Chapter 2

The second post-Newtonian corrections to the
gravitational waveform and the far-zone fluxes

2.1 Introduction

In this chapter we apply the 2PN accurate, multipolar post-Minkowskian generation
formalism of Blanchet, Damour and lyer [46] to the specific case of an inspiraling
compact binary of arbitrary mass ratio moving in a general orbit. The aim is to
obtain 2PN corrections to thefollowing quantitiesin terms of the dynamical variables

of the binary. The quantities of interest are

Lj = (Ij)x{1+0() +O(e}) +..} , (2.1a)
hom = (REN {1+ 0("%) + O() + O(*) + O(?) + ..}, (2.1b)
% - (%)N{HO(E)+0(el-5)+0(e2)+..} , (2.1¢)
% - (%)N{1+0(e)+0(61-5)+0(62)+...} , (2.1d)

where ¢ ~ v2/c2 ~ Gm/c? r. Here m is the total mass, = the distance between the
bodies and v the relative velocity of the two bodies. In Eqgs.(2.1), I;; is the mass
qguadrupole moment for a system of two compact objects moving in general orbits
while hIT is the transverse-traceless (TT) part of the radiation-field, representing
the deviation of the metric from the flat spacetime. d€/dt and d.7/dt represent the
far-zone energy and angular momentum fluxes due to the emission of gravitational

radiation. Note that the suffix ‘N’ denotes the Newtonian contribution in all the
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above equations. For example (% )y is given by %Gsc;“rzj‘?{leZ - 1172}, where u
Is the reduced mass of the binary - defined in terms of the individual masses of
the bodies m; and my by p = m; my/m? - and # = dr/dt. The construction of
I;; and other relevant mass and current moments is performed using the Blanchet-
Damour-lyer (BDI) formalism. In this formalism the gravitational waveform and
the far-zone energy and angular momentum fluxes are given in terms of particular
time derivatives of the mass and current multipole moments of the binary. These
computations are done using the algebraic computing software, Maple [134] and
published in Ref. [44].

In Section 2.2 we present a summary of the 2PN-accurate BDI generation for-
malism. Using this formalism, in Section 2.3, we compute the mass and current
multipole moments for the binary in general orbitsin terms of the binary's dynam-
ical variables. The 2PN corrections to hfT are obtained in Section 2.4. Section 2.5
deals with the computation of the far-zone energy and angular momentum fluxes.

In Section 2.6 we exhibit various limiting cases of our results. The chapter ends

with a few concluding remarksin Sec 2.7.

2.2 Summary of the 2PN-accurate generation formalism

The BDI formalismisa mathematically rigorous technique for computing the higher
order post-Newtonian corrections to the mass and current multipole moments a
relativistic binary, containing compact objects of arbitrary mass ratio. Below we
present a brief and precise summary of this formalism, drawing heavily on sections
in [18, 46] where the authors of the formalism themselves described their method.
Consider the metric g, describing the gravitational field outside an isolated system.
It is well known that in a suitable "radiative" coordinate system X* = (T, X'), X
being the vector pointing from the source to the observer, the metric coefficients

admit an asymptotic expansion in powers of R~!, when R = |X]| — co with T— R/c
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and N = X/R being fixed ("future null infinity"). The transverse-traceless (T T)
projection of the deviation of g,g(X") from the flat metric 1,5 = diag(—1,1,1,1)
defines the asymptotic waveform hLL = (gem(X) — 0km)TT. Note that greek indices
range from 0 to 3 while latin indicesi, j, k£, m...range from 1 to 3. The 1/R part of

RIT can be uniquely decomposed into multipoles:

4G > 1
MIX,T) = SPan(N) Y %{ NioUsys2(Tw)
=2 ’
20 .
T e 1)CNaL—2€ab(iVj)bL—2(TR)} +0 (—R—2> . (2.2)

The "radiative” multipole moments U; and V;, (defined for £ > 2) denote some
functions o the retarded time T = T — R/c, taking values in the set of symmetric
trace-free (STF) three-dimensional cartesian tensors of order ¢. Here L = i;...1,
denotes a spatial multi-index of order ¢, N;_p = Ny, ... N;,_,, Xy = 3(Xi; T X)

and
1
Pijem(N) = (6 — NiNi)(0jm — NjNp,) — 5(517' — NiN;)(0km — NeNm) , - (2.3)

We summarize our notation here. In this thesis we have — + ++ signature, greek
indices run over 0,1, 2, 3, latin indices vary from 1, 2, 3, the covariant metric
is g, and g = det (g.). The relative separation r = |x| = (z? + 2% + 22)'/2,
n' =n; = 2t/r, 8; = 8/0r*, x* = xp = zy14,...2; and Iy, = 8;,0,,...0;, Where
L =192...% isa multi-index with ! indicesand z;-, = z;, i, ... T;,_,, €tC.... The
symmetric and tracefree (STF) part of atensor T}, isdenoted in any of the following
ways Ty, = Ters> = STF(Ty), e.g., & = 2375 — 3657% Tup = 5Ty + Ti)-

As indicated in Eq.(2.2), for slowly moving systems the multipole order is cor-
related with the post-Newtonian order. The coefficients in Eq.(2.2) have been cho-
sen so that the moments Uy and V;, reduce, in the non-relativistic limit ¢ — +oo
(or e = 0), to the ¢-th time-derivatives of the usua Newtonian mass-type and

current-type moments of the source. At the 2PN approximation, i.e., when retain-

ing all terms of fractional order e* ~ ¢=* with respect to the leading (Newtonian
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guadrupole) result, the waveform (2.2) reads

2G 171 4
h{rz; = —C—mpijkm{Uij + E |:§Nanja + gsab(i‘/j)aNb]

171 1

+ -0—2“ -12NabU’L]ab + 2sab(J/J)achc]
171 2

+ g -%Nachijabc + Beab("/j)achbcd]
10

+ = 6O]Vabccll']cgabcd + 36l::ab( V)acdercde] + 0(55)} )
C

(2.4)

The far-zone energy flux is related the waveform by

OHLT?
<%> = 327G (FTQR_> FEON). (25)
far—zone

At the 2PN approximation this yields (with U™ = d"U/dTR)
d€ G (1)7(1) 1 [ (1) 16 )y A1) ]
— Uy U U — V'V
( dt )far—zone c® { U + 189 itk T 15 45 9 "1
1 1 o o () ] 6 }
2 [ Ul + VRV + 0()
(2.6)

The angular dependence of the waveform AT causes its wavefront to be not quite
spherical and thereby enables the waves to carry of angular momentum. A gen-
eral expression for the far-zone angular momentum flux in terms of the radiative
multipole moments is available in the literature, see Eq.(4.23") of [135]. At 2PN

approximation this equation reduces to

: 1
(d‘z) 9 ) {_2.[] .U(l,) + i _—Up]kU(l) V V(l)]
far—zone

dt _ 3o 5 e 2 63 FTREALY
1 r 1 (1
+ oy _2268UpjklU(§Jl'lz;l 28Vm qulc]}

(2.7)

Theexplicit computation of Egs.(2.4), (2.6) and (2.7) in terms of source variables are

obtained using the 2PN accurate BDI formalism, which we describe briefly below.
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The 2PN-accurate BDI gravitational wave generation formalism is a precise,
modular treatment that allows one to compute the radiative moments entering
Egs.(2.4), (2.6) and (2.59) in terms of the source variables to an accuracy sufficient
for obtaining the waveform with fractional accuracy I/c*. The latter requirement
implies, in view of Eq.(2.4), that one should (at a minimum) compute: the mass-
type quadrupole radiative moment U;,;, to I/c* accuracy; the mass-type radiative

octupole U,,:,;, and the current-type radiative quadrupole V;,;, to 1/c® accuracy;

arerelaxed if oneisonly interested in getting the energy loss rate with 2PN-accuracy.
In that case, Eq.(2.6) shows that one still needs U;,;, to I/c* accuracy, but that it
is enough to compute U, 4,:;, and V;;, to 1/c? accuracy, and U iyigi, @and Viyiyi, to
Newtonian accuracy.

