 

from [2, 31. 

We next rewrite the equation Roioj = -ihTT 2 ~ 3 ~ 0 0  in a more familiar form as 

to explain its physical significance. In general relativity, the Riemann curvature 

tensor is operationally defined by the equation of geodesic deviation which gives the 

relative acceleration between nearby test particles. Consider a region of spacetime 

where the gravitational waves are the only source of spacetime curvature; these 
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waves will produce tiny oscillatory changes 6xi in the position of a test particle 

with respect to the origin of the coordinate system. These changes will satisfy the 

equation of geodesic deviation, written in this case as 

As /6xjl << Ixjl, xi being the components of the separation vector for the test 

particle from the origin of the coordinate system, we can consider it as a constant. 

We can then readily integrate Eq.(1.12) to obtain 

Eq.(1.13) suggests that hy2 can be defined as the 'dimensionless strain of space', 

as it is the ratio of the wave induced displacement of a free particle to its original 

distance with respect to the origin of the coordinate system. Consider a coordinate 

system oriented such that waves propagate in the z direction. The transverse and 

traceless nature of hT2 implies that there are only two non-zero components for h::. 

They are given by h:; = hTT. YX 1 hTT 
XX = -hTT, Y Y corresponding t o  the two independent 

polarization states. We observe that the quantity h+ - h:: = -hTT, in Eq.(1.13), 

produces a force field with the orientation of a '+' sign, while h, r hTT 
XY = hTT 

YZ 7 

produces one with the orientation of x sign as shown in Fig.l.1. The quantities h+ 

and h, are called the 'plus' and 'cross' gravitational wave polarizations. 

1.2 Order of magnitude estimates 

To obtain an order of magnitude estimate for the strength of gravitational waves 

h = IhC1 from astrophysical systems, we employ the quadrupole formalism for the 

gravitational wave generation. This formalism gives the hT2 in the source's local 
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X Polarization 

Figure 1.1: The lines of force associated with the two polarizations of a gravitational 
wave. This Figure is from [7] 

The coordinate system (X,  T )  is centered on the source, with R = 1x1, the distance 

to the source. The superscript T T  pictorially means algebraically project out and 

keep only the part that is transverse to the radial direction of propagation and 

traceless. QJk is the source quadrupole moment which is symmetric and tracefree, 

evaluated a t  the retarded time (T - Rlc) .  By differentiating with respect to time 

E q . ( l . l l ) ,  squaring the result and then integrating over all directions N = X / R ,  

one obtains the total power in the gravitational waves emitted by the source, 

This is the famous Einstein quadrupole formula [4]. To get an order of magnitude 

estimate for h = IhTTI, following [ 5 ] ,  we use Eq. (1.14) which gives 

Thus the strong sources must be highly nonspherical. Writing Q - M L2, Q C. 

2 JI v2 - 4 Eiii,, where M is the mass, L the size, v the internal kinetic energy and 

Eg;, the nonspherical kinetic energy of the source. This implies 

.According to  the virial theorem, any gravitationally induced kinetic energy should 

be comparable to the source's potential energy. This implies that  sources of grav- 

itational waves should have a large potential energy, which is possible only if the 
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source is very compact. They should also be highly dynamical to have large values 

for Q. Thus we infer that strong sources of gravitational waves are highly compact, 

dynamical concentrations of large amounts of matter. For Ma, thumb rule 

values for h are in the range - The gravitational wave source cannot 

emit strongly a t  periods smaller than the light travel time which is N implying 

that the frequencies a t  which these sources radiate are 

Gravitational waves from astrophysical systems that exist today lie between - 

lo4 Hz. However waves from the processes in the early universe could range from 

10-l8 - lo8 Hz. 

1.3 Astrophysical sources of gravitational waves and their 

detection 

Astrophysical gravitational waves are extremely weak by the time they reach the 

Earth. This is why, though Einstein predicted gravitational waves as a consequence 

of his general theory of relativity back in 1916, only in the late 1950's experiments 

were attempted to  detect them. There are four gravitational wave frequency bands 

that are actively being explored experimentally and theoretical studies have also 

identified plausible sources in each each of these bands. These frequency bands are 

The high frequency band that  lies between 1 t o  lo4  Hz in which the earth 

based gravitational wave detectors operate. 

The low frequency band lying between 1 Hz to Hz, which is the realm of 

the space based detectors. 

The very low frequency band, to lo-' Hz. 

The extremely low frequency band, 10-l5 to  10-l8 Hz. 
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Figure 1.2: Schematic diagram of a laser interferometer gravitational wave detector. 
This Figure is adapted from [7] 

In what follows, we will discuss in detail the detectors and sources for the high 

and low frequency bands and will make passing remarks about the very low and 

extremely low frequency bands. 

The important sources in the high frequency band are stellar collapses forming 

neutron stars and black holes, both in our galaxy and the nearby galaxies, spinning 

neutron stars having slightly imperfect crust, accretion on to  spinning neutron stars 

and black holes, gravitational radiation-reaction driven instabilities operating during 

the first few years after the formation of a neutron stars and the coalescence of com- 

pact binaries containing neutron stars and black holes (with masses lying between a 

few Ma to  104Ma), occuring in distant galaxies. The stochastic gravitational waves 

from the big bang, phase transitions in the early universe and vibrating loops of 

cosmic strings may also exist in this range [5, 61. 

The most promising and versatile type of gravitational wave detector in the high 

frequency band is an laser interferometer. It consists of four mirror-endowed masses 

that hang from vibration-isolated supports and the associated optical systems for 

monitoring the separations between the masses, as shown in Fig.(l .2).  The passing 

gravitational wave changes the round-trip travel time of the constant-phase fronts 
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differentially in each of the interferometer's arms, resulting in a fringe shift a t  the 

output. Thus by monitoring the fringe shifts, caused by the changing arm-length 

difference AL(t), one can infer the action of passing gra~it~at ional  waves. In general, 

when the gravitational waves are present, the output of the interferometer will be a 

linear combination of the two polarizations: 

where L1 L2 = L and F+ and Fx are of the order of unity and depend in a 

quadrupolar manner on the direction to the source and the orientation of the de- 

tector. At present laser interferometers are capable of measuring A L  10-l6 cm. 

Since L N ALlh ,  one is led to interferometers with arm-length L 1 to 10 km 

in order to  detect waves producing strain in the range of to  However 

interferometers are plagued by non-Gaussian noise which can be eliminated only 

by cross correlating the outputs of two, three or more interferometers that  are net- 

worked together a t  widely separated sites. This is why an international network 

consisting of three km-scale interferometers a t  three widely separated sites is now 

being constructed for the direct detection of gravitational waves. 

The three km-scale interferometers are 

The United States Laser Interferometer Gravitational wave Observatory (LIGO) 

project which will support interferometers with 4 km arms a t  two different sites 

a t  Hanford, Washington and Livingston, Louisiana in the U.S.A [7]. 

The French-Italian Virgo project, named after the Virgo cluster of galaxies 

consists of a single laser interferometer with 3 km arm-length and under con- 

struction in Pisa, Italy 181. 

These are designed to  accommodate future expansions without the necessity of any 

major facilities upgrade. They will be operational by the year 2002. 
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At present, there are two more sub kilometer arm-length interferometers that 

are being constructed. One is a British-German collaboration constructing a 600- 

meter interferometer near Hanover, Germany called GEO-600 [9]. The other one 

is TAiLIA-300 constructed by Japan near Tokyo with a 300-meter arm-length [lo]. 

These are important test-beds for interferometer techniques and in future may lead 

to kilometer-scale interferometers, thus enhancing all sky-coverage. It is expected 

that two LIGOs and VIRGO operating as a coordinated international network will 

be able to detect and locate burst sources which will last for a few minutes. They 

will be able to  monitor h+(t) and h,( t )  in the frequency range 10 Hz to  1000 Hz. 

