
Chapter 2 

The second post-Newtonian corrections to  the 
gravitational waveform and the far-zone fluxes 

2.1 Introduction 

In this chapter we apply the 2 P N  accurate, multipolar post-Minkowskian generation 

formalism of Blanchet, Damour and Iyer [46] to the specific case of an inspiraling 

compact binary of arbitrary mass ratio moving in a general orbit. The aim is to  

obtain 2 P N  corrections to the following quantities in terms of the dynamical variables 

of the binary. The quantities of interest are 

where r - v2/c2 = Gm/c2 r .  Here rn is the total'rnass, r the distance between the 

bodies and v the relative velocity of the two bodies. In Eqs.(2.1), Iij is the mass 

quadrupole moment for a system of two compact objects moving in general orbits 

while hr: is the transverse-traceless (TT) part of the radiation-field, representing 

the deviation of the metric from the flat spacetime. dE/dt and dJ/dt represent the 

far-zone energy and angular momentum fluxes due to the emission of gravitational 

radiation. Note that the suffix 'N'  denotes the Newtonian contribution in all the 
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8 G3 m2 p2 above equations. For example (z)N is given by iS c5r4 {12v2 - l l f 2 ) ,  where p 

is the reduced mass of the binary - defined in terms of the individual masses of 

the bodies ml and m2 by p = ml m2/m2 - and .i. = drldt.  The construction of 

Ii, and other relevant mass and current moments is performed using the Blanchet- 

Damour-Iyer (BDI) formalism. In this formalism the gravitational waveform and 

the far-zone energy and angular momentum fluxes are given in terms of particular 

time derivatives of the mass and current multipole moments of the binary. These 

computations are done using the algebraic computing software, Maple [134] and 

published in Ref. [44]. 

In Section 2.2 we present a summary of the 2PN-accurate BDI generation for- 

malism. Using this formalism, in Section 2.3, we compute the mass and current 

multipole moments for the binary in general orbits in terms of the binary's dynam- 

ical variables. The 2PN corrections to  hz: are obtained in Section 2.4. Section 2.5 

deals with the computation of the far-zone energy and angular momentum fluxes. 

In Section 2.6 we exhibit various limiting cases of our results. The chapter ends 

with a few concluding remarks in Sec 2.7. 

2.2 Summary of the 2PN-accurate generation formalism 

The BDI formalism is a mathematically rigorous technique for computing the higher 

order post-Newtonian corrections to  the mass and current multipole moments a 

relativistic binary, containing compact objects of arbitrary mass ratio. Below we 

present a brief and precise summary of this formalism, drawing heavily on sections 

in [18, 461 where the authors of the formalism themselves described their method. 

Consider the metric gas describing the gravitational field outside an isolated system. 

It is well known that in a suitable "radiative" coordinate system Xp = (cT, Xi) ,  X 

being the vector pointing from the source to the observer, the metric coefficients 

admit an asymptotic expansion in powers of R-l, when R = 1x1 + oo with T - R/c 
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and N F X / R  being fixed ("future null infinity"). The transverse-traceless (TT) 

projection of the deviation of g,p(XY) from the flat metric v, p = diag(-1, 1 ,1 ,1)  

defines the asymptotic waveform h:: - (gk,(X) - bkm)TT. Note that greek indices 

range from 0 to 3 while latin indices i, j ,  k ,  m. . . range from 1 to 3. The 1/R part of 

hr: can be uniquely decomposed into multipoles: 

The "radiative" multipole moments UL and VL (defined for e > 2) denote some 

functions of the retarded time TR - T - R/c, taking values in the set of symmetric 

trace-free (STF) three-dimensional cartesian tensors of order e. Here L = i l  . . . it 

denotes a spatial multi-index of order l, NL-2 I Nil . . . Nil-2, X(ij) G $(Xij + Xji) 

and 

We summarize our notation here. In this thesis we have - + ++ signature, greek 

indices run over 0,1, 2, 3, latin indices vary from 1, 2, 3, the covariant metric 

is g,, and g = det (g,,). The relative separation r = 1x1 = (x: + xi  + x:)''~, 

ni = ni = xi/r ,  di = d/dxi, xL = XL = xilxi2 . . .xil and dL = dildi, . . . di,, where 

L = i l i2 .  . . il is a multi-index with 1 indices and X L - ~  = xilxi2 . . . etc.. . . The 

symmetric and tracefree (STF) part of a tensor TL is denoted in any of the following 

ways TL =TCL> =STFL(TL),  e.g., 2,  = x i x j  - fCr2; T (  2,) = 1 2(Tj+T'i). 