In the BDI generation formalism, the link between the radiative multipoles Uy,
and V; and the dynamical state of the material source is obtained in several steps.
These various steps are briefly presented here. The BDI approach begins with
Einstein's equations written in harmonic coordinates. The field h®p, measuring the
deviation of the "gothic" metric, from the Minkowski metric n°? is defined to be
ha = ,/=gg*® - n°f. Imposing the harmonic coordinate condition d3h** = 0 then

leads to the field equations

167 G
_ af ap =
O ()T 4 Ay = 15

167FG ¥l

Ohe? = e (2.8)

where O denotes the flat spacetime d’Alembertian operator, 7% is the matter
stress-energy tensor, and A%? is an effective gravitational source containing the non-
linearities of Einstein's equations. It is a series in powers of A% and its derivatives;
both quadratic and cubic nonlinearities in A% which play an essential role in the

BDI calculations.

The next step consists of constructing an iterative solution to Eq.(2.8) in an in-
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ner domain (or near-zone) that includes the material source but whose radiusis much

lessthan a gravitational wavelength. Definingsourcedensitiesa= 24T - _ iy
C
ou = TY, and the retarded potentials V = —4rGOglo, V; = —4r G Ozlo;,

and W;; = —4n GOgloy; + (47 G) 18,V 9;V - 16,0,V 8, V)], where Oz! denotes
the usual flat spacetime retarded integral, one obtains the inner metric A% to
some intermediate accuracy O(6,5,6). Here h® = -2 vV + 4 (W, — 2v?) +0(6),
Wi = -4V, 1 0(5), and Bl = -4 W;; + 0(6), where O(n) means a term o or-
der ,?in the post-Newtonian parameter ¢ ~ v/c. Also, O(ny,na, n3) denotes an
accuracy of O(ny), O(ny), O(ng) for A%, h% and h¥. From this, one constructs the
inner metric with the higher accuracy O(8, 7, 8) needed for subsequent matching as
hY = Oz X828 728 (V,W)] + 0(8,7,8), where 7*#(V, W) denotes the right-hand-
side of Eq.(2.8) when retaining all the quadratic and cubic nonlinearities to the
required post-Newtonian order in the near-zone, and given as explicit combinations
o derivatives of V, V; and Wj;.

The second step consists of constructing a generic solution of the vacuum
Einstein equations (Eq.(2.8) with T*? = 0), in the form of a multipolar-post-
Minkowskian expansion that is valid in an external domain which overlaps with
the near-zone and extends into the far wave-zone. The construction of 4%% in the
external domain is done algorithmically as afunctional of a set of parameters, called
the "canonical" multipole moments M;, ; (t), S;,. ;, (t) which are STF Cartesian ten-
sors. Schematically, heh = FeB[My, Sr] where the functional dependence includes

a non-local time dependence on the past "history” of M (t) and S.(t).

The third, “matching” step consists of requiring that the inner and external
metrics be equivalent (modulo a coordinate transformation) in the overlap between
the inner and the external domains. This requirement determines the relation be-
tween the canonical moments and the inner metric (itself expressed in terms o the

source variables). Performing the matching through 2PN order [52] thus determines
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My ()= I[7%)+0(5), S, (t)= J.[7*°] T O(4), where the "source” moments I, and
Jr, are given by some mathematically well-defined (analytically continued) integrals
of the quantity 7*%(V, W) which appeared as source of h%*. When computing the
source moments, all finite size effects, such as spin (which to 2PN accuracy can be
added separately) and internal quadrupole effects are neglected.

In the last step, the computation of nonlinear effects in the wave-zone allows
the construction of the radiative multipole moments U, and V, as some nonlinear
functionals of "canonical" multipole moments My, S and therefore of the source
multipole moments.

Thefinal result for the 2PN-accurate generation formalism when working in an
initially mass-centred coordinate system, i.e. such that the canonical mass dipole
M; vanishes for al timesis given by Eqs.(2.6) and (2.7) of [46] which reads

2G'm

+00 117
Us(Te) = 1P(Te)+ 5= [driin () + o] 19(Te - ) +0(%
(2.9a)
2Gm [+o° T 971
Uan(Tr) = 50T + =50 [ dr [in () + ] HTa = 1) + 06 |
(2.9b)
2Gm ,to 7
VolTe) = JPT0+ =5 [ arpn(2)+ 2] 9@ - nFoe,
(2.9¢)
for the moments that need to be known beyond the 1PN accuracy, and
Ur(Tr) = I9(Tg) + 0, (2.10a)
Vi(Tr) = JO(Tg) +0(?), (2.10b)

for the other ones. Egs.(2.9) involve some integrals which are associated with tails;
these integrals have in front of them the total mass-energy m of the source, and
contain a quantity b which is an arbitrary constant (with the dimension of time)

parametrizing a certain freedom in the construction of the radiative coordinate sys-
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tem (T,X). More precisely, the link between the (Bondi-type) radiative coordinates
X* = (T, X') and the (harmonic) canonical coordinates z¥,, = (ctcan, %, ) iS given

by Eq.(2.8) of [46] and displayed below

TR = tcan —

Tcan _ 2Gm ln (Tcan
c3 ch

>+0( ) +0(1/r2,) . (2.11)
Except for the computation of U;; which requires the knowledge of the mass quadrupole
source moment I;; with 2PN accuracy, the computation of the other multipole con-
tributions to the waveform can be obtained from 1PN-accurate expressions of the
mass-type and current-type source moments which have been obtained for all values
of £ in Refs.[136] and [137] respectively, as explicit integrals extending only on the
compact support of the material source. Note that there are no 1/¢® contributions

in the source moments.
Finally we list expressions for the 2PN accurate mass multipole moments and
1PN accurate spin multipole moments obtained in [52]. The 2PN accurate mass

multipole moment given by Eq.( 2.17) of [46] reads,

. 4 4 Ix|2%p,
I (t — F — 3 B l: —_— + _ :l M a2
L(t) PB_O/d x|x]| {xL o C4aUss C4Uass + 202(2€+3)8t0
4(20+ 1)z 2U 2U,
—c2(€+1)(2€+3)a [(1 0—2) T2l
= (a0, - aanjUj)]
[x[*21 4y 22Ty 5o
8c4(2¢+3)(2( +5) * (£+1)(2e+3)(2e+5) :
2(20 + 1)245, 2 ]
c4(e+ NEP DK ["” ar GaUa v

7rG' 4 [
+28,U,8,U; — 5avf(UZ) + WijaijU] } +0(%). (2.12)

+—E_|2U.8,U; - Uy;0,U — (&Ui)2

Though the 1PN accurate expression for the the current moment J, was initially

obtained in [137], we employ another equivalent form following [52]. The 1PN
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accurate current multipole moments are given by Eq.(2.13) of [46] which gives

- 4 lxlz-%L—l a
JL(t) = FPpo Eab<iy /d3X|X|B{$L_1>a (1 + EEU) oy + §c2(T+>3)at20b
1

. 3

+7I'G02 Tr-1>a [akU(BbUk - akUb) + ZBtUBbU]

_ (2£ + 1)§7L_1>ac
2(0+2)(20+3)

8, [a,,c + a;lc—;a,,UacU] } +0().

