Chapter 3

The evolution of the orbital elements in
the generalized quasi-Keplerian parameterization
of the binary

3.1 Introduction

In this chapter, we compute the 2PN corrections to the rate of decay of the orbital
elements of a compact binary, in quasi-elliptical orbit, i.e. the effect of the 4.5PN
radiation reaction on a 2PN accurate conservative elliptical motion, extending the
earlier computations [126, 128, 127, 129]. The basic ingredients we employ for the
calculations are the far-zone energy and angular momentum fluxes in the harmonic
coordinates computed in the previous chapter and a 2PN accurate description of
the relative motion of the compact binary available in a generalized quasi-Keplerian
parameterization given in the ADM coordinates [40, 41, 42]. Since the 2PN accurate
orbital representation isin the ADM coordinates, we use the coordinate transfor-
mations connecting the harmonic and the ADM coordinates [142], to rewrite the
far-zone fluxes in the ADM coordinates. The far-zone fluxes, in the ADM coordi-
nates are averaged over an orbital period, extending the earlier computationsat the
1PN and the 1.5PN order {126, 128, 127, 129]. The 2PN corrections to the rate of
decay of the orbital elements are computed using heuristic arguments based on the
conservation of energy and angular momentum to the 2PN order. The argument

Is that the energy and the angular momentum carried away from the binary by
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gravitational waves, theoretically computed to the 2PN order in chapter 1, should
be balanced by a decrease of the 2PN accurate energy and angular momentum of
the binary. Hence emission of gravitational radiation will result in the decay of the
orbital elements of the generalized quasi-Keplerian representation, as they are ex-
pressed in terms of the conserved energy and the angular momentum of the binary.
Though we are extending the computations of {126, 128, 127, 129] to obtain the
2PN corrections to the evolution of orbital elements, we have to take care of a new
complication at thisorder. The complication arises due to the fact that the far-zone
fluxes are computed in the harmonic or De-Donder coordinates, while the orbital
representation is available only in the ADM coordinates. In the limit of n — 0 our

results reduce to the test particle results [61] to 2PN accuracy.

This chapter is organized as follows. In Section 3.2 we summarize the gener-
alized quasi-Keplerian description of the bound orbits of the binary in the ADM
coordinates. Section 3.3 deals with the transformation equations relating the De-
Donder and the ADM gauges. In Section 3.4 we rewrite the expressions for the
far-zone fluxes using the the generalized quasi-Keplerian representation for ellipti-
cal motion and average the fluxes over an orbital period of the binary. Section 3.5
deals with the evolution of some of the important orbital elements of the 2PN accu-
rate representation. In section 3.6 we discuss different limiting cases and compare
them with earlier results. Most of the results presented in this chapter have been

published in Ref. [44].

3.2 The second post-Newtonian motion of compact binaries

Let r(t), ¢(t) be the planar relative motion of the two point masses in a bound
binary. It is well know that the solution of the Newtonian equations of motion for

a bound binary (E< 0) can be expressed in the following form,

r = a(l—ecosu), (3.1a)
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n(t—t) = u-esnu, (3.1b)

¢—do = v, (3.1c)
wherev = 2 tan-' {(5%} Etan(g-)}. (3.d)

The above description is known in the literature as the Keplerian representation.
Here n, the mean motion is given by n = %" where Pisthe orbital period. Alsoeis
the eccentricity and a is the semi-major axis of the orbit. The auxiliary quantities
u and v are called eccentric and true anomalies. Note that the parameters n, a and
e are functions of the conserved energy and angular momentum per unit reduced
mass p of the binary. To avoid introducing additional notation following [40, 41, 42],
in what follows, these are aso denoted as E and J= |J|.

Damour and Deruelle found a remarkably simple parameterization for the so-
lution to the 1PN accurate Damour-Deruelle equations of motion {104, 39]. This

representation known in the literature as the quasi-Keplerian parametrization, is

given by,
r = a(l —e,cosu), (3.2a)
n(t—ty) = u—e sinu, (3.2b)
¢—¢o = <1+c£2>v’ (3.2¢)

wherev = 2 tan-' {(%‘ %tan(g)}. (3.2d)

Instead of a single eccentricity e as in the Newtonian case, there are three differ-
ent eccentricities, e, e; and ed. Further the ¢ equation contains k, the periastron

precession constant. As before all parameters arefunctions of E and J of the binary.