As indicated in Eq.(2.2), for slowly moving systems the multipole order is cor- 

related with the post-Newtonian order. The coefficients in Eq.(2.2) have been cho- 

sen so that the moments UL and VL reduce, in the non-relativistic limit c -+ +oo 
(or E + 0), to the e-th time-derivatives of the usual Newtonian mass-type and 

current-type moments of the source. At the 2PN approximation, i.e., when retain- 

ing all terms of fractional order c4 N c - ~  with respect to the leading (Newtonian 
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quadrupole) result, the waveform (2.2) reads 

1 1 + - [ -N abcd U . .  z ~ a b c d  + - ~ a b ( i K ) a c d e N b c d e  
c4 360 36 

The far-zone energy flux is related the waveform by 

ahzT 
2 

- 
A ( )  R ~ I I ~ ( N ) .  

far-zone 321rG 

At the 2PN approximation this yields (with u ( ~ )  - dnU/dTk) 

(3 far-zone 

The angular dependence of the waveform h:: causes its wavefront to  be not quite 

spherical and thereby enables the waves to carry off angular momentum. A gen- 

eral expression for the far-zone angular momentum flux in terms of the radiative 

multipole moments is available in the literature, see Eq.(4.23') of [135]. At 2PN 

approximation this equation reduces to 

(%) - - 
G 

far-zone 

( 1 )  + - -upjklUqjkl + 2S6jkv41:)]} ' 
c4 2268 

The explicit computation of Eqs. (2.4), (2.6) and (2.7) in terms of source variables are 

obtained using the 2PN accurate BDI formalism, which we describe briefly below. 
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The 2PN-accurate BDI gravitational wave generation formalism is a precise, 

modular treatment that allows one to  compute the radiative moments entering 

Eqs.(2.4), (2.6) and (2.59) in terms of the source variables to  an  accuracy sufficient 

for obtaining the waveform with fractional accuracy l /c4.  The latter requirement 

implies, in view of Eq.(2.4), that one should (at a minimum) compute: the mass- 

type quadrupole radiative moment Uili, to l/c4 accuracy; the mass-type radiative 

octupole UiliZi3 and the current-type radiative quadrupole KIi2 to  l /c3 accuracy; 

Uili2i3i4 and KliZi3 to l /c2 accuracy; UiliZi3i4i5 and V,li,i,i4 t o  l / c  accuracy; and 

Uili2i3i4i5iS and V,li2i3i4i5 to the Newtonian accuracy. Note that  these requirements 

are relaxed if one is only interested in getting the energy loss rate with 2PN-accuracy. 

In that case, Eq.(2.6) shows that  one still needs Uili2 t o  l /c4 accuracy, but that i t  

is enough to  compute Uilizi3 and Kliz to 1/c2 accuracy, and UiliZi3i4 and KliZi3 to  

Newtonian accuracy. 

In the BDI generation formalism, the link between the radiative multipoles UL 

and VL and the dynamical state of the material source is obtained in several steps. 

These various steps are briefly presented here. The BDI approach begins with 

Einstein's equations written in harmonic coordinates. The field hap, measuring the 

deviation of the "gothic" metric, from the Minkowski metric rlap is defined to be 

hap 
= map - rlap. Imposing the harmonic coordinate condition 8phap = 0 then 

leads to the field equations 

where denotes the flat spacetime d'Alembertian operator, T a p  is the matter 

stress-energy tensor, and AaP is an effective gravitational source containing the non- 

linearities of Einstein's equations. It  is a series in powers of hap and its derivatives; 

both quadratic and cubic nonlinearities in Asp which play an essential role in the 

BDI calculations. 