At frequencies above 1000 Hz, the interferometer's photon shot noise due to 

photon counting statistics becomes a serious obstacle to  wave detection. Resonant 

mass detectors which are future variants of bireber7s original bar detectors [ll] are 

good candidates in these frequency domains. .A resonant bar detector can be mod- 

elled as a pair of masses connected by a spring. The effect of a transitory metric 

perturbation is felt as a tidal relative force between a pair of masses or across the 

object. The gravitational wave impulses would set the pair of masses vibrating 

about their common center of mass. That  vibration, persisting long after the brief 

gravitational wave has passed, would register as an oscillatory acceleration in the 

attached sensor [12]. Supernovae within the galaxy and quasi-normal modes of black 

holes in the Virgo cluster may be detected by these instruments. 

For ground based detectors, there exists a low frequency limit due to  the seismic 

noise generated by gravity gradients associated with seismic activities. Space based 

detectors can avoid this low frequency limit and search for gravitational waves at 

much lower frequencies. We now turn to  the low frequency band where the proposed 

Laser Interferometer Space Antenna (LISA) will operate [13]. It  consists of three 

space-crafts forming an equilateral triangle that is inclined a t  an angle of 60' to the 

Earth's orbital plane. It will be arranged to form a Michelson interferometer with 
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Figure 1.3: Schematic diagram for LISA'S orbital configuration. This Figure is from 

[I31 

5 x lo6 km baseline in a solar orbit a t  one A.u. as shown in Fig. 1.3. It will have a 

peak sensitivity in the 1 - 10 mHz band. The European Space Agency has adopted 

LISA as the third "cornerstone" mission in its Horizon 2000+ program. LISA will 

surely detect waves from short period binaries containing main sequence stars, white 

dwarfs, neutron stars and black holes in our galaxy. It will also observe coalescence of 

supermassive black hole binaries (M N lo5 - 107Ma) in distant galaxies, capture of 

solar mass compact objects by massive black holes, solar oscillations and stochastic 

waves from processes in the early universe. The cutoff a t  lower frequencies is due 

to the difficulty in isolating the spacecraft from forces due to  fluctuations in solar 

wind and cosmic rays. Finally, Doppler tracking of spacecraft by microwaves is 

also used to put bounds on strengths of various low frequency waves from specific 

sources like cosmic strings. Finally, we consider the two remaining wave bands. The 

first one is the very low frequency band lying between and Hz 1141. This 

band is explored by the timing of millisecond pulsars. At 95 % confidence level, the 

power density in these gravitational waves a,(4 x 10-gHz), 6 x where H is 

the Hubble constant relative to 100 km sec-' M ~ C - ' .  This range include stochastic 
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Figure 1.4: The burst sources for gravitational waves. The burst sensitivities of five 
major interferometers are shown. Here projected broad- band noise sensitivities to  
bursts are compared with the effective amplitudes h e f f  of the waves from various 
sources. Note that  h e f f  = h  (n)'I2, where h  and n are the amplitude and the number 
of cycles of gravitational wave in the respective frequency bands. LIGO I and LIGO 
I1 correspond to  initial and advanced versions. This Figure is taken from [15] 

Burst Sensitivity Across the Spectrum 

waves from cosmic strings, phase transitions in early universe and the big bang. The 

second band which lies between 10-15 and 10-l8 Hz, referred to  as the extremely low 

frequency band earlier, should contribute to anisotropies in the cosmic microwave 

background radiation. If all the anisotropies in COBE measurements were due to  

gravitational waves it would correspond to C!, (10-l8 Hz) - lov9. 

10-" 

lo-" 

r. 

1.4 Relativistic inspiraling binaries, phasing and 

gravitational wave astronomy 

. 
106 M6 B H - w  Chirp at 3 t p c  ,,-:j 
-\ 

iU" M, !orrnasi:r at 3 ~ p c  IZ I !  . 

It is clear from Fig.l.4 that inspiraling compact binaries are the most promising 

sources of gravitational radiation for earth based interferometers. It also turned 

out to be the best understood of all gravitational wave sources. The famous Hulse- 

Taylor binary pulsar PSR 1913+16 is an example of inspiraling compact binary 

~ ~ ~ ~ - 1 9  

0) 

3 
f: 

Et-' ,k ciiirp a: 50 

9 10.2' .- .- 3-t<S cntro :I 16 M 
0 

E 
NS.NS cl;!ip a1 200 MI 

10-23 

lo5 1 10.' 1U2 10.' 10' 10' 101 l@ I @  

frequency (Hz) 



Chapter 1 12 

containing two neutron stars. As the two neutron stars are moving fast and rela- 

tively close, according to general relativity they should emit moderate amounts of 

gravitational radiation, causing the binary to lose energy. The orbital period of the 

binary should decrease by Kepler's third law, and this has been observed. The radio 

observations of PSR 1913+16 for the last twenty five years has yielded a verification 

of the quadrupole formula for the radiation damping to better than 0.4% [16, 171. 

This is considered as sufficient evidence, though indirect, for the existence of the 

gravitational radiation and the Nobel Prize in 1993 certifies the quality of the evi- 

dence. At present the neutron stars in PSR 1913+16 are slowly spiraling inwards and 

emitting gravitational waves with f N HZ, too small to  detect even by LISA. 

However, after about hundred million years, this inspiral will bring waves into the 

LIGO/VIRGO high frequency band. As the neutron stars continue their inspiral, 

over a time of about fifteen minutes the gravitational waves will sweep through the 

interferometer's sensitive frequency bandwidth between ten to thousand hertz. It 

is these last stages of inspiral and subsequent merger of compact binaries involving 

neutron stars and black holes that the LIGO/VIRGO network seeks to monitor. 

The estimates based on the quadrupole approximation suggest that the number of 

cycles of gravitational waves in the sensitive bandwidth of LIGO/VIRGO will be 

about sixteen thousand for neutron star-neutron star binaries, about three thousand 

for neutron star-black hole binaries and about six hundred for black hole-black hole 

binaries [18]. The current estimates of neutron star-neutron star binary coalescences 

based on the very few known systems like PSR 1913+16 project an event rate of 

three per year to 200 Mpc [19, 201 while the estimates based on the evolution of the 

progenitor main sequence binaries, suggest roughly three events per year to 70 Mpc 

[21]. A similar event rate exists for neutron star-black hole and black hole-black 

hole binary coalescences [22]. 

Objects like neutron stars and black holes have strong internal self-gravity. This 
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implies that most of the non-gravitational effects like magnetic fields, interstellar 

medium, etc., which usually plague binary star systems will be negligible compared 

to the strong gravitational effects. Inspiraling binaries are also clean systems as tidal 

interactions and mass transfer between the two objects can be neglected during most 

of the inspiral. Thus, the model of inspiraling compact binaries consists of two non- 

spinning point masses moving under their gravitational influence in either circular 

or non-circular (though decaying) orbit. Their evolution should be appropriately 

described within the framework of general relativity. As the two-body problem in 

Einstein's relativity is not exactly solvable, post-Newtonian approximation methods 

have to be employed. A post-Newtonian (PN) approximation is an expansion of 

corrections to  Newtonian gravitational theory in terms of a small parameter 6 - 
( , L J / C ) ~  - (Gm/rc2), where m , v and r are the total mass, orbital velocity and the 

separation of the binary system. For example, consider the PN equations of motion 

for spinless, point masses. Schematically it reads, 

(1.20) 

where x and r = 1x1 denote the separation vector and distance between the bodies, 

and m = ml + m2 denotes the total mass. The quantity E is the small expansion 

parameter. The symbols O(E) and O(e2) represent post-Newtonian (PN), post- 

post-Newtonian (2PN) corrections and so on. Gravitational radiation reaction first 

appears a t  0 ( E ~ . ~ )  beyond Newtonian gravitation, or a t  2.5PN order, generally called 

the Newtonian radiation reaction term. In this manner terms a t  O ( E ~ . ~ )  will be 

referred to  as the 2PN radiation reactions terms. Similarly, starting from the leading 

order contribution to the gravitational wave luminosity C given by Eq.(1.15), we can 

write schematically the higher order corrections in the luminosity as 

where C N  is given by Eq.(1.15) and the higher order corrections are denoted by 
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O(E),  O(E' .~) and O(e2). In this thesis, following the accepted terminology, the terms 

of O(E) will be called the 1PN terms though they are of absolute order O ( E ~ . ~ ) .  

Similarly, in the above equation and in equations similar to that, O(E ' .~)  and O(e2) 

terms will be denoted as 1.5PN and 2PN terms. 