(2.13)
The symbol FPg— in the above stands for "Finite Part at B = 0" and denotes
a mathematically well-defined operation of analytic continuation. For more details
see [46]. As emphasized in [46] though the above expression is mathematically well-
defined, it isa non-trivial and long calculation to rewrite it explicitly in termsof the
source variables only. In the next section we perform the above task, for binaries
in general orbits and obtain 2PN accurate expressions for I;;, 1PN accurate Ji;, Ik

and I;;x in terms of the dynamical variables of the binary.

2.3 Mass and current moments of compact binaries on general
orbits for 2PN generation

2.3.1 2PN mass quadrupole moment

The starting point for the computation of the 2PN accurate mass moment is the
form of the moment given by Eq.(2.17) of [46], which is reproduced as Eq.(2.12) in
the above section. In order to rewrite the mass moment explicitly in terms of the
source variables we represent the stress energy tensor of the source asa sum of Dirac
d-functions.

N dyhdys 1 dit

T (x,t) = :L;lm dt di \/——:_—g-g;é(x —ya(t)). (2.14)

where A denotes the A" particle, m, denotes the (constant) Schwarzschild mass of

the Ath compact body and the summation is over the N particles in the system.
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Evaluating this to 2PN accuracy we obtain for the source variables

o) = 3 ualt) (1+ 23] st - vt (2.150)
N

oi(x,t) = Z (t)v46(x — ya(t)), (2.15b)
N

oij(x,t) = Z (Ovyv’d(x — ya (1)) (2.15¢)

where v}, = dy, /dt and

palt) = mA{1+(d2)A+(d4)A}, (2.16a)
— 1 1 2

dy = 62{2\; V}, (2.16b)

di = Elz{gv4+ng2—4Uivi—2<I>+gU2+4Uss}. (2.16¢)

In the above V denotes the combination
— 1 2
V:U+ﬁ8tX, (2.17)

the potential appearing naturally in the 1PN near-zone metric in harmonic coor-
dinates. The subscript A appearing in Eq.(2.16a) indicates that one must replace
the field point x by the position y,4 of the Ath mass point, while discarding all the

ill-defined (formally infinite) terms arising in the limit X — y 4. For instance

_ [J,B(t 1+V%/C2)
_ #B(t VB
(Uss)a = G;;A Tk (2.18b)
_ pp(t)(1+vE/A)(U)s .
(®)a = G;Z_:A T (2.18¢)
(X)a = G Y ua®)(1+v3/A)lya~vsl. (2.184)
B#A

[Note that the second time derivative appearing in V, Eq.(2.17), must be explicated
before making the replacement x — y 4(¢).]
The terms in Eq.(2.12) fall into 3 types: compact terms, Y terms and W

terms. The compact terms, where the 3-dimensional integral extends only over the
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compact support of the material sources; the Y terms involving three dimensional
integral of the product of two Newtonian like potentials; and the W term involving
three dimensional integrals of terms trilinear in source variables. The evaluation of
these different terms proceeds exactly as in the circular case. In fact, if the time
derivatives are not explicitly implemented the expression in the general case and the
circular case would be identical. The difference obtains when the time derivatives
are implemented using the equation of motion. In this section we need to use the
general form of the Damour-Deruelle equations of motion rather than the restricted

form of the circular orbit equations of motion relevant in [46].

We take up the compact terms first. They are given by

3 4 4 )
19 = % {a 1= SUb+ SUAva| ok
A=1 C C
1 @ _ 5. 1 d* ol
ot @ ae YAV T gy @it oyet g A a) UA)

o 4(e+1y  d Hy vi—2U1A~ L
€+ 1)(20+3)c2ae \ |1 @ )vAT T HalYa

_ 2(20+1) d_3( 2
(€+1)(2¢+ 3)(20 + 5)ct aps M4V AYAVA

2(20+1) a2 R
(£+1)(€+2)(2¢+ 5)ct dt? (avavada™) ¢ (2.19)

in which we have introduced for convenience ji4 = p4(11v%/c?). In the above form
the moment depends not only on the position and velocity of the bodies but also on
higher time derivatives. It isin the reduction of these derivatives that we need the
2PN accurate equation of motion for general orbits. We use a harmonic coordinate
system in which the 2PN center of mass is at rest at the origin. Using the 2PN
accurate center of mass theorem, in the center of mass frame, we can express the
individual positions of the two bodies moving in general orbits in terms of their

relative position X = y; — y2 and velocity v = v, — vo

_ nom 2_9’_@] X1 X2
T {X2+2mc2 [v T +c4 x+c4v, (2.202)
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S c? X+ 3V (2.20b)

y2 = {—X1+ nom [v2 GmJ Xl} X2

where r = |y; —y2| is the harmonic separation between the two bodies. The explicit
values of x; and x» are not needed in our calculations and hence not given above.
The above equations are obtained by setting equal to zero the conserved mass dipole

G for general orbits. Here we denote

m=m;+mg, Oom=m;—my,

XIE—TE, ngﬁzl—xl,
m m
n=XX, = —2=FL (2.21)
m m

The 2PN accurate equations of motion is written down next for completeness,
where finite-size effects, such as spin-orbit, spin-spin, or tidal interactions are ig-

nored. [104, 38, 130]. For the relative motion we have
a=ay tal} taly +0(?), (2.22)

where the subscripts denote the nature of the term, Newtonian (N), post-Newtonian
(PN), post-post-Newtonian (2PN), and the superscripts denote the order ine. The

explicit expressions for various terms mentioned above are given by

ay = —%"—’n, (2.23a)
Gm ([ Gm 3 . .
agg, = _W{ _—2(2 + n)T + (14 3n)v® - 5777"2 n—2(2- n)rv} ,
(2.23b)
2 Gm([3 G?*m? 15 )
ald, = —W{ .1(12 + 297) s n(3 — 4n)v* + gﬂ(l — 3n)rt

3 1 G

~5n(3 = 4n)*? = Zn(13 - 4n)—r"3v2 — (24 25n+ 2172)%"3#]11
1 G

-3 [n(15 +4n)v® — (4 +41n+ 87)2)—Tm - 3n(3 + 277)7'“2] fv} ,

(2.23c)

where n = x/r and 7 = dr/dt.
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We have on hand all the ingredients to compute |,. Though long and tedious

the computation is straightforward and yields for the 2PN mass quadrupole:

I} = nmSTFy {zV+
i 129(1 - 3n)v® — 6(5 — 8
4202{ [ (1 - 3n)v* —6(5 - 8n)

—24(1 — 3n)rrz'v? 4+ 22(1 — 3n)r? ”}

4 - 2
759 — 5505 10635
+1512C4 [v ( 55050 + n°)

G2
2 (1758 646877+1878n)

+v2G—(5818 — 167421 — 121667%)
T

_29™ 2038 — 66625 + 1467)2)] o
T

+

]‘ 2 2
123 — 10117 + 2199
g [V n )
+G—m(68 + 4347 — 20907?)

+307%(1 — 5 + 5n°)| r?v”
1 [Gm
378¢*

(101 + 287n — 16557°)
.

+v?(156 — 12127 + 25087°)| riz'v’} .