The next step consists of constructing an iterative solution to  Eq.(2.8) in an in- 
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ner domain (or near-zone) that includes the material source but whose radius is much 

T O O + T ~ ~  TO' less than a gravitational wavelength. Defining source densities a = cz , ui = T, 
. . 

a- 23 = T", and the retarded potentials V = -47r G fJ;la, V,  = -47rG fJ;lair 

and Wij = -4nG0;'[oij + (4nG)-l(aiVajV - !jbijakvakv)], where u,' denotes 

the usual flat spacetime retarded integral, one obtains the inner metric hzp to 

some intermediate accuracy 0(6 ,5 ,6) .  Here hy: = -I cz V + 5 (Wii - 2V2) + O(6) , 
. . 

hp,' = - 3 I/, + 0(5) ,  and h:: = - 3 Wij + 0(6) ,  where O(n) means a term of or- 

der ,? in the post-Newtonian parameter E N V / C .  Also, 0 (n1 ,n2 ,  n3) denotes an 

accuracy of O(nl) ,  O(nz), O(n3) for h c ,  hp: and h:. From this, one constructs the 

inner metric with the higher accuracy 0(8 ,7 ,8)  needed for subsequent matching as 

ap  1 16n G Tab 
hin = "6 [T (V, W)] + 0(8 ,7 ,8) ,  where T~@(V,  W) denotes the right-hand- 

side of Eq.(2.8) when retaining all the quadratic and cubic nonlinearities to the 

required post-Newtonian order in the near-zone, and given as explicit combinations 

of derivatives of V, V,  and Wij. 

The second step consists of 'constructing a generic solution of the vacuum 

Einstein equations (Eq.(2.8) with T"B = 0), in the form of a multipolar-post- 

Minkowskian expansion that is valid in an external domain which overlaps with 

the near-zone and extends into the far wave-zone. The construction of hap in the 

external domain is done algorithmically as a functional of a set of parameters, called 

the "canonical" multipole moments Mil ...il (t), Si,...il (t) which are STF Cartesian ten- 

sors. Schematically, h t i  = F@[M~,  SL] where the functional dependence includes 

a non-local time dependence on the past "history" of ML(t) and SL(t). 

The third, "matching" step consists of requiring that the inner and external 

metrics be equivalent (modulo a coordinate transformation) in the overlap between 

the inner and the external domains. This requirement determines the relation be- 

tween the canonical moments and the inner metric (itself expressed in terms of the 

source variables). Performing the matching through 2PN order [52] thus determines 
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ML ( t )  = It [ F p ]  + 0 ( 5 ) ,  SL ( t )  = JL + 0(4), where the "source" moments IL and 

JL are given by some mathematically well-defined (analytically continued) integrals 

of the quantity F p ( V ,  W) which appeared as source of hgp. When computing the 

source moments, all finite size effects, such as spin (which to  2PN accuracy can be 

added separately) and internal quadrupole effects are neglected. 

In the last step, the computation of nonlinear effects in the wave-zone allows 

the construction of the radiative multipole moments UL and VL as some nonlinear 

functionals of "canonical" multipole moments ML, SL and therefore of the source 

multipole moments. 

The final result for the 2PN-accurate generation formalism when working in an 

initially mass-centred coordinate system, i.e. such that  the canonical mass dipole 

M, vanishes for all times is given by Eqs.(2.6) and (2.7) of [46] which reads 

uij (TR) = I!;) (TR) + i+m dT [In (5)  + g] 1:) (TR - r) + 0 ( E ~ )  , 

2Gm +m 
Kj (TR) = J$) (TR) + 1 d~ [In ($) + :] J!,?) (TR - T) + O ( E ~ )  , 

for the moments that need to  be known beyond the 1PN accuracy, and 

for the other ones. Eqs.(2.9) involve some integrals which are associated with tails; 

these integrals have in front of them the total mass-energy m of the source, and 

contain a quantity b which is an arbitrary constant (with the dimension of time) 

parametrizing a certain freedom in the construction of the radiative coordinate sys- 
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tem (T, X). More precisely, the link between the (Bondi-type) radiative coordinates 

Xp = (cT, Xi) and the (harmonic) canonical coordinates xfan = (ctcan, x;,) is given 

by Eq.(2.8) of [46] and displayed below 

Except for the computation of Uij which requires the knowledge of the mass quadrupole 

source moment Iij with 2PN accuracy, the computation of the other multipole con- 

tributions to the waveform can be obtained from 1PN-accurate expressions of the 

mass-type and current-type source moments which have been obtained for all values 

of e in Refs.[136] and [I371 respectively, as explicit integrals extending only on the 

compact support of the material source. Note that there are no l/c3 contributions 

in the source moments. 