To understand why higher order corrections in Eqs.(l.20) and (1.21) are re- 

quired to describe the dynamics of compact binaries during their late stages of 

inspiral, let us consider typical numbers involved in the problem. When a neutron- 

star binary enters the bandwidth of the LIGO/VIRGO detectors, say a t  frequency 

f - 10 HZ, the distance between the stars is r - 500 km. About fifteen minutes 

later, f - 100 HZ and r - 100 km. Within the next three seconds the stars will 

merge and the frequency and the distance will be roughly 1000 Hz and 20 km re- 

spectively. In these fifteen minutes of observation, the binary executes about sixteen 

thousand orbital rotations. The orbital velocity of the two objects during this stage 

will be about 30% of the speed of light. Though the gravitational wave signal is 

extremely weak and buried deep in the detector noise, the large number of pre- 

cisely predictable cycles in the detector bandwidth brings the characteristic signal 

strength to the realm of the measurable. The method of matched filtering will be 

employed to detect and extract information of the binaries from the inspiral wave- 

forms [I,  231. In this technique one cross correlates the noisy output of a detector 

with theoretical templates (theoretical expressions for h+(t) and h, (t) computed a 

priori using some approximation to general relativity) . For this technique to be 

successful, the templates must remain in phase with the exact - general relativistic - 

waveform as long as possible. If the signal and template lose phase with each other 

even by a cycle in the ten thousand, as the waves sweep through the bandwidth 

of the detector, their cross-correlation will be significantly reduced and one may 

lose the event altogether. Recently, the contributions to the accumulated number 

of gravitational wave cycles N ,  arising from the various post-Newtonian corrections 
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for the compact binaries were computed [18]. They have shown that for a neutron 

star binary, the IPN, 1.5PN and 2PN corrections contribute around four hundred 

cycles, (minus) two hundred cycles and nine cycles respectively, to  the accumulated 

number of cycles in the sensitive bandwidth of LIGO/VIRGO. Since, even the 2PN 

corrections contribute more than nine cycles to N ,  one is forced to  a description 

of the evolution of the binary system, using the best available theory of gravity, 

to substantially higher accuracy than that provided by the lowest order Newtonian 

approximation. 

In our modelling of compact binaries as point masses, we have neglected the 

intrinsic rotation (spin) of the two bodies. The spins of the two bodies will induce 

some spin-orbit and spin-spin contributions both in the gravitational waveforms and 

in the equations of motion of the binary. In the equations of motion for the compact 

objects, the spin-orbit coupling enters a t  the order and the spin-spin corrections 

a t  the order c2. The spin dependent terms involve a dimensionless vector measuring 

the rotation rate of each body, 
c s  xr- 

Gm 2 ' 

where S denotes the intrinsic spin. We have 1x1 5 1 for black holes, and 1x1 lies in 

the range 0.63 - 0.74 for neutron stars, depending on the equation of state of nuclear 

matter inside the star. In the case of spinning compact objects in circular orbits, 

precessional, non-precessional and dissipative effects on the gravitational waveform 

due to  the spin-orbit and the spin-spin interactions have been studied extensively 

[24, 25, 26, 271. Further, the deformation due to the possibly rapid rotation of the 

bodies may lead to  some intrinsic Newtonian quadrupole moment for each body. 

However, these moments are expected to  be quasi-stationary and consequently not 

contribute to the gravitational radiation, though they will appear in the binary's 

equations of motion [28]. 

Though the post-Newtonian methods will be crucial for the construction of theo- 
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retical templates for inspiraling compact binaries, near the coalescence, PN methods 

should be replaced by a fully relativistic investigation of the hydrodynamics of the 

two merging neutron stars [29], or by the exact (albeit also numerical) computation 

of the dynamics of two black hole horizons [30]. 

The information content in these gravitational wave events is of excellent qual- 

ity. If they are detected with a suitably high signal to noise ratio they should allow 

one to do astronomy. For instance, some of the astrophysical measurements that 

are possible with gravitational waves are the following [5, 281: 

They can provide precise measurements of the masses of the objects, possibly 

of their spins and probably, in the case of neutron stars, of their radii. 

These waves allow one to measure cosmological distance directly and provide a 

cleaner determination of the Hubble's constant and the deceleration parameter. 

They will allow us to test the non-linear structure of radiative gravitation. 

To perform new tests of the existence of a scalar component to gravitation. 

To probe black hole physics, e.g. no hair theorems. 

Estimates of the rate of such coalescence events are about a few per year upto 

200 Mpc. Advanced LIGO which would look upto cosmological distances [5] would 

get to numbers of hundreds per year. 

1.5 The construction of search templates 

1.5.1 Theoretical issues 

The construction of the theoretical search templates for gravitational radiation from 

inspiraling binaries, which will be cross correlated with the noisy output of detectors 

may be done in two steps. The two steps are generally referred to respectively as 

the "wave generation problem" and the "radiation reaction problem" [2]. 
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The wave generation problem deals with the computation of the gravitational 

waveforms generated by the binary (at the leading order in 1/R,  where R is the 

distance of the binary) when the orbital phase and frequency of the binary take 

some specific values. In other words it deals with the construction of the 'plus' and 

'cross' gravitational wave polarizations. 

The radiation reaction problem consists of determining the evolution of the or- 

bital elements (the orbital phase and parameters like frequency, eccentricity) as a 

function of time. The parameters describing the orbit vary in a non-linear manner 

with respect to time, as the orbit evolves under the action of gravitational radiation 

reaction forces. In principle, the evolution of the orbital elements should be deter- 

mined from the knowledge of the radiation reaction forces acting locally on the orbit. 

However, the radiation reaction forces are at present not known with sufficient accu- 

racy (only the relative first post-Newtonian corrections are known [31, 32, 33, 341). 

Therefore, in practice, the evolution of orbital elements is determined assuming en- 

ergy and angular momentum balance and the far-zone expressions for energy and 

angular momentum fluxes. 

None of the above problems can be solved exactly for binaries consisting of 

two compact objects of comparable masses. They are treated by a combination of 

approximation methods like Post Minkowskian approximation and Post Newtonian 

approximation whose main features [3] we list in the next two subsections. 

1.5.2 The post-Minkowskian approximation 

The post-Minkowskian Approximation (PMA) is an expansion in yi = GM/c2R 

or ye = GM/c 2D where M, L, D are the characteristic mass, size and separation 

respectively. Loosely, it is an expansion in G and hence it is also called weak field, 

non-linear or fast motion approximation. It makes crucial use of the geometry of 

hlinkowski spacetime and its causality properties. The equations in this scheme 
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reduce to a hierarchy of wave equations on Minkowski background which are solved 

by retarded potentials. The basic complication is in the non-linear iteration. 

1.5.3 The post-Newtonian approximation 

The post-Newtonian approximation is an expansion in ,O - vlc  - LIX N L/c /P  

where v, L, A and P are the characteristic velocity, size, wavelength and period 

respectively. Loosely it is an expansion in l / c  and is also called slow motion ex- 

pansion. I t  uses Newtonian concepts like absolute space, with an Euclidean metric 

and absolute time. It uses Newtonian techniques and in this viewpoint, Einstein's 

theory provides small numerical corrections to Newtonian theory. The equations in 

this scheme are a hierarchy of Poisson equations which are solved by instantaneous 

potentials. 

1.5.4 The equation of motion of compact objects in general relativity 

We now discuss the issues associated with the equations of motion of compact objects 

in general relativity, heavily depending on [35]. The topic of equations of motion 

(EOM) for compact binary systems received careful scrutiny in the years following 

the discovery of the binary pulsar PSR 1913+16. There have been three different 

approaches to the complete kinematical description of a two-body system upto the 

level where radiation damping first occurs (2.5PN) due to  Damour and his co-workers 

[36], Schafer [37] and Grischuk and Kopejkin [38] respectively. 