The Y terms on the other hand are given by

M = _M{QYU _yi

iy 04 V12 VU1
2v1 Yyl +2,Y,7 - 3? (Y¥)
———@ [w yei _ §v1Ya““]
21682 la Y‘“’”]} (12),

where following [46]

vlyui = 'UtllvgaYbL7
Yy = B 0pYt,
YL(y17y2) = 1y1 Izy<l P g>’

(+1 =

3

(2.24)

(2.25)

(2.26a)

(2.26Db)

(2.26¢)
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so that
YO, = 20k (2.27a)
g 18 8 g . y
vy — - 7 ij @i, 3) i 29
sk 3 5y3 Oyt T12 (yl +TUh Y Y ) (2.27b)
T2 = |y1—Yyz|. (2.27c)

The explication of all the above terms finally leads us to

_2mnGm : ‘
= 34 o STFy{z {2 (v = #*)(37 - 101n — 509?)

+G7m(18 — 5dn - 37;2)]

—r2y" (118 — 927 + 109?)

+riztv) (82 — 362 + 1677} . (2.28)
The evaluation of the I™™! term, the new feature at 2PN level, was discussed in

detail in [46]. The W term has been evaluated there for general orbits and we need

to use the same result here. We have

w) _ _nm G m?

x i {12+ 5z} . (2.29)

Adding up the compact i.e, C, Y and W contributions given by Egs.(2.24), (2.28)
and (2.29), wefinally obtain the expression for the 2PN accurate mass quadrupolefor
a system of two bodies moving in general orbits. The final result is written below
as a combination of the three possible combinations z%, z*v’, v¥ with coefficients

which include corrections beyond the Newtonian order at 1PN and 2PN orders:

Iij = #STFU{]JU[I
1
42 ¢?

1 1
— 3545
+ (504(253 18351 + n*)v

1 Gm
2021 — 594 4883 v?
+ 756( 021 — 5947n — n?)—

G’m )
- 756(131 — 907 + 12731 ) 72

((29 877)v? — (30 — 4877)Gm)
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1 G?m?
- 355 + 19067 — 337
553 (355 + 19060 — 3377) =5 )]

- x"vﬂ[ (24 — 727)

42 ¢?

+ = ( 613(26 — 2027 + 418n%)v?

1 Gm
1085 — 40570 — 1463
+ 37g(1085 = 4057n ’”r)]

.. 7'2
ij _
[21 2 (11 — 337n)

-+
<

r? /1 o o
+ (—( 1 - 337n+ 733n°)v

c \126

5

-~ 1_ 5 2N\ o2
+ 63( 5n + 51°)r

1 2 Gm

— — 335n — 98Hn°) — . 2.30
+ 139 (742 3357 98077) . )]} ( )

The above expression is identical to the one obtained by Will and Wiseman in the
appendix E of [43] using the new improved version of the Epstein-Wagoner for-
malism. In their treatment the Epstein-Wagoner multipoles appear more naturally,
using which they compute the STF mass quadrupole moment. Since the approach
employed here and in [43] follow algebraically different routes, the above match
provides a valuable check on the long and complicated algebra involved in the de-

termination of the crucial mass quadrupole moment for 2PN generation.

2.3.2 The other relevant mass and current moments

In thissection we list the higher order mass and current multipole moments, required
to compute the 2PN contributions to the gravitational waveform and the associated
far-zone energy and angular momentum fluxes. They are straightforwardly obtained
by explicating the point particle limits of the more general expressions, given by

Eqgs.(2.12) and (2.13).

om
Ljx = —(p _—)STFU’C{

1
z'* {1 + e ((5 — 19m)v?
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—
ik [z_g(l B 277)]

+ ot [Z—z(l - 277)]},

-6~ 13) 22|

Iijkl = IUSTFZ_]kl{

z Ik [(1 — 3n)

+ ((103 - 7357 + 13957%)v?

110 ¢2
G
— (100 — 6107 + 1050772)7"’)]

o [T277
—v'a? {l(l —5n+ 5712)}

55 c?
” 78 r?
15 .kl 2
+U]‘T {55C2(1 _577+5'f] )}},
om ijklm
Lijkim = —(p Tn-) (1 —27)STFijkim {a: ] }
Ljkimn = p(1-5n+ 51%)STF ijktmn {xi]'klmn}
Im
Jij = —(/j, ?)STFijfjab{
; 1
ia, b 9
zy [1+ 555 (13- 68n)
+(54 + 60n)GTm)]

4oibze [2;_’;2 (5 — 107,)] } ,

Jigr = 1 STFijkexan {xaijvb[(l - 3n)

507 (41 — 3857 +9257%)0”

G
+ (140 - 16017—860772)_:_”_)]
7r? oy @ ijb
+ 450_2(1 —-5n+5n°)z v

+ 10rr
45¢2

(1-5n+ 5173)310aj vbj} ,

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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om aii
Jiju = — (M —(1- 277)) STFisit {tap 7 ”“v”} : (2.37)

Jijpim = (1 =50 +50%)) STFijiim {emas *7¥0%} . (2.38)

The mass and the current moments listed above, agree with Eqgs.(E3) of [43]. For
the case of circular orbits, the above mass and current moments reduce to Egs.(4.4)

of [46).

2.4 The 2PN contribution to the waveform

2.4.1 The Blanchet-Damour-lyer waveform for binaries in general orbits

The 2PN-accurate waveform is given by Eq.(2.4) in terms of the “radiative” mul-
tipole moments U, and V;, which are in turn linked to the source moments I, and
Jr by Egs.(2.9) and (2.10). The latter equations involve some tail integrals and
therefore yield a natural decomposition of the waveform into two pieces, one which
depends on the state of the binary at the retarded instant T, = T — R/c only (we
qualify this piece as "instantaneous™), and another which is a priori sensitive to the
binary's dynamics at all previousinstants Tr — 7 < Tr (werefer to this piece as the

"tail" contribution). More precisely, we decompose
= (R )inst + (P )il - (2.39)

In this section, we compute explicitly the above instantaneous part of the 2PN
accurate gravitational waveform i.e, the transverse-traceless (TT) part of the 2PN
accurate far-zone field for two compact objects of arbitrary mass ratio, moving in a

general orbit. It is given by [46]:

2G 2 1 3 4 2
(M )inst = E:répijkm{fi(j) + - [3N 11(]3 + gé‘ab(i«]( )Nb]
171
Tz {12N“”I sab 5“b<1JJ>acN”“’}
171 5 2
+ _3_ [60 Nabc[i(jzzbc + 15Eab(z=] achbcd}
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171
+ 0_4 _Nabcdli(;gbcd'*‘

1
360 ~=Cab(i J,()acdercde] } ,

36
(2.40)

where R is the Cartesian observer-source distance and N,’s are the components of
N = X/R, the unit normal in the direction of the vector X, pointing from the source
to the observer. The transverse traceless projection operator projecting orthogonal
to X, isgiven by Eq.(2.3), which we reproduce below:

1
Pijkm(N) = ((5“3 - NiNk)((Sjm - Nij) - 5((5”' - NiNj)(dkm - NkNm) . (241)

Evaluating the appropriate time derivatives of the multipole moments and perform-
ing the relevant contractionswith N as required by Eq.(2.40), some details of which
are given in Section 2.4.3, we obtain explicit expression for (h{,ﬁ)mt in terms of the
source variables as shown below. Note that all the computationsfrom here onwards

are performed, using MAPLE [134].