Finally we list expressions for the 2PN accurate mass multipole moments and 

1PN accurate spin multipole moments obtained in [52]. The 2PN accurate mass 

multipole moment given by Eq.( 2.17) of [46] reads, 

4 
IL(~)  = F P B , ~  + -Ua,, a,". 

c4 

1x142~ 2 ( 2 ~  + 1)1x122iL + 
8c4 (2C+ 3) (2C+ 5) 

a,". - 
c4(e + 1)(2c + 3)(2c + 5) 

a; ai 

Though the 1PN accurate expression for the the current moment JL was initially 

obtained in [137], we employ another equivalent form following [52]. The IPN 
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accurate current multipole moments are given by Eq.(2.13) of [46] which gives 

The symbol FPB,0 in the above stands for "Finite Part a t  B = 0" and denotes 

a mathematically well-defined operation of analytic continuation. For more details 

see 1461. As emphasized in [46] though the above expression is mathematically well- 

defined, it is a non-trivial and long calculation to rewrite it explicitly in terms of the 

source variables only. In the next section we perform the above task, for binaries 

in general orbits and obtain 2PN accurate expressions for Iij, 1PN accurate Jij, Iijk 

and Iijkl in terms of the dynamical variables of the binary. 

2.3 Mass and current moments of compact binaries on general 

orbits for 2PN generation 

2.3.1 2PN mass quadrupole moment 

The starting point for the computation of the 2PN accurate mass moment is the 

form of the moment given by Eq.(2.17) of [46], which is reproduced as Eq.(2.12) in 

the above section. In order to rewrite the mass moment explicitly in terms of the 

source variables we represent the stress energy tensor of the source as a sum of Dirac 

where A denotes the Ath particle, r n ~  denotes the (constant) Schwarzschild mass of 

the Ath compact body and the summation is over the N particles in the system. 
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Evaluating this to 2PN accuracy we obtain for the source variables 

N 

g i  (x, t) = C PA (~)u;&(x - YA (t)) , 
A = l  
N . . 

o i j  ( ~ 1  t)  = C PA ( t ) ~ i u i J ( x  - yA ( t ) )  , 
A = l  

where v i  = dyildt  and 

In the above V denotes the combination 

the potential appearing naturally in the 1PN near-zone metric in harmonic coor- 

dinates. The subscript A appearing in Eq.(2.16a) indicates that one must replace 

the field point x by the position y~ of the Ath mass point, while discarding all the 

ill-defined (formally infinite) terms arising in the limit x -+ y ~ .  For instance 

[Note that the second time derivative appearing in V, Eq.(2.17), must be explicated 

before making the replacement x -+ yA(t).] 

The terms in Eq.(2.12) fall into 3 types: compact terms, Y terms and W 

terms. The compact terms, where the 3-dimensional integral extends only over the 
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compact support of the material sources; the Y terms involving three dimensional 

integral of the product of two Newtonian like potentials; and the W term involving 

three dimensional integrals of terms trilinear in source variables. The evaluation of 

these different terms proceeds exactly as in the circular case. In fact, if the time 

derivatives are not explicitly implemented the expression in the general case and the 

circular case would be identical. The difference obtains when the time derivatives 

are implemented using the equation of motion. In this section we need to  use the 

general form of the Damour-Deruelle equations of motion rather than the restricted 

form of the circular orbit equations of motion relevant in [46]. 

We take up the compact terms first. They are given by 

in which we have introduced for convenience PA - pA(l  + v;/c2). In the above form 

the moment depends not only on the position and velocity of the bodies but also on 

higher time derivatives. It is in the reduction of these derivatives that  we need the 

2PN accurate equation of motion for general orbits. We use a harmonic coordinate 

system in which the 2PN center of mass is at rest a t  the origin. Using the 2PN 

accurate center of mass theorem, in the center of mass frame, we can express the 

individual positions of the two bodies moving in general orbits in terms of their 

relative position x = yl - yg and velocity v = vl - v2 
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where r = lyl -y21 is the harmonic separation between the two bodies. The explicit 

values of ~1 and ~2 are not needed in our calculations and hence not given above. 