Damour's method explicitly discusses the external motion of two condensed 

bodies without ambiguities. The method employs the best techniques to treat vari- 

ous sub-problems [36]. The final EOM a t  2.5PN level are expressed only in terms of 

instantaneous positions, velocities and spins in a given harmonic coordinate system 

and given explicitly in [36]. The two mass parameters in these formulas are the 

Schwarzschild masses of the two condensed bodies. 
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The conservative part of the EOhl upto 2PN (excluding the secular 2.5PN 

terms) are not deducible from an conventional Lagrangian (function of positions 

and velocities) in harmonic coordinates, but only from a generalized Lagrangian 

(depending on accelerations). This Lagrangian is invariant under the Poincark group 

and thus allows one to  construct ten Noetherian quantities that would be conserved 

during the motion. These include the 'Energy', 'Angular Momentum' and 'Center 

of Mass'. 

Damour and Deruelle [39] observed that the above 1PN accurate equations of 

motion allow a remarkably simple parametrization, structurally related t o  the Kep- 

lerian parametrization of the Newtonian equations of motion. This quasi-Keplerian 

representation uses, instead of a single eccentricity el three different eccentricities. 

The above construction has been generalized to the 2PN order by Damour, Schafer 

and IVex [40, 41, 421 which is referred as the generalized quasi-Keplerian represen- 

tation in the literature. The EOM for the general case is given in [36] and crucially 

used in the following studies of generation [43, 441 and radiation reaction [45]. 

Schafer's [37] approach on the other hand is based on the Hamiltonian approach 

to  the interaction of spinless point particles with the gravitational wave field. The 

Hamiltonian formulation is best done in the Arnowitt-Deser-Misner (ADM) coordi- 

nates in which two metric coefficients satisfy hyperbolic equations (evolution) while 

the remaining eight are of elliptic type (constraints). It  uses a different gauge that  

allows an elegant separation of conservative and damping effects. One recovers the 

damping force acting on the Hamiltonian subsystem of instantaneously interact- 

ing particles coming from its interaction with the dynamical degrees of freedom of 

the gravitational field. In this approach point masses are used as sources and the 

divergences cured by a well-defined regularization procedure. 

The last approach due to  Grischuk and Kopejkin [38] on the other hand is 

based on (a) PNA scheme (b) assumption that bodies are non-rotating 'spherically- 
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symmetric' fluid balls. The symmetry is in the coordinate sense. The EOM of 

the center of mass of each body is obtained by integration of the local PN EOM. 

These are explicitly calculated retaining all higher derivatives that appear. One 

then reduces the higher derivatives by EOM and obtains the final results. Formally 

collecting the various relativistic corrections into a 'effective mass', one can have a 

PN proof of effacement of internal structure and provide a plausibility argument for 

validity of 'weak field formulas' for compact objects. 

The fact that three independent methods give formally identical equations of 

motion a t  the 2PN order is a strong confirmation of the validity of the numerical 

coefficients in the EOM. The EOM along with the quasi-Keplerian parametrization 

mentioned above form the basis for the "timing formula", employed to make accurate 

radio observations of the binary pulsars. The damping terms can be considered as 

perturbation to a Lagrangian system which is multiperiodic - a radial period and a 

angular period corresponding to periastron precession - and leads to  the observed 

secular acceleration effect in the binary pulsar. No balance argument is involved at  

any stage. 

The PN accurate equations of motion is also employed at  two crucial stages in 

the construction of the 'ready to use' search templates for the detection of gravi- 

tational radiation from compact binaries. The first instance is related to the con- 

struction of accurate mass and current multipole moments. In general, the post- 

Newtonian accurate expressions for the mass and current multipole moments of the 

binary will be written not only in terms of the individual positions and velocities of 

the masses, but also in their higher time derivatives. The post-Newtonian accurate 

equations of motion are used to reduce the functional dependence of the multipole 

moments only to the positions and velocities of the masses in the binary. In the other 

instance, the PN equations of motion are employed to compute the time derivatives 

of the multipole moments appearing in the expressions for the gravitational wave- 
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form and the far-zone fluxes, to the desired accuracy. 

1.5.5 T h e  2PN challenge 

Six years back the theorists were asked to derive the gravitational waveform and 

the resulting radiation back reaction on the orbit at least to  2PN, or second post- 

Newtonian order, beyond the quadrupole approximation. This implies the correction 

terms of O ( E ~ . ~ )  in the far-zone fluxes and the terms of O(e4) in the expressions for 

h+ and h,, which are corrections of O(e2) with respect to leading order terms in 

these expressions. Furthermore, due to the extreme complexity of the calculations 

a t  such high PN order, independent calculations were called for, in order to  inspire 

confidence in the final formulae. The challenge was was taken up by two teams of 

relativists, one composed of Blanchet, Damour and Iyer and the other composed of 

Will and Wiseman. All the relevant results obtained using the two different methods 

agreed precisely. As the end point of their calculation, they obtained 'ready to  

use' search templates for gravitational waves from inspiraling non-spinning compact 

binaries of arbitrary mass ratio moving in quasi-circular orbits [18, 46, 47, 431. 

These templates are employed by GRASP, the data analysis package of the LIGO 

collaboration [48], to  search for gravitational waves when interferometers become 

operational. 

1.5.5.1 The Blanchet-Damour-lyer approach 

We give the following brief summary of the Blanchet-Damour-Iyer (BDI) approach 

following [35]. The BDI approach employs the multipole expansion methods in 

combination with the PMA scheme to obtain the desired goal. This technique was 

developed by Blanchet, Damour and Iyer in a long series of papers [49]. Multipole 

expansion is most conveniently implemented by using symmetric trace free (STF) 

tensors rather than tensor spherical harmonics. The Multipole Post Minkowskian 



Chapter 1 2 2 

method exploits the computational advantage of working in De-Donder, Lorentz 

or harmonic gauge. In this gauge Einstein's equations can be conveniently written 

in terms of a wave operator of flat space with source terms that include the non- 

linear gravitational stress energy. This permits a solution in terms of flat space 

Green functions and decomposition of the solution in terms of STF tensors which 

are eigen-functions of the flat space D'Alembertian. 

The BDI approach builds on a Fock type derivation [50] using the double- 

expansion method of Bonnor [51]. This approach makes a clean separation of the 

near-zone and the wave-zone effects. It is mathematically well-defined, algorithmic 

and provides corrections to the quadrupolar formalism in the form of compact sup- 

port integrals or more generally well-defined analytically continued integrals. The 

BDI scheme has a modular structure: the final results are obtained by combining 

an 'external zone module' with a 'radiative zone module' and a 'near zone mod- 

ule'. For dealing with strongly self-gravitating material sources like neutron stars or 

black holes one needs to use a 'compact body module' together with an 'equation 

of motion module'. It correctly takes into account all the non-linear effects. 

The general approach to solve the generation problem may be broken up into 

the following steps: 

1. Integrate the Einstein field equations in the vacuum exterior region D, by means 

of a Multipolar Post-Minkowskian series. The exterior solution is parametrized by 

moments ML and SL called the algorithmic moments. The mass monopole and 

dipole moments as well as the current dipole moment are necessarily constant to 

satisfy the harmonic gauge condition. 

2. In the far wave-zone rewrite the solution in suitable coordinates to find the ob- 

servable moments of the radiative field that a detector would measure. This involves 

going over from the harmonic coordinates to the radiative or Bondi coordinates to 

correct for the logarithmic deviation of the true light cones from the flat line cones in 
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the wave-zone D,. In these coordinates we have the gravitational waveform and the 

far-zone fluxes as post-Newtonian expansions in UL and VL, where UL and VL are the 

'mass' and 'current' type radiative moments. The relation between the observable 

or radiative moments UL and VL to the algorithmic moments is also obtained in this 

step. The structure of these relations embody the fact that  the gravitational field in 

higher approximations depends on the 'history' of the source and that  propagation 

of radiation is not only along light cones but also inside them. 

3. Finally one needs to  relate the field in D, to the inner field in the source. To this 

end one does two things: Re-expand the external post-Minkowskian field in a post- 

Newtonian expansion. Integrate the non-vacuum field equations in the near-zone Di 

by means of a post-Newtonian expansion using as source variables a = (To0+TSS)/c2, 

a, = Toi/c and a~ = Tij.  This choice simplifies the 1PN solution and hence the 

subsequent iterations. Starting with the source terms a t  the lowest order one solves 

for the gravitational field h p " .  This solution for hP" is then used in the relevant 

non-linear terms to  generate a more accurate source term a t  the next order. This, 

in turn, determines a h to  higher accuracy. To 2PN accuracy the solutions are deter- 

mined in terms of potentials V, V,  and Wij which are retarded integrals associated 

with sources a, Oi and Oij + ( 1 / 4 ~ G )  (diVdjV - (1/2)6ijdkV8kV) respectively. 