_ 2Gp © , 1om (05
(h m)mst - R })Ukm{ 4 + E E 1

Wy 1 om s 1 2
where the various &;;’s are given by
G
z'(y(')) = 2('“1‘:‘ - —Tﬁ nij) ) (2.43a)

. Gm
§0 = {sovm="

[2n(,vj) rn,J] (N.v) [gr—m—n,-j - 2%] } , (2.43b)
(1) 1 2Gm 2, ,Gm :
&0 = 5{(1 - 3n) [(N.n) - ((31} — 157% + 77) ni; + 307n;v;) — 14v,-j>

+(N.n) (N.v)%ﬂl [121‘n,~j - 32n(,-vj)] + (N.v)? [G'Uij - QGT—mnij”

[3(1 - 377)?) - 2(2 - 3U)Gm]vij + 4-@7-‘7—n-7"(5 + 37])n(ivj)
+ET (300~ 30)% — (10 + 30)e? + 2972y}, (2.43¢)

1
12

- (421)2 — 2107 + 88—G—m) n(iuj)]
T

G
Il (1- zn){(N.n)3GTm [(451;2 — 1056 + gon) rnij — 967 vy



Chapter 2 60

G

—(N.n)*(N.v) Tm [(271}2 — 13572 + 84—;2) ni; + 3367005 — 1721}”]
G

—(N.n)(N.v)Z’—Tﬁ [48f~nij - 184n(ivj)] + (N.v)? [49?% - 24%}}

—%(N.n) Grm{ [(69 66n)v% — (15 — 907)72 — (242 — 2417)Gm]rnij

= [(66 — 367)0% + (138 + 847)72

G
—(256 — 7277)Tm] nvj) + (192 + 1217)r’vij}

+11—2 (N.v){ [(23 — 10n)v® — (9 — 18n)7% — (104 — 12n)

G
— (88 + 407) _Tm_ TGV — [(12 — 60n)v® — (20 — 5277)%”1] vij} ,

G_m]Gm

r J

(2.43d)
® = 1;0(1 — 51+ 57 ){240 (N.v)*; — (N.n)*
GT [(907)4 + (318G7m —~ 126072)0” + 344(;?;”2 + 18907
—2310@#)%
(1620v + 3000G—— — 37807 >m vy - (336v — 168072 + 688%2)%]
—(N.n)3(N.v)GT[(144O'U — 3360+ +3600%T)r'n,-j

— (160802 — 80407% + 3864G—m) nevj) — 3960r'v,-j]
T
+12O(N.v)3(N.n)g—m (Binij - 20n(ivj))
r
G G
+(N.n)2(N.v)2—£—n- [(3961}2 — 198072 + 1668Tm) ni; + 64807nv;)

1
—3600%] } -5 (N.v)2{ [(87 — 3157 + 14572)v?
— (135 — 4657 + 7572)72 — (289 — 9057 + 1157 )Grm] GTm nij

— (240 - 6607 — 2407,2) ;)

G
- [(30 — 270n + 630n2)v? — 60(1 — 67 + 10n2)—T"3]vij}

1
35 (Nn)(N. V)Gm{ [(270 — 11407 + 11707%)0?
T

G
—(60 — 4507 + 90077)7* — (1270 — 3920n + 360n2)—rﬂ] Fng
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- [(186 — 8107 + 1450n%)v? + (990 — 29107 — 9309%)r?
—(1242 — 4170 + 1930772)%7—”-] n(ivj)

+ [1230 — 38101 — 90772] r'v,-j}

+61—0(N.n) Grm{ [(117 480n + 5407%)v*

—(630 — 2850n + 40507%)v*? — (125 — 7400 + 900772)9—"1 v

Gm,2

2

+(105 — 1050n + 315072)7 + (2715 — 85807 + 12607%) —

— (1048 — 31201 + 24072 - m2]nij
+[ (216 — 13807 + 43207%)v? + (1260 — 33007 — 36007772
— (3952 — 128607 + 36607%) & m] F ;)
—[ 12 — 1807 + 11607%)v® + (1260 — 38407 — 7807%)7
— (664 — 23607 + 1700n2)§—m] Uij}
610{ [(66 157 — 1257%)0*

+(90 — 1807 — 480n2)v2r2 — (389 + 10307 — 1107 )G T2

G
+(45 — 2257 + 22572)74 + (915 — 14407 + T207?) —= 72

+(1284 + 1090n)G ] G—Tm- niy
[ (132 + 5407 — 5807%)0? + (300 — 11407 + 3007%)7
+(856 -+ 4007 + 7007 )G i GTm F gy,
0 Gm
— (45 — 3157+ 5857)v" + (354 — 2107 - 5507%) ~ 0

—(270 — 309 + 270772)%-’3 72

G2 2
~ (638 + 14007 — 1307°) “— ]vij} . (2.43¢)

The "tail" contribution reads

2G 2Gm +oo T\ 74
(hkm)tall 4R?—Pijkm/0 dr {ln <§b—1> Iz’j (Tr — T)
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1 T
+—In (—) NIO(Ty - 1)

3c 2b2
4 T
+§—C— ln (2—[)3-> 5ab(iNbJ](';2(TR — T)} y
(2.44)

where we have used for simplicity the notation
by=be Y12 by =be Y0 py=phe /0 (2.45)

We do not discuss the "tail" terms in this thesis. Some details of these tail terms
may be found in [46, 43].

Thefirst check on the above waveform is its circular limit, which matches with
the waveform computed earlier in [46]. The next check of the waveform in the
general case is performed by computing the far-zone energy flux using

C_lf:_ _ c R?
dt 327G

(himhim) dQ(N) . (2.46)

The expression for d€/dt thus obtained is identical to the far-zone energy flux di-
rectly obtained from multipole moments Eq.(2.57). Of course, these checks do not
uniquely fix the expressions in Eq.(2.43) and equivalent expressions are possible

leading to the same transverse traceless parts as discussed below.

The above expressions for the waveform, computed using STF multipole mo-
ments differ from the corresponding expressions obtained by Will and Wiseman
(Egs.(6.10), (6.11) of [43]), using the Epstein-Wagoner multipole moments at 1.5PN
and 2PN orders. Though the two expressions are totally different looking at these
orders, even in the circular limit, it is possible to show that they are equivalent. The
equivalence is established by showing that the difference between the two expres-
sions, at 1.5PN and 2PN orders has a vanishing transverse-traceless, (TT) part. The
easiest way of verifyingthisisto show that the 'plus’ and 'cross polarizations of the
difference in the two expressions vanish at 1.5PN and 2PN orders [138]. In section

2.4.2, we present the difference — at 1.5PN and 2PN orders —, between our waveform
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expression computed directly using the STF multipoles and the Will-Wiseman one
computed using the EW multipoles and verify their equivalence. Finally we note
that the statement in the appendix E of [43] should more precisely read that, STF
multipole moments presented there yield an expression for the waveform equivalent

to Eqgs.(6.10) and (6.11) of [43], and not identical to it {138].

2.4.2 The equivalence to Will-Wiseman waveform

The expression for the gravitational waveform, obtained by Will and Wiseman [43]
differs from our waveform expression at the 1.5PN and the 2PN orders. We give
below the difference in the waveform expressions at these orders and show that the
two polarization states, h, and hy o the difference are zero at 1.5PN and 2PN
orders.