The above equations are obtained by setting equal to zero the conserved mass dipole 

G for general orbits. Here we denote 

The 2PN accurate equations of motion is written down next for completeness, 

where finite-size effects, such as spin-orbit, spin-spin, or tidal interactions are ig- 

nored. [104, 38, 1301. For the relative motion we have 

(1) (2) a = a~ + a,, + a,,, + o ( c ~ . ~ )  , (2.22) 

where the subscripts denote the nature of the term, Newtonian (N), post-Newtonian 

(PN), post-post-Newtonian (2PN), and the superscripts denote the order in E .  The 

explicit expressions for various terms mentioned above are given by 

where n = x / r  and i = d r l d t .  
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We have on hand all the ingredients to  compute I,. Though long and tedious 

the computation is straightforward and yields for the 2PN mass quadrupole: 

The Y terms on the other hand are given by 

where following [46] 
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so that 

The explication of all the above terms finally leads us to 

The evaluation of the term, the new feature a t  2PN level, was discussed in 

detail in [46]. The W term has been evaluated there for general orbits and we need 

to use the same result here. We have 

Adding up the compact i. e., C,  Y and W contributions given by Eqs.(2.24), (2.28) 

and (2.29), we finally obtain the expression for the 2PN accurate mass quadrupole for 

a system of two bodies moving in general orbits. The final result is written below 

as a combination of the three possible combinations xij, xivj, vij with coefficients 

which include corrections beyond the Newtonian order a t  1PN and 2PN orders: 
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The above expression is identical to the one obtained by Will and Wiseman in the 

appendix E of [43] using the new improved version of the Epstein-Wagoner for- 

malism. In their treatment the Epstein-Wagoner multipoles appear more naturally, 

using which they compute the STF mass quadrupole moment. Since the approach 

employed here and in [43] follow algebraically different routes, the above match 

provides a valuable check on the long and complicated algebra involved in the de- 

termination of the crucial mass quadrupole moment for 2PN generation. 

2.3.2 The other relevant mass and current moments 

In this section we list the higher order mass and current multipole moments, required 

to compute the 2PN contributions to the gravitational waveform and the associated 

far-zone energy and angular momentum fluxes. They are straightforwardly obtained 

by explicating the point particle limits of the more general expressions, given by 

Eqs.(2.12) and (2.13). 
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7 r2 a i j b  + -(1 -57+572)x  v 
45 c2 

l o r +  2 ai b j  + - ( 1 - 5 ~ + 5 7 ) x  v 
45 c2 
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The mass and the current moments listed above, agree with Eqs.(E3) of [43]. For 

the case of circular orbits, the above mass and current moments reduce to Eqs.(4.4) 

of [46]. 

2.4 The 2PN contribution to  the waveform 

2.4.1 The Blanchet-Damour-lyer waveform for binaries in general orbits 

The 2PN-accurate waveform is given '3y Eq.(2.4) in terms of the "radiative" mul- 

tipole moments UL and VL which are in turn linked to the source moments IL and 

JL by Eqs. (2.9) and (2.10). The latter equations involve some tail integrals and 

therefore yield a natural decomposition of the waveform into two pieces, one which 

depends on the state of the binary a t  the retarded instant TR - T - R/c only (we 

qualify this piece as "instantaneous"), and another which is a priori sensitive to the 

binary's dynamics a t  all previous instants TR - T 5 TR (we refer to this piece as the 

"tail" contribution). More precisely, we decompose 

In this section, we compute explicitly the above instantaneous part of the 2PN 

accurate gravitational waveform i. e., the transverse-traceless (TT) part of the 2PN 

accurate far-zone field for two compact objects of arbitrary mass ratio, moving in a 

general orbit. I t  is given by [46]: 
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where R is the Cartesian observer-source distance and Na's are the components of 