4. One finally matches the two solutions in the exterior near-zone Di n D, to relate 

the algorithmic moments to  the source properties. 

The end results of this approach are the expressions for the 2PN accurate mass 

multipole moment IL and the 1PN accurate current multipole moments, given by 

Eqs.(2.17) and (2.13) of [52]. These are also reproduced as Eqs.(2.12) and (2.13) 

in chapter 2. These equations are the starting point for our computations in this 

thesis. 

It should be noted that,  in generation problems, as one goes to  higher orders of 

approximation two independent complications arise. Though algebraically involved 
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in principle the first is simpler: contributions from higher multipoles. The second 

complication is not only algebraically tedious but technically more involved: contri- 

butions from higher nonlinearities e.g for 2PN generation cubic nonlinearities need 

to  be handled. 

1.5.5.2 The Will-Wiseman approach 

The other method developed by Epstein-Wagoner-Thorne-Will-Wiseman builds on 

a Landau-Lifshiftz [53] type treatment to derive post- Newtonian corrections to the 

lowest order quadrupole formula [54]. The combined use of an effective stress energy 

tensor for the gravitational field (with non-compact support) and of formal post- 

Newtonian expansions led to the appearance of divergent integrals. The presense of 

the divergent integrals and the lack of a clear separation between the near-zone and 

the wave-zone were unsatisfactory features of this scheme until recently. A couple 

of years back, Will and Wiseman [43] have provided a resolution to this problem by 

taking literally the statement that the solution is a retarded integral i.e., an integral 

over the entire past null cone of the field point. A careful evaluation of the far-zone 

contributions, then shows that all integrations are indeed convergent and finite and 

moreover the tail terms are also correctly recovered. Using this treatment, Will and 

Wiseman have computed the 2PN accurate waveform and energy flux for general 

orbits. 

1.5.6 The perturbation approach 

In the case of gravitational radiation from a test particle orbiting a Schwarzchild 

black hole we know the exact predictions of general relativity numerically [55], ob- 

tained by employing a perturbation about the curved background created by the 

black hole. Though this method is applicable only when the ratio of the binary 

masses is very small, it is applicable for fully relativistic situations v - c.  Poisson 
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used the black hole perturbation theory to analytically compute gravitational ra- 

diation in this limit within the post-Newtonian framework to  the 2PN order [56]. 

Extending Poisson's work, Sasaki and his collaborators developed a more system- 

atic approach, to obtain the analytical expressions for the gravitational waveforms 

and the luminosity to the 4PY order [57, 581. These expressions are in excellent 

agreement with the numerical results a t  this order [59]. Recently, the method has 

been extended to  the case of a rotating black hole [60] where they obtained the 

energy and angular momentum luminosities to  the 2.5PN order from a particle in 

circular orbit with small inclination angle. For slightly eccentric orbits around a 

Kerr black hole, similar results are obtained to the 2.5PN order [61]. For circular 

orbits around a Kerr black hole, the calculations have been performed to  the 4PN 

order [62]. The extension of the method to the case of spinning particles has been 

accomplished and the luminosity to  the 2.5PN order has been obtained for circular 

orbits, including the effect of spin-spin coupling [63]. Recently, analytical results 

accurate to  the 5.5PN order, i.e. corrections of O[(v/c)"] for a test particle in a 

circular orbit around a Schwarzschild black hole is also obtained [64]. 

1.5.7 Issues i n  data  analysis 

The availability of highly accurate inspiral waveforms will allow one firstly to em- 

ploy pattern matching techniques like the matched filtering for the detection of weak 

gravitational radiation from the compact binaries [I, 231. One of the issues for the 

data analysis of the compact binary inspiral search is the determination of the num- 

ber of templates to use in the matched filtering. This has been studied extensively 

[65, 66, 67, 68, 691. A recent analysis [69] indicates that with 2PN accurate inspiral 

waveforms and using a one-step matched filtering search, for binaries with compo- 

nents more massive than 0.2 ,Ifa while losing no more than 10 % of the events due 

to coarseness of template spacing, the number of search templates will be roughly 
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lo5 and lo7 for LIGO and VIRGO respectively. This implies roughly 1 O l 1  and 1012 

flops (floating point operations per second) for data analysis to keep up with data 

acquisition for LIGO and VIRGO. This clearly shows that one step search would 

be computationally expensive. An alternative strategy could be to use several tem- 

plates banks in a hierarchy such that the information provided by a coarsely spaced 

bank of templates at  a lower level is used to restrict the search region in a more 

finely spaced template bank a t  a higher level. This kind of hierarchical search inves- 

tigated using 1PN accurate search templates imply that the reduction in the number 

of templates compared to a one step search will be of the order of twenty to thirty 

[70, 711. 

The next important issue in data analysis after detection of the gravitational 

wave signal is the estimation of parameters characterizing the event and possible 

error bounds on the measured values. The metric defined on the space of waveforms 

is known as the Fisher information metric and its inverse is the covariance matrix, 

whose diagonal and off-diagonal elements are, in the limit of large signal-to-noise 

ratio, the variances in the measured values of the parameters and the correlation 

coefficients among different parameters, respectively [72]. The estimates of errors 

for various PN signals can be found in [73, 74, 67, 751. Using the 2PN inspiral wave- 

forms, the covariance matrix based errors in the estimation of various parameters 

appearing in the 2PN waveform have been computed [76]. These estimates suggest 

m3m3 )'I5 can be measured to an accuracy that each binary's chirp mass Adchirp = ( m l i &  

of a few tenths of a percent [76]. Bounds on the parameters computed using the 

covariance matrix are called Cramer-Rao bounds. These are only a lower limit on 

the expected errors and realistic errors are much larger than this. One brute force 

way of estimating the errors is to carry out numerical simulations mimicking the 

actual detection process. The results from such an analysis indicate that the co- 

variance matrix indeed underestimates the errors of various parameters by factors 
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of two to three for moderate signal-to-noise ratios [75]. Recently, the discrepancy 

between the above two methods has also been explained [77]. The standard PN 

templates also produce large biases as they are just an approximation to the fully 

general relativistic signal [67]. 

The final theoretical issue stemming from the data analysis requirements re- 

lates to  the order of the PN approximation one needs for the purpose of detection 

and parameter estimation discussed above. Based on the test particle results, which 

are numerically exact and analytically approximate to a very high PN orders, it 

was felt that very high post-Newtonian order (may be as high as (vlc)' beyond the 

leading order) might be required for reasonably accurate signal extraction [78]. This 

prompted Damour, Iyer and Sathyaprakash [79] to critically examine the following 

question: To what order must the orbital phasing to be computed, in order to guar- 

antee that the systematic errors due to  the neglect of the higher PN corrections are 

smaller than the statistical errors due to  noise in a given detector? They constructed 

a new class of approximate waveforms called P-approximants, using systematic use 

of the Pad6 approximation. Their calculations suggest that with the P-approximant 

3PN accurate theoretical templates, the loss in number of detectable events will be 

smaller than 1% and also these templates will give significantly smaller biases less 

than 0.5% in the parameter estimation. 

1.5.8 T h e  3PN challenge 

At present three independent groups are tackling the formidable problem of con- 

structing 'ready to  use' search templates for compact binaries accurate to the third 

post-Newtonian order, the corrections O(e3)  to the quadrupole approximations [go]. 

The following summarizes the status [35]. 