Damour and Schafer observed that in the ADM coordinates there exists an
elegant and most Keplerian like representation to the second post-Newtonian motion
of a binary system [40]. This generalized quasi-Keplerian description for the general
binary orbits to the 2PN order, developed by Damour, Schafer, and Wex [40, 41, 42]
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is best suited for the calculation we propose to do in the following sections and
we summarize it in what follows. Let r4(t4), #4(t4) be the planar relative motion
of the two compact objects in usual polar coordinates associated with the ADM

coordinates. The radial motion r4(t4) is conveniently parameterized by

ra = a (1- e cosu), (3.3a)
n(tay —ty) = u—etsinu+£—:[13inv+f—:(v—u), (3.3b)
where ‘u’ is the 'eccentric anomaly' parameterizing the motion and the constants

a, €, e, nand t, are some 2PN semi-major axis, radial eccentricity, time eccen-

tricity, mean motion, and initial instant respectively. The angular motion ¢ (t4) is

given by
Pa— ¢y = (1-1- %) 'U+f—fsin2v+-g{?sin3v, (3.4a)
C C C
wherev = 2 tan-' {(?%) tan(g)} . (3.4b)

In the above ¢y, k, e, are some constant, periastron precession constant, and
angular eccentricity respectively. All the parameters n, k, a,, e;, €, ey, ft, 9, fo
and g4 are functions of the 2PN conserved energy and angular momentum per unit

reduced massu, E and J. Their explicit functional forms, given in [41] are displayed

below
. Gm 1 1Tr11 9 9 1 E
o = 2E{1+262(7-n)E+g[Z(1+10n+n)E +§(17—11n)§]},
(3.5a)
1 1
¢ = 14280 - {26 -n)E+5(3-n) B} + {2640+ 1)
E
—2(17 — 11n) i (80 — 551 + 4n*)E? h2} , (3.5b)
_ (~2E)%{ 1 171 ,
no= e 1+402(15—77)E+0—4[3—2(555+30n+11n)E

5o 22 )g] 3 (3.50)
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1
el = 1+2Eh2+0—2{4(1—n)E+(17—7n)E2h2}+cl4{2(2+n+5n2)E2
2 31,2 2 (_QE)%
—(17 = 11n) 7 + (112 = 47+ 167") B°K2 — 3(5 — 2n) (1 + 2Eh )—h—},
(3.5d)
1 1
fo= —é—h—n(4+n)(1+2Eh2)2(—2E)%, (3.5€)
3 (—2E)3
g = 5(6-2m)——, (3.56)
ko= 3{1+—1-[(5—2)E+ ° (7 2)]} 3.5
- h2 202 77 2h2 77 y ( . g)
_1n 2
fo = g(1=3n)(1+2ER), (3.5h)
gs = _3 ’7—2(1+2Eh?)~°'/2 (3.51)
¢ 32 ht ’ '
1 1
e = 1+2Eh - 6—2{12E + (15 — ) B2 h2} - 8?{4(16 _ 88y — %) E°

—4(160 — 307 + 3n*) E®h? + (408 — 232n — 15772)%} ,

(3.5j)

where h = |J|/(G m). Using these parametric equations of the motion, we compute

72, v%4 to the 2PN order in terms of E, h?, (1- e cosu) using,

dt4
du

g

12

P4

v4

BtA OtA dv

Ay Az 3.6
ou Jv du (3.62)
dra dta)’

(EJA —d-3> (3.6b)
dosdv dts\*

(d'u du EZ) (3.6¢)

2+ ridh . (3.6d)

The subscript 'A ’ present in Eqs.(3.6) is a reminder that the expressions refer to

the ADM gauge. We have

2
2= ¢-1 2 Eh*} (-2
Ta { + (1-e,cosu) (1— e cosu)? } (-28)
1 1
—{- — —  [38-30
+c2{ 3+9n+ (i~ e cosu) [38 n]

~ (1- e cosu)

" (1- e, cosu

>[40 — 201 — (36 - 28n) ER?

E [(64 _ 24n) EhQ] } £
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1 1
~=Jl4-19n+16 2——[168—326 + 98n? 34 - 22 ]
c4{ 7+ 0n (1- ¢ cosu) 7 7 Ehz( )
1

[496 — 712n+ 164n% — (213 — 298y T 85172) EhQ]

(1- e cosu)?
N S PP 3329+ 801 — (800 — 932 T 18872} EA?
(1- e cosu)?
1
+(1 Y [32+8n]nE2 Y (-E)®, (3.72)
2 = -2
va { (1 e cosu)}( E)
1 1
—;5{3 3 = e cos) 138 = 3001+ rr—cowu)? [40- 20n)
1 2 2
+8 (1-e COSu)3nEh }E

1
——{4 - 19n+ 1677 — 168 — 3267 + 987>

el
ct (1- e, cosu)
Eh2 (34— 2277)] +(—[428 6687+ 164n”

e, Ccosu)?
1

1
—m [80— 12877] T]Eh2 + 72

7 E2h4}(—E)3 .

(3.7b)

(1- e cosu)®

These expressions for 74 and v% are consistent with Egs.(6) and (7) of [141].