N = X I R ,  the unit normal in the direction of the vector X, pointing from the source 

to the observer. The transverse traceless projection operator projecting orthogonal 

to X ,  is given by Eq.(2.3), which we reproduce below: 

Evaluating the appropriate time derivatives of the multipole moments and perform- 

ing the relevant contractions with N as required by Eq.(2.40), some details of which 

are given in Section 2.4.3, we obtain explicit expression for (hc:Iinst in terms of the 

source variables as shown below. Note that all the computations from here onwards 

are performed, using MAPLE [134]. 

where the various tij's are given by 
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The "tail" contribution reads 
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where we have used for simplicity the notation 

We do not discuss the "tail" terms in this thesis. Some details of these tail terms 

may be found in [46, 431. 

The first check on the above waveform is its circular limit, which matches with 

the waveform computed earlier in [46]. The next check of the waveform in the 

general case is performed by computing the far-zone energy flux using 

The expression for dE /d t  thus obtained is identical to the far-zone energy flux di- 

rectly obtained from multipole moments Eq.(2.57). Of course, these checks do not 

uniquely fix the expressions in Eq.(2.43) and equivalent expressions are possible 

leading to the same transverse traceless parts as discussed below. 

The above expressions for the waveform, computed using STF multipole mo- 

ments differ from the corresponding expressions obtained by Will and Wiseman 

(Eqs.(6.10), (6.11) of [43]), using the Epstein-Wagoner multipole moments at  1.5PN 

and 2PN orders. Though the two expressions are totally different looking at  these 

orders, even in the circular limit, it is possible to show that they are equivalent. The 

equivalence is established by showing that the difference between the two expres- 

sions, at  1.5PN and 2PN orders has a vanishing transverse-traceless, (TT) part. The 

easiest way of verifying this is to show that the 'plus' and 'cross' polarizations of the 

difference in the two expressions vanish at 1.SPN and 2PN orders [138]. In section 

2.4.2, we present the difference - at  1.5PN and 2PN orders -, between our waveform 
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expression computed directly using the STF multipoles and the Will-Wiseman one 

computed using the EW multipoles and verify their equivalence. Finally we note 

that the statement in the appendix E of [43] should more precisely read that, STF 

multipole moments presented there yield an expression for the waveform equivalent 

to Eqs.(6.10) and (6.11) of [43], and not identical to it [138]. 

2.4.2 The equivalence t o  Will-Wiseman waveform 

The expression for the gravitational waveform, obtained by Will and Wiseman [43] 

differs from our waveform expression at  the 1.5PN and the 2PN orders. We give 

below the difference in the waveform expressions at these orders and show that the 

two polarization states, h+ and h,  of the difference are zero at  1.5PN and 2PN 

orders. 
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The two independent polarization states of the gravitational wave h+ and h, are 

given by h+ = - qi qj) h y  and h, = 1 h? , where p and q are 

the two polarization vectors, forming along with N an orthogonal triad [46, 47, 431. 

Note that there is no need to apply the TT projection before contracting on p and 

q. Consequently, we write the difference in the waveform at  the 1.5PN and the 2PN 

orders as 

TT TT 
{(hij )WW - (hij ) B D I }  = <I vij + <z nij + 6 n(ivj) (2.48) 

The polarization states h+ and h,, for Eqs.(2.48) are given by, 
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For the explicit computation of Eqs. (2.49), we use the standard convention adopted 

in [46, 47, 431, which gives, p = (0,1,O), q = (- cos i, 0, sin i) ,  N = (sin i, 0, cos i) ,  

n = (cosq5,sin$,O), and v = (+ cosq5 - r w  sin$, .i. sin$ + r w  cosq5, 0), where n 

and v are the unit separation vector, and the velocity vector respectively, $ is the 

orbital phase angle, such that the orbital angular velocity w  = d$/dt and i is the 

inclination angle of the source. 

A straightforward but lengthy computation shows that h+ and h,, given by 

Eqs.(2.49) vanish, both at  the 1.5PN and the 2PN orders. This establishes the equiv- 

alence of our waveform expression, Eqs. (2.42) and (2.43) with the Will-Wiseman one 

given by Eqs.(6.10) and (6.11) of [43]. 