The 3PN challenge crucially requires the equations of motion to  3PN accuracy 

and the situation is now under investigation. The gravitational field is computed 
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using the standard post-Newtonian theory from the stress-energy tensor appropriate 

for point particles (i.e., involving delta functions). A careful procedure for regular- 

ization is needed to handle the infinite self-field of point masses at  this order. Work 

is in progress to obtain the 3PN contributions by different techniques. These in- 

clude the MPM method supplemented by Hadamard 'partie-finie' [81], the Epstein- 

Wagoner-Thorne-Will-Wiseman method [82] and also the Hamiltonian formalism 

[83]. As mentioned above upto 2.5PN three distinct computational techniques led 

to a unique EOM. Though, preliminary investigations have even raised questions 

about whether this sort of uniqueness will persist at  3PN [84], the work of Blanchet, 

Faye and Ponsot [81] indicate that unique results may obtain. 

The French group headed by Blanchet has made substantial progress in tackling 

the "wave generation problem" and the "radiation reaction problem" a t  the 3PN 

order. Recently, Blanchet constructed the multipole expansion (in general relativ- 

ity) of the gravitational field generated by a slowly-moving isolated source [85] and 

recovered previously obtained expressions of the source multipole moments [52] in 

the appropriate limits. Earlier, he determined the radiation field at  large distances 

from the source due to  the so called 'tails of tails' of the gravitational radiation and 

also the non-linear self interaction of quadrupole waves [86, 871. All this contribute 

to the 3PN order beyond the quadrupole approximation. 

It is expected that the 3PN accurate 'ready to use' templates for compact 

binaries in quasi-circular orbits will be ready by the year 2001. 

1.6 The radiation reaction problem 

As mentioned earlier, the extremely high phasing accuracy requirement makes manda- 

tory the control of reactive terms way beyond the Newtonian. This has prompted 

on the one hand, work on generation aspects to compute the far-zone flux of energy 

and angular momentum carried by gravitational waves and on the other, work on 
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the radiation reaction aspects to compute the effect on the orbital motion of the 

emission of gravitational radiation. 

The idea of a damping force associated with an interaction that propagates with 

a finite velocity was first discussed in the context of electromagnetism by Lorentz 

[88]. He obtained it by a direct calculation of the total force acting on a small 

extended particle due to its self-field. The answer was incorrect by a numerical 

factor and the correct result was first obtained by Planck [89] using a 'heuristic' 

argument based on energy balance which prompted Lorentz [go] to  re-examine his 

self-field calculations and confirm Planck's result, 

where vi is the velocity of the particle. The relativistic generalization of the radiation 

reaction by Abraham [91] based on arguments of energy and linear momentum 

balance preceded by a few years the direct relativistic self-field calculation by Schott 

[92] and illustrates the utility of this heuristic, albeit less rigorous, approach [93]. 

The argument based on energy balance proceeds thus: A non-accelerated par- 

ticle does not radiate and satisfies Newton's (conservative) equation of motion. If it 

is accelerated, it radiates, loses energy and this implies damping terms in the equa- 

tion of motion. Equating the work done by the reactive force on the particle in a 

unit time interval to the negative of the energy radiated by the accelerated particle 

in that interval (Larmor's formula) the reactive acceleration is determined and one 

is led to the Abraham-Lorentz equation of motion for the charged particle. The 

direct method of obtaining radiation damping, on the other hand, is based on the 

evaluation of the self-force. Starting with the momentum conservation law for the 

electromagnetic fields one rewrites this as Newton's equation of motion by decom- 

posing the electromagnetic fields into an 'external field' and a 'self-field'. Expanding 

the self-field in terms of potentials, solving for them in terms of retarded fields and 

finally making a retardation expansion, one obtains the required equation of motion 
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when one goes to the point particle limit [94]. 

As in the electromagnetic case, the approach to gravitational radiation damping 

has been based on the balance methods, the reaction potential or a full iteration 

of Einstein's equation. The first computation in general relativity was by Einstein 

[95] who derived the loss in energy of a spinning rod by a far-zone energy flux 

computation. The same was derived by Eddington [96] by a direct near-zone radi- 

ation damping approach. He also pointed out that the physical mechanism causing 

damping was the effect discussed by Laplace [97], that if gravity was not propagated 

instantaneously, reactive forces could result. An useful development was the intro- 

duction of the radiation reaction potential by Burke [98] and Thorne [99] using the 

method of matched asymptotic expansions. In this approach, one derives the equa- 

tion of motion by constructing an outgoing wave solution of Einstein's equation in 

some convenient gauge and then matching it to the near-zone solution. Restricting 

attention only to lowest order Newtonian terms and terms sensitive to the outgoing 

(ingoing) boundary conditions and neglecting all other terms, one obtains the re- 

quired result. The first complete direct calculation B la Lorentz of the gravitational 

radiation reaction force was by Chandrasekhar and Esposito [loo]. Chandrasekhar 

and collaborators [101, 1021 developed a systematic post-Newtonian expansion for 

extended perfect fluid systems and put together correctly the necessary elements like 

the Landau-Lifshiftz pseudotensor, the retarded potentials and the near-zone expan- 

sion. These works established the balance equations to  Newtonian order, albeit for 

weakly self-gravitating fluid systems. The revival of interest in these issues following 

the discovery of the binary pulsar and the applicability of these very equations to 

binary systems of compact objects follows from the works of Damour [93, 1031 and 

Damour and Deruelle [104]. 

As in the electromagnetic case, the computation of the reactive acceleration as- 

suming balance equations is simpler than the computation of the damping terms by 
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a direct near-field iteration. The computation of the energy and angular momentum 

fluxes a t  the lowest Newtonian order (quadrupole equation) requires the equation of 

motion a t  only Newtonian order. Assuming the balance equations one can infer the 

lowest order (2.5PN) radiation damping whose direct computation, as mentioned 

before, requires a 2.5PN iteration of the near-zone equations. Similarly, the compu- 

tation of the 1PN corrections to  the lowest order quadrupole luminosity requires the 

1PN accurate equations of motion, but is potentially equivalent to the 3.5PN terms 

in the equation of motion. This motivated Iyer and Will (IW) [33, 341 to propose 

a refinement of the text-book [105] treatment of the energy balance method used 

to  discuss radiation damping. This generalization uses both energy and angular 

momentum balance to deduce the radiation reaction force for a binary system made 

of non-spinning structureless particles moving on general orbits. Starting from the 

1PN conserved dynamics of the two-body system, and the radiated energy and angu- 

lar momentum in the gravitational waves, and taking into account the arbitrariness 

of the 'balance' upto total time derivatives, they determined the 2.5PN and 3.5PN 

terms in the equations of motion of the binary system. The part not fixed by the 

balance equations was identified with the freedom still residing in the choice of the 

coordinate system a t  that order. Thus, starting from the far-zone flux formulas, one 

deduces a formula that is suitable for evolving general orbits of compact binaries 

of arbitrary mass ratio that includes 1PN . &ogd&tions .. to  the dominant Newtonian . 

radiation reaction terms. Blanchet [31, 321, on the other hand, obtained the post- 

Newtonian corrections to  the radiation reaction force from first principles using a 

combination of post-Minkowskian, multipolar and post-Newtonian schemes together 

with techniques of analytic continuation and asymptotic matching. By looking a t  

"antisymmetric" waves - a solution of the dlAlembertian equation composed of re- 

tarded wave minus advanced wave, regular all over the source - and matching, one 

obtains a radiation reaction tensor potential that generalizes the Burke-Thorne re- 
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action potential [106], in terms of explicit integrals over matter fields in the source. 

The validity of the balance equations upto 1.5PN is also proved. By specializing this 

potential to two-body systems, Iyer and Will [34] checked that this solution indeed 

corresponds to a unique and consistent choice of coordinate system. This provides 

a delicate and non-trivial check on the validity of the 1PN reaction potentials and 

the overall consistency of the direct methods based on iteration of the near-field 

equations and indirect methods based on energy and angular momentum balance. 