1 om Gm

w)/} = 3_037 ijkm (1“2n){3(N-n)3fUij

{(him) 551 — (him)w
—(N.v)(N.n)? |:'U1:j + 6r'n(,~vj)]
+(N.n)(N.v)? [2 nvj) + 37 nij]

—-(N.v)3n,-j +3 (Nn)r [vznij + Vij — 27 n(ivj)}

+(N.v) [v2nij + v — an(ivj)] } , (2.47a)
1 Gm
(EDEhr ~ TR} = 5o Pakm—{ (1= 51+ 5177) [12(N.v) 'ny

-3 (N.n)4(3v2 — 1572 + %T> oy

([311 ~ 157 + —m—] nevy) — 97*1)1-,-)

v)? (an” + 4n(,vJ))
2 Gm
3(N ) (N V) ([37) 157‘ + —T-:| TLU
_36inuj) — 4vij] — (N.v)? [((51 — 1857 + 557%)0?
. G

_(117 - 3757 — 157%)7% — (39 — 125 — 57?) Tm)nJ

~24 (1= 5+ 50° oy + 12 (1 = 50+ 57
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+2 (N.v) (N. )[27 (1—5n+5n)m -

+((39 ~ 125 — 5y - €

—(171 — 6457 + 255 n2)f~2> n(:V5)

+27 (1 — 5+ 5772) 7 v,-j]

—(N.n)? [(1 — 51+ 577%) (—9 v + 45722

~3v? _(frﬁ) (nij = 27 n¢v;))

+((30 ~ 807 — 507%)0® — (72 — 1500 — 240 7?)72

—(42 - 140n + 10 172)%@) 'Uij]

~[((9 1250 - 572 (- 22)

+(117 - 3751 — 1579%) 7‘~2> (v"’ Ny — 27 vy + Uij)] } :

(2.47b)

The two independent polarization states of the gravitational wave hy and hy are
given by hy = %(pi pi—g q,-) hIT and hy = %(p,- 4;+p; qz-> hii"  where pand q are
the two polarization vectors, forming along with N an orthogonal triad {46, 47, 43].
Note that thereis no need to apply the TT projection before contracting on p and
g. Consequently, we write the difference in the waveform at the 1.5PN and the 2PN
orders as

{(h)ww — (R D1} = Glvi + Ganig + Gngvy) - (2.48)

The polarization states k4 and h,, for Eqs.(2.48) are given by,
1
he = 3 (Pi pj — 4 Qj) (Cl vij + iy + G n(ivj)) ;
= 27 - @v?) + 20 - @n?)

2 (e - @n)av), (2.492)

+
1
5 iq; + Dj Qz) (Cl vij + Cangg + (3 ”(ivj)>

L (p¥) (V) + G () (aom) + 2((pn) (av) + (pv) (aum)).

H
N



Chapter 2 65

(2.49b)

For the explicit computation of Egs.(2.49), we use the standard convention adopted
in [46, 47, 43], which gives, p = (0,1,0), g= (- cosi,0,sini), N = (sini,0, cosi),

n = (cos ¢,sin,0), and v = (7 cos¢ — r w sin$, 7 sin$ +r W cos ¢, 0), where n
and v are the unit separation vector, and the velocity vector respectively, ¢ is the
orbital phase angle, such that the orbital angular velocity w = d¢/dt and i is the

inclination angle of the source.

A straightforward but lengthy computation shows that A, and h,, given by
Eqgs.(2.49) vanish, both at the 1.5PN and the 2PN orders. This establishesthe equiv-
alence of our waveform expression, Egs.(2.42) and (2.43) with the Will-Wiseman one

given by Egs.(6.10) and (6.11) of [43].

2.4.3 STF tensors and formulas for the waveform computations

We present details of the scheme, employed to compute the contributions to hjx
from various multipole moments, as required by Egs.(2.40), (2.42) and (2.43). Our
scheme proceeds in steps. In the first step, we write down schematically, the form
of the desired time derivative of the STF multipole moment, using the compact
notation {}, introduced by Blanchet and Damour [49]. Here {} denotes the un-
normalized minimum number of terms, required to make the expression symmetric
in al the indicated indices. The second step involves peeling, where by observation
and counting, we rewrite the expression obtained in the step 1, as STF on the free
indices - i and j in our case -. In step 3, we contract, the final expression of step 2
with appropriate number of N’s as required by Eq.(2.40). The actual evaluation of
the result of step 3 is performed using Maple [134]. In al the formulae, Sy, denotes
the symmetric version o the object under consideration; e.g. Sy, = I((Zg if the object
is I{™ and S = J{J}) if the object is J{™; - the object in the formula is obvious

from the context.
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The un-normalized symmetric blocks.

0{ijSa)

0(ij Sab)

0{i;0ab)

5{1’]‘ Sabc}

6{ij6ab5c}

J{ij Sabcd}

5{ij 6abScd}

0i S0 +6ia S + 050 Si,

0ijSab + 8:aSjp + 0ipSaj +

0jaSib + 0jbSai + 0apSij

0;j0ab + 0ia0jp + Gipdaj ,

0ijSabe + 0iaSjbe + 0isSajec + dicSab;
+0;0Sibe + 0j65aic + 0jcSabs
+0a6Sijec + 0acSibj + FbeSaij

{ [6ja6bc + 0600 + 5j05ab] S

+ ~5ia5bc + 8ip0ac + 5ic(5ab] S;
+%%+%%+%M&

+%%+%@+%%Fb

+ P(sijéab + 0ia0jp + 5ib5ja] Sc} ;

{5ij5abcd + 6iaSjbed + OisSajed + dicSavjd
+0iaSabej + 0jaSibed + 6jpSaicd + OjcSavid
+0;4Sabei + 0abSijed + OacSbdij + dadSbeij

+0bcSadij + 064 Sacij + 5cdSabij} ,

66

(2.50a)

(2.50b)

(2.50¢)

(2.50d)

(2.50e)

(2.50f)

{ [6ij5ab + 6ialjp + 6iv0aj| Sca + [51']'5“ + 0iadjc + 5ic5aj] Shd

+ -5ij5dc + d;c05 + 5ib6jc- Sed + [6i05ab + 0ia0cp + (5ib5ac] Sja
+ [5cj5ab + 0cadjo + 5cb5aj] Siq + [5ij5ad + 00054 + 6id6aj] Sep
{86 + b0 + 8] Sea + [85a6un + Gabt + S6ua S
+ -6dj6ab + 0gadjp + 5db(5aj] Sei + [5ij5cd + 0ic0jq + 5id50j] Sab
+%%+%M+%%Pwﬂ%%+%%+%%b

0i60cq + 0icOap + 5id5bc] Saj + {5bj5cd + 0pqdjc + 5jd5bc] Sai
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+ bbddpgS 23¢9 00 + bbddpoSZfQDzs)) Z] T_*_

[(dd.f.qumQ + ddfvepag 4 ddlpogoqy 4 ddlpggovg 4
ddﬁ?OPquS) + dd.f?oqspvs;> +

(dd.foqumg + ddpfqvSO@9+

ddpov.fsq.zs; + ddpoq.fsms;) Z] LII— — poqv.f.zsv}.f.zdls = (poqv.f.zl)paqv.[.zﬁls

(DZQZ) c{[(bbddosqﬁ‘?m? + bbddqsoﬁgv;Q + bbddnSo[S)q;9>+

bbdd;S (qn9o[9 + 31)99[9 + oqpn.tg)} %Ll_

l:(ddn[;soqg_*_ ddq_[;SovS)+ ddo[@s,qnp)+

<dd.fquvm9 + ddov.fqu.tg + ddquSv;S)) Z] § - oqv.f.zs}.f.z LS = (oqv.f.zj)oqv.f.t 11S

T
Jlss oy | 5€
(qz5°2) . {[ Healo 9]?
+ [13??5”99 + 110.[5'9?93 + 12‘).55”?94% —_ qD'['zS}'['zCLLS = (Qvf?l)qnf?dls
¢ 1,3 o 1 olir\ol1