2.4.3 STF tensors and formulas for the waveform computations 

We present details of the scheme, employed to compute the contributions to hjk 

from various multipole moments, as required by Eqs.(2.40), (2.42) and (2.43). Our 

scheme proceeds in steps. In the first step, we write down schematically, the form 

of the desired time derivative of the STF multipole moment, using the compact 

notation {), introduced by Blanchet and Damour [49]. Here {) denotes the un- 

normalized minimum number of terms, required to make the expression symmetric 

in all the indicated indices. The second step involves peeling, where by observation 

and counting, we rewrite the expression obtained in the step 1, as STF on the free 

indices - i and j in our case -. In step 3, we contract, the final expression of step 2 

with appropriate number of N's as required by Eq.(2.40). The actual evaluation of 

the result of step 3 is performed using Maple [134]. In all the formulae, SL, denotes 

the symmetric version of the object under consideration; e.g. SL = I(;; if the object 

is I F )  and SL = J:;) if the object is J?); - the object in the formula is obvious 

from the context. 
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The un-normalized symmetric blocks . 



+ bbddpq S s p +  3 C  v z  bbddp3 s P p ) Z l E +  qC VZ 

T. 
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The contractions with NL 

The current multipole moments. 

f p q ( i  J j ) p ~  = s ~ ~ i j  { C p 9 i J j p ~ }  
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The explicit computations of the above equations require the following identities, 

which are easily derived, using the rules governing the product of 6's. The identities 

are 
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where L, = epkl yk v1. 

2.5 The far-zone fluxes 

2.5.1 The Energy flux 

In Section 2.2, we have seen that Eq.(2.6) gives the far-zone energy flux to 2PN order, 

in terms of the STF "radiative" moments of the gravitational fisld. As in the case 

of gravitational waveform, the 2PN accurate relations connecting the "radiative" 

multipole moments UL and VL to the source moments IL  and JL are employed to 

split the 2PN-accurate far-zone energy flux into an "instantaneous" contribution 

and a "tail" one. In this thesis, we deal only with the instantaneous contribution, 

which is given by [135, 461 

far-zone 

Here IP)  denotes the nth time derivative of STF multipole moment of rank L. 

Evaluating the relevant time derivatives of the multipole moments in Eq.(2.56), 

using the post-Newtonian equations of motion to the appropriate order we obtain 
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Eqs.(2.57) are in exact agreement with the results of Will and Wiseman [43] using 

the new improved Epstein-Wagoner approach. Circular and radial infall limits of 

Eqs. (2.57) are in agreement with earlier results 118, 46, 139, 431 and discussed further 

in section 2.6. 

The tail contribution, on the other hand is given by 

2G 2Gm (3) +oo 
- - ---I, (TR)/ d l n ( ) ~ ( - )  (2.58) 

far-zone 5c5 C3 0 2bl 

where bl G b e-11/12. A detailed discussion of the tail terms and its implications has 

been given by Blanchet and Schafer [128], and we do not discuss it any further in 

this thesis. 
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2.5.2 The angular momentum flux 

Following [135], the far-zone angular momentum flux to 2PN accuracy written in 

terms of the STF radiative multipole moments of the gravitational field reads: 

- - 
far-zone 

-4s before, rewriting the radiative moments in terms of the source moments using 

Eqs. (2.9) and (2.10) allows us to separate the instantaneous and tail contributions 

and we discuss them independently. The "instantaneous" contribu~ion is given by, 

11351 

- - 
far-zone 

Computing the required time derivatives of the STF moments, using the post- 

Newtonian equations of motion to the appropriate order, we obtain 
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where LN = r x v. The 1PN contribution is in agreement with the earlier results of 

Junker and Schafer [127]. The 2PN contribution is new and together with the energy 

flux obtained in the earlier section forms the starting point for the computation the 

2PN radiation reaction for compact binary systems - 4.5PN terms in the equation of 

motion - [45], using the refined balance method proposed by Iyer and Will [33, 341. 

The tail terms, in the angular momentum flux are given by 

- - 2G 2Gm -- r q k  I!:)(T,) J+m dr 1n 
far-zone 5c5 c3 0 

We will not be discussing the tails terms here, as they are extensively studied by 

Schafer and Rieth [129]. 