Work on radiation reaction in the test particle case has focussed on understand- 

ing the evolution of Carter constant in Kerr geometry. Ryan [lo71 has investigated 

the effect of gravitational radiation reaction, first on circular, and later even for non- 

equatorial orbits around a spinning black hole. Kennefick and Ori [I081 developed 

a computational scheme in which the radiation reaction force is determined by the 

'physical retarded' radiation field rather than the radiative field. This allows them 

to determine the evolution of all associated constants of motion. Capon and Schutz 

[log] have looked a t  a 'local expression' for radiation reaction by evaluating its self 

field as an integral over the particle world line. Recently Mino, Sasaki and Tanaka 

[I101 have derived the leading order correction to the equation of motion of a parti- 

cle which presumably describes the effect of gravitational radiation reaction by two 

methods: One approach is analogous to the DeWitt and Brehme [Ill] method in 

the case of electromagnetic radiation, where the conservation law of the total (mat- 

ter + e.m. field) stress-energy tensor is integrated across a tube surrounding the 

particle world-line, giving the equations of motion including radiation reaction. The 

other method uses, on the other hand, asymptotic matching. Quinn and Wald [I121 

have discussed an axiomatic approach to gravitational radiation reaction and their 

results are consistent with those of Ref.[llO]. Gergely, Perjes and Vasuth [I131 have 

included the spin effects on gravitational radiation reaction using the BDI approach 

and their results are in accordance with those of Refs.[26, 1071 
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We end this section by making the following remarks on the IW method [45]. 

Though the IW method is valid for a large class of coordinate systems, it cannot 

by itself fix the particular expression for the reactive force in a given coordinate 

system. Thus in order to solve a practical problem (in which we erect a particular 

coordinate system), the method is in principle insufficient by itself, but it provides 

an extremely powerful check of other methods based on first principles. 

1.7 Inspiraling binaries in quasi-elliptical orbits 

In the previous sections we have restricted our attention to  inspiraling binaries in 

quasi-circular orbits. This is due t o  the fact that quasi-circularity is an excellent 

approximation to  late stages of inspiral for compact binaries which are formed with 

large initial separation, as the gravitational radiation reaction forces tend to cir- 

cularize rapidly the orbital motion. To see how this happens, let us consider the 

following expression which relates the instantaneous orbital frequency w = 2 r / P ,  P 

being the period of the binary to  the eccentricity e a t  the Newtonian order, following 

When e << 1, the above equation gives e2 w-"/~. For example, the eccentricity of 

the Hulse-Taylor binary pulsar PSR 1913+16 is presently eo = 0.617, and the orbital 

frequency is wo = 2.25 x Hz. When gravitational waves from PSR 1913+16 

reaches f = WIT = 10 Hz, from Eq.(1.24) its eccentricity will be - This 

is very small even when compared t o  the high-order relativistic effects. Therefore 

'circularity7 of the orbit is justified during the late inspiral stages for binaries like 

PSR 1913+16. 

Galactic binaries like PSR 1913+16, in general, will be in circular orbits by 

the time they reach the final inspiral stage. However, there exist astrophysical 

scenarios where compact binaries will have non-negligible eccentricity during these 
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stages. For example, Shapiro and Teukolsky investigated a scenario [I151 where 

black hole binaries - with total masses in the range 10MO 5 M < (a few) x 102Ma 

- are formed in the galactic nuclei prior to the formation of a supermassive black 

hole. Their simulation starts with a cluster of compact objects - neutron stars and 

black holes - residing at  the center of a galactic nucleus. Coulomb scattering and 

dissipative processes will drive such a cluster to a high density, high redshift state. 

Once the central redshift becomes sufficiently large, relativistic instability sets in, 

and the core undergoes catastrophic collapse to form a supermassive black hole. 

Quinlan and Shapiro [116] have shown that during the final year of the evolution 

of such a cluster, just prior to the catastrophic collapse, there can be 100 - lo4 

evolving black hole binaries in eccentric orbits driven by gravitational radiation 

reaction, with masses in the range 10 - 100 Ma. Recently, Flanagan and Hughes 

[I171 suggested that intermediate mass black hole binaries - with total masses in the 

range 50Ma 5 M < (a few) x 103Ma - may well be the first sources to  be detected by 

LIGO and VIRGO. These systems may be seen via merger and ringdown waveforms 

for M > 60Ma for initial LIGO and M > 200Ma for advanced LIGO. Below these 

limits, inspiral waveforms will be useful. However, following [116], it is clear that 

the systems are not on circular orbits and general eccentric inspiral waveforms are 

required for such binaries. 

The next possibility we consider, involves compact objects orbiting lo6 to 

107Ma black holes, that seem fairly common in galactic nuclei. In this case the 

compact objects could be scattered into very eccentric orbits orbits via gravitational 

deflections by other stars. However, by the time gravitational radiation reaction be- 

comes the dominant orbital driving force, there is not enough inspiral remaining to 

fully circularize these orbits. Hills and Bender [I181 have argued that the event rates 

for the above process are very encouraging and the chances of such signals being 

observed by Laser Interferometric Space Antenna, LISA [13] appear very good. 
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The final class of sources we discuss, where eccentricity will be important is 

the speculative but exciting possibility involving MAssive Compact Halo 0 bjects 

(MACHOS). The MACHO collaboration's analysis of the photometry of 8.5 million 

stars in the Large Magellanic Cloud suggests that 0.6:;:; of the halo consists of 

51Assive Compact Halo Objects of mass 0.5';:; MD in the standard spherical flat 

rotation halo model [119]. At present we do not know what MACHOs are. There 

is only tentative evidence suggesting that MACHOs are white dwarfs. However, 

only future observations will make clear whether white dwarf MACHOs exists or 

not. Recently, Nakamura et. al. suggested that MACHOs may be primordial black 

holes of mass - 0.5 Ma [120, 1211. These are formed in the early universe. They 

indicated that there should be a t  least N 1Ol1 primordial black holes in the halo 

and some of them would be in binaries due to three body interactions. Depending 

on the various values of the matter energy density and the Hubble parameter, they 

estimated that 8% to  0.9% of these MACHO black holes can be in binaries with 

semi-major axis - 2 x 1014cm. The event rate for these binaries turned out to be 

to be several per year within 15 Mpc. It is suggested that  the initial LIGO/VIRGO 

interferometers will be able to  observe coalescence of these binaries and it is quite 

plausible that  eccentricity will not be negligible before they coalesce. More recently, 

Hiscock [I221 has shown that low frequency gravitational waves from black hole 

IvIACHO binaries would form a strong stochastic background in the frequency range 

low5 Hz < f < 10-'Hz, where the proposed space-based interferometers like LISA 

and OMEGA [123] are the most sensitive. These binaries will be in highly eccentric 

orbits, which greatly increases their efficiency as sources of gravitational radiation, 

and spreads that  radiation over a large number of harmonics of orbital frequency. 
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1.8 T h e  issues addressed in th is  thesis 

In this thesis, we investigate issues related to gravitational radiation from compact 

binaries moving in general orbits. The final aim is to construct 'ready to use' 2PN 

accurate theoretical templates for inspiraling binaries of arbitrary mass ratio moving 

in quasi-elliptical orbits. The issues tackled here will form the basic inputs to the 

above construction. 

1.8.1 The second post-Newtonian corrections to  the gravitational 
waveform and the far-zone fluxes 

In chapter 2, we apply the second post-Newtonian accurate BDI generation for- 

malism to the case of inspiraling binaries in general orbits. Pioneering work for 

extending the Einstein quadrupole formula to post-Newtonian order is due to Ep- 

stein and Wagoner [124]. Wagoner and Will [I251 applied the above result to the case 

of inspiraling binaries moving in general orbits and obtained the 1PN corrections 

to the gravitational wave luminosity. Later Blanchet and Schafer [I261 and Junker 

and Schafer [I271 obtained the 1PN corrections to the far-zone energy and angular 

momentum fluxes for general orbits, using the MPM approach to  gravitational wave 

generation. In this chapter we extend the above computations to  the 2PN order. 