3.3 The transformation between De-Donder (harmonic)
and ADM gauges

As pointed out earlier, the far-zone fluxes obtained in the last chapter are in the har-
monic coordinates, whereas, the 2PN accurate orbital description given by Egs.(3.3),
(3.4), and (3.5) are in the ADM coordinates. For the purpose of averaging the far-
zone fluxes using the the 2PN accurate orbital representation, we need to go from
the De-Donder(harmonic) to the ADM gauge, and rewrite the expressions for the

far-zone fluxes in the ADM coordinates. These follow straightforwardly from the
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transformation eguations in [142] and we list below the transformation equations,

relating the harmonic(De-Donder) variables to the corresponding ADM variables:

Gm .9 Gm
Ip = rA+86_4r {{(51}2—1" )77+2 (1+1277)T]r
-18nriv}, (3.8a)
tp = tA—%P-nf, (3.8b)
Gmr, 5 Gm ., Gm
vo = va— e (V38— - 32y -4 e
, Gm Gm
_%} [502 -9r — 34—7[——]77 - 2T}v, (3.8¢)
T Gm Gm
(Ly)p = (Ln)ajl+t 4¢i¢ [(2 + 29n) —— + 4171*2]} , (3.8d)
D = 7”A+gcg;l{5771)2+2 (1+12n)§|m—19177"2} : (3.8¢)
G . .
vh = 1} - 4cTr{[5v4 - 20%7% - 3r4] n
- [2(1 +17n)v? = (41 387) F“] Erm } : (3.8f)
) . Gm
P = TR ﬁm; 72 {15 (v* - #)nt @t on) —F—} : (3.8g)

The subscript ‘D’ denotes quantities in the De-Donder ( harmonic) coordinates.
Note that in all the above equations the differences between the two gauges are o
the 2PN order. As there is no difference between the harmonic and the ADM
coordinates to 1PN accuracy, in Egs.(3.8), for the 2PN terms, no suffix is used. The
2PN extension of the evolution of the orbital elements thus requires more technical
care than the 1PN case due to the differencesin the ADM and harmonic coordinates
given by Egs.(3.8). Finally using the above equations we have verified that the
expressions given by Egs.(2.20), relating the individual locations of the two bodies
to the centre & mass coordinate are consistent with the corresponding choice in

ADM coordinates, given by Eqs.(A5) - (A8) of [42].
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3.4 2PN corrections to < d€/dt > and < dJ /dt >

Starting from Egs.(2.57) and (2.61) for the far-zone fluxes in the harmonic coordi-
nates obtained in the previous chapter, we use Eqgs.(3.8), to obtain d€/dt and d.7 /dt
in the ADM coordinates. For economy o presentation, we write the results in the
following manner, (Fluz)y, = (Fluz)o+ 'Corrections', where (Fluz), represent
the far-zone flux in the ADM coordinates. (Flux)o is a short hand notation for
expressions on the r.h.s of Eqs.(2.57) and (2.61), where v?, 7, r are the ADM vari-
ables v3, 7, ra respectively. For example, the Newtonian part of (d€/dt)o will be
15 ¢y 1 —1173}. The 'Corrections' represent the differences at the 2PN
order, that arise due to the change of the coordinate system, given by Egs.(3.8).

As the two coordinates are different at the 2PN order, the 'Corrections' come only

from the leading Newtonian terms in Eqgs.(2.57) and (2.61).

(), - (), -5 fos i - ot )

15¢973% -

+ [36004 — 1840033 + 142474 n} , (3.92)
dJ dJ GSmZMZI(fJN)A{ Gm
s - Cat + 2 _ 8+ 76n)—
( dt )A ( dt )o 5c9r% [(4 T 68n)vs — (8T 76n) -~

e
2+ 82m)73] = + (3630373 — 500} — 3637) n} . (3.9b)
A

Note that all the variables on the r.h.s of Egs.(3.9) are in the ADM coordinates.
In the circular limit, energy and angular momentum fluxes are again related as in

Eqs.(2.67), via the corresponding ‘v?’ in the ADM coordinates given by

Grn
€2 A

G2 2
va = —{l— (3—1n) +—]:(42—577+87)2) 477; } : (3.10)
8 ctry

From this point onwards, in this section, we work exclusively in the ADM
gauge and hence we drop the subscript 'A' for the ease of presentation. We now
have all the ingredients needed to calculate the 2PN corrections in < d€/dt > and