2.6 Limits 

All the complicated formulae, discussed in the earlier sections take more simpler 

forms for quasi-circular orbits. For compact binaries like PSR 1913+ 16, quasi- 

circular orbits should provide a good description close to the inspiral phase, since 
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gravitational radiation reaction would have reduced the present eccentricity, to van- 

ishingly small values. In this context 'quasi' implies the slow inspiral caused by the 

radiation reaction. The quasi-circular orbit is characterized by :': = i. = O ( E ~ . ~ ) .  The 

2PN equations of motion, become 

dv  - d2x a - - 
d t  dt" 

- -"zPN + o ( E ~ . ~ )  . (2.63a) 

with W ~ P N ,  the 2PN accurate orbital frequency, is given by 

where y = Grn/c2 r. Note that Eqs.(2.63) imply as usual, that v = Ivl = W 2 p ~  r + 
O ( E ~ . ~ ) ,  SO that from Eq.(2.64) we get 

Substituting .i. = 0 in Eqs.(2.57), and using Eq.(2.65) we obtain the 2PN corrections 

to the far-zone energy flux for compact binaries of arbitrary mass ratio, moving in 

a quasi-circular orbit 

- - 32 c5 2927 5 293383 380 
--q2y5 (1 - Y (= + 4 ~ )  + Y~ ( 9072 + Tq)} . (2.66) 

far-zone 5 G 

Eq. (2.66) is consistent with results of [18, 46, 431. 

The energy and angular momentum fluxes are not independent but related in 

the case of circular orbits. The precise relation may be written following [I401 as: 

(g) far-zone 
= v2 J-, 

d J  
where (dt) - L N 3 ,  

far-zone 

where v2 defined in terms of G m / r ,  is given by Eq.(2.65) [46]. 

The other limiting case we compare to corresponds to the case of radial infall 

of two compact objects of comparable masses. Equations representing the head-on 
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infall can be obtained from the expressions for the general orbit by imposing the 

restrictions, x = zn, v = i n ,  r = z and v = .i. = i .  We consider two different cases, 

following Simone, Poisson, and Will [139]. In case (A), the radial infall proceeds 

from rest at infinite initial separation, which implies that the conserved energy 

E(z)  = E ( m )  = 0. In case (B), the radial infall proceeds from rest at finite initial 

separation zo, which implies 

where yo = Gm/zoc2. Inverting E(z)  for i2 and using Eq.(2.68) we obtain 

where y = G m/z c2. Using the radial infall restrictions and Eq. (2.69) in Eqs. (2.57) 

we obtain for the case B),the far-zone radiative energy flux 

- - 1- x- -  43- 11 1 

far-zone 7 

where x = yo/y. For the case (A), the expressions for i and dE/d t  are obtained by 

setting yo = 0 in Eqs.(2.69) and (2.70). Eq.(2.70), along with corresponding one for 

case (A) are in agreement with [139]. 
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2.7 Conclusions 

In this chapter using the multipolar post-Minkowskian generation formalism of 

Blanchet, Damour and Iyer, we have computed the 2 P N  contributions to the mass 

quadrupole moment for two compact objects of arbitrary mass ratio moving in gen- 

eral orbits. Using this moment and other required multipole moments to lower 

post-Newtonian orders obtained using BDI formalism, we have computed the 2 P N  

contributions to the gravitational waveform and the associated far-zone energy and 

angular momentum fluxes. We have also shown equivalence of our waveform with 

the one obtained by Will-Wiseman, providing a valuable check on the complicated 

and lengthy algebra. In the next chapter the expressions for the far-zone fluxes will 

be used to compute the evolution of the orbital elements of the 2PN accurate gener- 

alized quasi-Keplerian representation for elliptic orbits. Using the the gravitational 

waveform obtained here as one of the inputs, we will calculate the 2 P N  contributions 

to the 'plus' and 'cross' gravitational wave polarizations in chapter 4. Also, using 

the 2PN corrections to far-zone energy and angular momentum fluxes, in chapter 

5 we compute the 2PN radiation reaction, i. e the 4.5PN terms in the equations of 

motion, using the refined balance method proposed by Iyer and Will [33, 341. 