We first give a precise and concise description of the MPM approach of BDI. We 

then compute the post-post-Newtonian (2PN) accurate mass quadrupole moment 

for compact binaries of arbitrary mass ratio moving in general orbits, in terms of the 

binary's dynamical variables, using the BDI formalism. Following [46], we split the 

2PN accurate formulae for the gravitational waveform and the far-zone fluxes into 

"instantaneous" and "tail" parts. The "instantaneous" contribution depends only 

on the state of the binary a t  the retarded instant TR - (T - R/c)  while the "tail" 

contribution is a priori sensitive to the binary's dynamics a t  all previous instants 

TR - T 5 TR. The "tails" are caused by the backscatter of outgoing radiation off 
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the background spacetime curvature and appears at  O ( E ' . ~ )  beyond the quadrupole 

approximation. Using the mass quadrupole moment and other multipole moments 

to  the required order for binaries in general orbits, we also compute the 2PN "in- 

stantaneous" corrections to the far-zone energy and angular momentum for binaries 

in general orbits. We also compute the 2PN "instantaneous" contributions to the 

gravitational waveform (the transverse- traceless (TT) part of the radiation-field, 

representing the deviation of the metric from the flat spacetime) using STF mul- 

tipole moments of the BDI formalism. We observe that though our result for the 

far-zone energy flux matches precisely with that obtained by Will and Wiseman, 

our expressions for the waveform differ from the corresponding expressions obtained 

by them, using the Epstein-Wagoner multipole moments a t  1 .5PN and 2PN orders. 

Though the two expressions are totally different looking a t  these orders, even in the 

circular limit, we show that they are equivalent. The equivalence is established by 

showing that the difference between the two expressions, a t  1 .5PN and 2PN orders 

has a vanishing transverse-traceless part. We also exhibit various limiting cases of 

our results. The expressions for the 2PN corrections to the waveform and the far- 

zone fluxes for binaries in general orbits obtained in this chapter will form one of the 

basic inputs to tackle the "wave generation problem" and the "radiation reaction 

problem7' for the construction of theoretical templates for binaries in quasi-eccentric 

orbits. 

1.8.2 The evolution of the orbital elements under 2PN radiation reaction 

In chapter 3 we investigate the "radiation reaction problem" for eccentric binaries. 

Here the aim is to obtain the 2 P N  "instantaneous" corrections to the evolution 

of the orbital elements like the orbital phase and parameters like frequency and 

eccentricity. As mentioned earlier, these computations are done assuming energy 

and angular momentum balance and the far-zone expressions for the energy and 



Chapter 1 38 

angular momentum fluxes, averaged over an orbit. This naturally requires, for the 

elliptical binaries, a convenient solution to the 2PN accurate equations of motion. 

As emphasised in [79], the gravitational wave observations of inspiraling compact 

binaries, is analogous to the high precision radio-wave observations of binary pul- 

sars. The latter makes use of an accurate relativistic 'timing formula' based on 

the solution - in quasi-Keplerian parametrization - to the relativistic equation of 

motion for a compact binary in elliptical orbit [39]. In a similar manner, the for- 

mer demands accurate 'phasing' i.e. an accurate mathematical modelling of the 

continuous time evolution of the gravitational wave phase which in turn depends 

of orbital parameters like frequency and eccentricity. A very elegant 2PN accu- 

rate generalized quasi-Keplerian parametrization for elliptical orbits in the Arnowit , 

Deser and Misner (ADM) coordinates has been implemented by Damour, Schafer, 

and Wex [40, 41, 421. This representation is thus the most natural and best suited 

for our purpose to  parametrize the dynamical variables that enter the expressions 

for the far-zone fluxes. We first obtain the 2PN corrections to  the far-zone fluxes 

averaged over an orbit extending computations performed a t  1PN and 1.5PN orders 

[126, 127, 1281, taking due care of a new complication a t  this order that the far-zone 

fluxes are computed in the harmonic or De-Donder coordinates, while the orbital 

representation is available in the ADM coordinates. To obtain the evolution of the 

orbital elements, we start from the 2PN accurate expressions for the orbital elements 

in terms of the conserved energy and angular momentum given in [41, 421 and com- 

pute the time variation of these orbital elements. One ends up with a result, in 

terms of the time variation of the 'conserved' energy and angular momentum. By a 

heuristic argument, one replaces these by the corresponding average far-zone fluxes 

obtained previously. In the limit of q + 0 our results reduce to the test particle 

results [61] to 2PN accuracy. These results along with the 'tail' contributions to 

the evolution of orbital elements, computed in [128, 1291 form the basic set of equa- 
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tions from where one can numerically evaluate the evolution of the orbital phase 

and other orbital elements as a function of time under the effects of gravitational 

radiation reaction forces. 

1.8.3 The second post-Newtonian gravitational wave polarizations 

In chapter 4 we address the "wave generation problem" which deals with the com- 

putation of the gravitational wave polarizations h+ and h,, at  the leading order in 

1/R, when the orbital phase and other parameters of the binary orbit take some 

specific values. This problem and the 'radiation reaction' problem to the lowest or- 

der was investigated by Lincoln and Will [130]. They used the method of osculating 

orbital elements from celestial mechanics and the 2.5PN accurate Damour-Deruelle 

equations of motion [131, 93, 361, to study the evolution of general orbits and ob- 

tained 1PN accurate expressions for h+ and h, for quasi-circular orbits. Later 

Moreno-Garrido, Mediavilla and Buitrago obtained polarization waveforms for bi- 

naries in elliptical orbits at Newtonian order with and without radiation reaction 

and studied the effects of orbital parameters on the spectrum of the wave's ampli- 

tude [132, 1331. Analytic expressions for the gravitational wave amplitude emitted 

by an elliptic binary are obtained to 1.5PN order by Junker and Schafer, Blanchet 

and Schafer [127, 1281. As mentioned earlier, the 2PN accurate treatment of po- 

larization waveforms and associated time-evolution of orbital phase for inspiraling 

compact binaries moving in quasi-circular orbits was given by Blanchet, Iyer, Will 

and Wiseman [47]. For the above calculation they employed the 2PN accurate ex- 

pressions for h y ,  the transverse traceless part of the radiation field representing the 

deviation of the metric from the flat spacetime and (%), the far-zone energy flux 

obtained independently using two different formalisms [52, 18, 46, 431. As indicated 

earlier, in the limiting case of a test particle orbiting a Schwarzschild black hole, 

very high accuracy has been achieved and the polarization waveforms are obtained 
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to  4PN order by Tagoshi and Sasaki [58]. In this chapter we compute all the 'instan- 

taneous' 2PN contributions to h+ and h ,  for two compact objects of arbitrary mass 

ratio moving in elliptical orbits, using the 2PN corrections to  h y  for the general 

orbits and the generalized quasi-Keplerian representation for the 2PN motion. The 

expressions for h+ and h,  obtained here represent gravitational radiation from an 

elliptical binary during that stage of inspiral when orbital parameters are essentially 

the same over a few orbital periods, in other words when the gravitational radiation 

reaction is negligible. We investigate the effect of eccentricity and orbital inclina- 

tion on the amplitude of the Newtonian part of h+ and h,. We observe that orbital 

inclination changes the magnitudes of lh+I2 and lh, l 2  appreciably. The reduction 

in lh+I2 and lhXl2 for small and medium eccentricities, is small compared to that 

for higher eccentricities, when the inclination angle is varied from 0 to 7r/2. We 

compute ( $ ) 2  a t  the Newtonian order and conclude that  this ratio may be used 

as a good indicator for the orbital inclination, for very small to  very high values of 

eccentricity. The modulation of h+ and h ,  due to  the precession of the periastron, 

which occurs a t  the IPN order is also explicitly shown. We recover in the circular 

limit the results of [47] modulo the tail terms. 

1.8.4 The second post-Newtonian gravitational radiation reaction 
for two-body systems 

In chapter 5, we deduce the gravitational radiation reaction to  the second post- 

Newtonian order beyond the quadrupole approximation - 4.5PN terms in the equa- 

tions of motion - using the refined balance method proposed by Iyer and Will [33,34]. 

We critically explore the features of their construction and illustrate them by con- 

trast with other possible variants. We observe that in terms of the number of 

arbitrary parameters and the corresponding gauge transformations, the IW scheme 

exhibits remarkable stability for a variety of choices for the ambiguity in energy and 

angular momentum. The different choices merely give different numbers of degen- 
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erate equations, indicating the validity and soundness of the method. We also show 

that the far-zone formulae and the balance equations by themselves do not constrain 

the reactive acceleration to be a power series in the individual binary masses ml 

and mz as assumed by Iyer and Will, but are consistent with a more general form 

of the reactive acceleration. The equations of motion are valid for general binary 

orbits and for a class of coordinate gauges. The limiting cases of circular orbits and 

radial infall are also investigated [45]. 