8uresd, OYL

(P15°2) - J?bbdds{pos)qu).[?}gg%g_
bb:J{P9SQDS;.[?}9% + dd{poan[,'_z}S)I_[[_ g = (ebpypwng1g
(1ee) ‘nsS{oSqDS)'[?}QE_f + ”{oqvﬁ’p’}?%S — ol = (dfy)of g1 g
(a1¢2) g {"”9”}9% + ”{"”SF-’}S)% —-mhg = (Ph)eigrg
(e1¢°2) ‘n{ns.f.z}g% —ohg = (PP)Phglg
‘S10SU9} JIS YL
(Hog'z) .{p.zp |:D[9q99 | gug 4 mofag] 4

pfs) [0999,19 + QOS)D?S) + 9'093.19] + P”S) I:?.[QQ?S) + Q.fs)als) + q99f19]+
P‘)s) |:7’.[99?S) + 9.[9”.19 + 3'09.[.19] + P99 [9599?9 + Q.[S)D?S) + ‘I”S).f.ls)jl } — {Pf’?qu).[?}s)
(305°2) ‘ {-’-”S [’"’9"“9 + P97 + 9"9’”9] +

L9 Z 193dey)
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0ic06Sadppag + 0ia0jdScoppeg +
0id0;bSacppeq + 5ic5jd5bappqq>

42 (6o + Babis + 505 ) Ssppa
+2 <5id5ab + 0ig0ap + 5ib5da> jcppeq
+2 (@aacd + Gicbaa + 5id5m) Joppag
+2 (c&bdcd + Gicap + 5id5bc) jappag
+ (6Cd5ab + Scabap + 5da5cb> Sjipqu]

633 [(52(15]1,(50(1 + 0ia0jc0ba
+5ic5jb5ad) + <5ic5ab + 8ia0cb + 5ib5ac> 5jd} Sppqqtt} :

(2.52d)
The contractionswith N,

STFya(IY) N, = STF”{SS’GN ——NS } (2.53a)

STFya(I) Nay = STFU{SW,,NM,—?[4NMSJ(2“ S,‘;‘tt] 35N,]Stm},

(2.53b)
STF ijabe(Liape) Nave = STFZJ{SLJabc abe = NIbCS(Z():pp ;Sz(Jsc)ppN +
SNy + 663N,Jasa,,,,qq} (2.53¢)
STFlJade(Iz(]a).bcd)Nade = STF’-J{Sz]abcd Nabed — % ibcd S jbedpp 161 Si(;;c)dpp Neg
;3 Nijed Star cdppgg T 39 Nig Sia jappaa T g Suszzpqq
6 - 12y s,,,,qqtt} (2.53d)
The current multipolemoments.
eoati St = STFiz{ epi i |
epai SO N, = STFij{epqiS](f,) Nq} , (2.54a)

1
i S Ny = STFij{epqz[S(s Nyo — 288 Nq]}}, (2.54b)

J)pa Jjpa 5
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5 4
qu(zJ(f,Zab Ngap = STFij{qui [Sgpab Nyab — (2 S;()bzt Ngjp + Sz(wjzt N, )] }

5(5 I
6pq(iJ J();Zabc N, qabe = STFij {epqi [S J('Zch N, qabc — § (Sz()bZtt gjbe T S jpett )
(s,,tm, )] } . (2.54d)

The explicit computations of the above equations require the following identities,

which are easily derived, using the rules governing the product of €’s. The identities

are
STFU{epq, [: } = STFU{ (N.v)y;; + (N.n)r yivj} , (2.55a)
STFU{ pai Ny0; ,,} - STFU{ v)yiv; + (N.n) 7 v,-,-} , (2.55b)
STF@J{Cpqz ]-Zp} = STFU{ ’I' N; ’UJ (NV) yzNj} y (255C)
STFij{Cpq, } = STFU{—(NV) yij + (Nl’l) T yi'Uj

() Ny; — r2Nivj} , (2.55d)

STFz-j{epqi qu,,i,-} - STFU{(N n) v — (N.V)yio,
—rF Nyvj + v Niyj} , (2.55¢)

STFij{epqi quvp(i.N)} - STFU{[v — (NV)}]Nig; + [(N.n)(N.v) — #]rNw,
HA(NLY) — UZ(N.n)]rNij} , (2.55¢)

STFij{ep,,,- quyp(i.N)} - STFU{[?* (N (NV)]rNig; + [(Nn)? — 1]r2Nu; +
(N.v) - f(N.n)]erij} , (2.55g)

STFU{[i‘ — (N.n)(N.v)]ry;; + [(N.n)? — 1]r?yv; +

STF;; { € qu,-,,(i.N)}
[(N.v) - f(N.n)]r2Niy]} , (2.55h)

STFij{qui qujvp(i-N)} = STFij{ [v2 — (N.v)%yi; + [(N.n)(N.v) — #]ryu;
HF(Nv) = o (N.)]rVig, | (2.55)

STFij{epqi qupvj(i.N)} = STFij{[r' — (Nn)(N.v)]ryv; + [(N.n)? - 1] r? Vij
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H(Nv) = (Na)lr? Nov | (2.55))
STFij{epq,- qujp(I:.N)} = STFij{[UQ ~ (N.V)?Jyiv; + [(N.n)(N.v) — Flroy;

HF(NY) — UQ(N.n)]TNivj} , (2.55K)

where Lp = €pkl Yk Vi-

2.5 The far-zone fluxes

2.5.1 The Energy flux

In Section 2.2, we have seen that Eq.(2.6) gives the far-zoneenergy flux to 2PN order,
in terms of the STF "radiative” moments of the gravitational fizcld. Asin the case
of gravitational waveform, the 2PN accurate relations connecting the "radiative"
multipole moments U, and V, to the source moments I and J. are employed to
split the 2PN-accurate far-zone energy flux into an "instantaneous" contribution
and a "tail" one. In this thesis, we deal only with the instantaneous contribution,

which is given by [135, 46]

G ) 1(3) L1 @, 16 3 3
:cs{sl” Ly + 2[189 iklije + 75 Jii i ]

171 ) (4) (4)”
= |5 I + 5 IR (2.56)

far—zone

Here 1™ denotes the n' time derivative of STF multipole moment of rank L.
Evaluating the relevant time derivatives of the multipole moments in Eq.(2.56),

using the post-Newtonian equations of motion to the appropriate order we obtain

dg inst . . .
(-) = Ey+&py +Epn, (2.57a)
dt far—zone
5 8 G3 m2 ,U/2 2 )
Ev = oo {120% - 117} | (2.57b)
: 8 Gim?u? (1 4
gle = B——ET—'T'A—'— {55 [(785 - 8527])’0

—  2(1487 — 1392n)v*”

G
— 160(17 — n)—:fi v?
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Gm .
+  3(687 — 620m)7* + 8(367 — 15n)7m 7

G2
+ 16(1 — 4n) ]} : (2.57c)
: 8 G3m2u? (1
= ——— " ! (1692 — 5497y + 4430n*)2°
Eapn 15 9rt {42( 6 T m)
1
- IZ(1719 — 102781 + 6292n%)v*r?
1 G
_ (4446 — 52377 + 13935?) —= v*
21 r
+ %(2018 — 15207y + 7572n%)v?#!

1 G )
+ 54987 - 85130 + 2165772)—:2 V272

G? 2
b (281473 + 818281 + 43687%) S o2

756
— i(2501 — 202347 + 8404n%)r°

Gm .
63(33510 609717 + 142907°) Tm 74

1
~  555(106319 + 97987 + 53767)

2 3 3
+ 63( 253 + 10267 — 567)2) } (2.57d)

GQm2 .9

r

Egs.(2.57) are in exact agreement with the results of Will and Wiseman [43] using
the new improved Epstein-Wagoner approach. Circular and radial infall limits of
Egs.(2.57) arein agreement with earlier results {18, 46, 139, 43] and discussed further

in section 2.6.

The tail contribution, on the other hand is given by

de\ ™ 2G 2Gm (3 (5)
<E> = saard @0 [ (g ) 19 Ta =) 59

where b, = he~11/12, A detailed discussion o the tail terms and its implications has

far —zone

been given by Blanchet and Schafer {128], and we do not discuss it any further in

this thesis.
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2.5.2 The angular momentum flux

Following [135], the far-zone angular momentum flux to 2PN accuracy written in

terms of the STF radiative multipole moments of the gravitational field reads:

<dt )far sone C56wq{5Uquj + c2 U Uqu 45V,,JV;”

171 o 1 )
toa [2268U”JHU kT 28V”J V‘U"]}

(2.59)

As before, rewriting the radiative moments in terms of the source moments using
Egs.(2.9) and (2.10) allows us to separate the instantaneous and tail contributions
and we discuss them independently. The "instantaneous" contribuvion is given by,

[135]

d g inst 1 1 9
( ‘7) - zpq{21‘2 1§+ 5[+ 52 j@,6 ]

5 P “q] pik~qjk p]
dt far —z0ne 5 63 45

171 "
—4[22681”“1 ikt T 8J”J’°J ]}

(2.60)

Computing the required time derivatives of the STF moments, using the post-

Newtonian equations of motion to the appropriate order, we obtain

dJ inst . . .
<E>f = JIn+ Jipn + Topn, (2.61a)
ar--zone
3 2
G = ST (o -2 S0 (261b)
: 8G*mu*- (1 .
Jien = = Ln { 5 (307 — 548n)

— 6(74 — 27T — 4(58 + 9577)G7m v?

G
+ 3(95—36077) +2(372+1977) == T2

]} (261
8 G2 m 2

7 - = — (2665 — 12355 12894
JoPN 50,3 Ln {504 [( n+ 7’ )v°

- 2(745
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—  3(2246 — 126537 + 15637n%)v*r?
+ (165 —491n + 4022772)(;—:75 v
+ 3(3575 — 168057 + 1568097 )v?i

G
+ (21853 — 216037 + 25517;2)—rE V272

2. 2
G*m*

—  2(10651 — 101797 + 34287%) ol

—  28(195 — 8151 + 4857%)7"

G
~ (22312 — 41398 7 + 96 95 n?)7* Tm

G2 2
+ 2(8436 — 251027 + 4587n?) TT 1*2]

4 — (170362 + 704617 + 1386 2y G (2.51d)
2268 7 T '

where Ly =r x v. The 1PN contribution isin agreement with the earlier results of
Junker and Schafer [127]. The 2PN contribution is new and together with the energy
flux obtained in the earlier section forms the starting point for the computation the
2PN radiation reaction for compact binary systems - 4.5PN terms in the equation of
motion - [45], using the refined balance method proposed by lyer and Will [33, 34].
The tail terms, in the angular momentum flux are given by

AN 2G 2Gm 3) oo T
( c;t7> - i €ijk I (TR)/B dr In <2_b1> IJ(?)(TR - T).

far —zone

(2.62)

We will not be discussing the tails terms here, as they are extensively studied by

Schafer and Rieth [129].

2.6 Limits

All the complicated formulae, discussed in the earlier sections take more simpler
forms for quasi-circular orbits. For compact binaries like PSR 1913+16, quasi-

circular orbits should provide a good description close to the inspiral phase, since
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gravitational radiation reaction would have reduced the present eccentricity, to van-
ishingly small values. In this context 'quasi’ implies the slow inspiral caused by the
radiation reaction. The quasi-circular orbit is characterized by # =7 = O(e2®). The

2PN equations of motion, become
a = — = - = —whyxt 0. (2.63a)
with wqpn, the 2PN accurate orbital frequency, is given by

Gm 41
wWhpy = T—3{1—(3—n)7+ <6+77+772) 72}, (2.64)

where v = Grn/c? r. Note that Eqs.(2.63) imply as usual, that v = |v| = wepnr T

O(€*%), so that from Eq.(2.64) we get

41
v2=GT—m{1—(3—n)7+ <6+—4—n+772) 72} (2.65)

Substituting # = 0 in Egs.(2.57), and using Eq.(2.65) we obtain the 2PN corrections

to the far-zone energy flux for compact binaries of arbitrary mass ratio, moving in

a quasi-circular orbit

de "™ 26, 2927 5 \ (293383 380
(E) ~56"" {1 - ( 336 * Z") T ooz t Tn)} . (266)

far —zone

Eq.(2.66) is consistent with results of [18, 46, 43].

The energy and angular momentum fluxes are not independent but related in

the case of circular orbits. The precise relation may be written following [140] as:
d€ )
—_— =V , 2.67a
( dt >far —zone j ( )

dJ
where (—)
dt far—zone

where v2 defined in terms of G m/r, is given by Eq.(2.65) [46].

LnJ, (2.67b)

The other limiting case we compare to corresponds to the case of radial infall

o two compact objects of comparable masses. Equations representing the head-on
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infall can be obtained from the expressions for the general orbit by imposing the
restrictions, X =zn,v =:n,r =z and v=7r = z. We consider two different cases,
following Simone, Poisson, and Will [139]. In case (A), the radial infall proceeds
from rest at infinite initial separation, which implies that the conserved energy
E(z) = E(c0) = 0. In case (B), the radial infall proceeds from rest at finite initial

separation zg, which implies

1 1 15
E(z = zy) = —uc*y {1—570+§ [1+—2—n] 7(2)} , (2.68)

where v = Gm/zoc?. Inverting E(z) for 22 and using Eq.(2.68) we obtain

9
z = —0{2(’7—’70) [1 - <1 - g) + 7 (1* 7”)
81 173
2 (13 - T” n 5172) — o <5 - T" ¥ 13772)
+72 (1 - %71 + 8172)] }2 , (2.69)

where y = Gm/z ¢2. Using the radial infall restrictions and Eq.(2.69) in Egs.(2.57)

we obtain for the case B),the far-zone radiative energy flux

d&\ ™ 16 . , & 111
i = = 1- x- - 43- ==
(dt) 150"7{ 7 2

far —zone

135
—z(116 — 131n) + z*(71 — ——")] v

2
11127 803 .
~3 |5+ - e

z (4471  15481n 2)
z _ 2864
+7( 9 g o0

z? 38521n 8800 7n?
- (1870 - 5 + 3

2 2
+z° (83 _ 11837 + 872 )] 72} , (2.70)

4 7

where x = /. For the case (A), the expressions for 2 and d€/dt are obtained by
setting v, = 0 in Egs.(2.69) and (2.70). Eq.(2.70), along with corresponding one for

case (A) are in agreement with [139].
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2.7 Conclusions

In this chapter using the multipolar post-Minkowskian generation formalism of
Blanchet, Damour and lyer, we have computed the 2PN contributions to the mass
guadrupole moment for two compact objects of arbitrary mass ratio moving in gen-
eral orbits. Using this moment and other required multipole moments to lower
post-Newtonian orders obtained using BDI formalism, we have computed the 2PN
contributions to the gravitational waveform and the associated far-zone energy and
angular momentum fluxes. We have also shown equivalence of our waveform with
the one obtained by Will-Wiseman, providing a valuable check on the complicated
and lengthy algebra. In the next chapter the expressions for the far-zone fluxes will
be used to compute the evolution of the orbital elements of the 2PN accurate gener-
alized quasi-Keplerian representation for elliptic orbits. Using the the gravitational
waveform obtained here asone of the inputs, we will calculate the 2PN contributions
to the 'plus' and 'cross gravitational wave polarizations in chapter 4. Also, using
the 2PN corrections to far-zone energy and angular momentum fluxes, in chapter
5 we compute the 2PN radiation reaction, i.e the 4.5PN terms in the equations of

motion, using the refined balance method proposed by Iyer and Will [33, 34].