< dJ/dt >. We explain in detail, the procedure to compute < d€/dt > and only
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display the final expression for < dJ/dt >, as the procedure is the same in both
the cases. Starting from Egs.(3.9), (2.57), and (2.61) which give the far-zone fluxes
as functionsdf v2, 72, and Gm/r, we use the 2PN accurate orbital representation,

to rewrite d€/dt as a polynomial in (1 — g cosu)~!. This polynomial is o the form

di _du g an(Bh)
dt - ndt ~ (1 -e COSU)(N'H) ’

(3.11)

where for the convenience we have factored out du/ndt given by

du ' 1
ndt (l—e,cosu){l—%(8—3n)<1—(1—ecosu))
+2—1;z [E2 ((56 — 63n + 67%)

1 1 1
“Ere (17— U - (I—e, COSu)) " (I = e, cosu) (184 - 1597 T 247")
1 2E R
+—( oo (68— 767 +179%) - e cosu) n(4+ n))
+% (—2E)*?(5 - 271)]} : (3.12)

It is a straightforward algebra to show that the coefficients ax(E, h) in Eq.(3.11)

take the form
2

an(E, h) = Z=(~E)*B(E, h), (3.13)

where gy(E,h)for N =1,2,...8 are given by

256 1
b = —TF + [gr (29824 - 15488n)E
1( 1 -
1y 1 _ E
+C4{ <7 (791168 — 874 624 + 17945617")
128 E 1 —2FE)?
+?(17—11n)55+5(640—256n)( - )2}, (3.14a)
512 1
ﬁg, = —]3 - 35 c2 (263 68 — 199687))E
1 {[2716928 13040896 538496 2] .
A\ 315 945 " 135 "
89 E 1 —2E)?
—1—:(17 ~ 11n)—5 - =(1280 - 512n)(——h—)2—} , (3.14b)
5632, 1 (1 512 -
= 2292 —{= - 2201729 —
3, SoER 4 { - (1024 - 3072n) E + 2=(1729 — 9307) E }
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1 { (16840064 3537664 _ 2315648 ,
1\ 2835 945 | 315
128 256 E
———(86403 — 209237%) E3h* - —(17 — —
(86403 — 899681 + 209231?) = (17— 11n)
1
—£ (7040 - 28167;)(—2E)%h} , (3.14c)
512 1 ( [14200576 38656 219904
S 232 — 1395n) B h? —{-[ - _ 2] 2
Gs T05 ¢2 (0232 — 13951) T 2835 189 1" ez T|E
256
Yoz [148 6488 — 15455697 + 343813772} E3h2} , (3.14d)
512 1(2
Bs = — 5 (687 — 620n) E*h* — 6—4{9—2-2 [1221526 — 13336247 + 319739172] E3h?
512
~105 [51396 — 915410 + 27508772] E4h4} , (3.14e)
512
o= o {748 032 — 13850057 + 387911n2} Eht (3.14f)
4096 ) s
B = 31564{2501 202 347) + 84047 }E K.

(3.14g)

To the 1PN order Egs.(3.14) agree with Eqgs.(4.15) of [126]. The far-zone energy flux
(d€/dt) is a periodic function of time with period P = 27/n. Averaging (d€/dt),
given by Egs.(3.11), (3.13) and (3.14) over one time period P, we obtain

d€ 1 P d€ 1 ndt d&
—_ = — _— 27
< dt > P./o dt (t) dt = QE’FF (n t)%é(u)du (3.15)
271 Jo U t

The integrals in Eq.(3.15) are the Laplace second integrals for the Legendre poly-
nomials [143] which yield,

1 /27’ du 1 1
1 _ 1 pN( ) . (3.16)
27 Jo {1 e, cosu}N+l (1- ez)izt (1 —e2)

where Py is Legendre polynomial. Using Eq.(3.16) in Eq.(3.15), we obtain

< df/dt > intermsof E and e;:

d€ 1024 un  (—E)° { 3, 37,
<=> = 1+ = 20
dt 5 Gmc® (1-e2)t T2 g6
1 (-F) 27405 , 95377 ¢
+ €r — €r
168 2 (1 — e2) 4 16
6419 , 5103 , 259 6) TI}

—(840+ R

{13 — 6414€2 —
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o 2
480 — 192n) + (500 — 2007m)e

—(2255 — 902n)e? + (1090 — 436n)ef + (185 — 74n)e§)

1 (253937 18065 )
1= e2)2< 536 s0a T IOM
879749 _ 30137 1877
( 1- 4817
(513337 531871 1139
672 1+ =571 ) =
(205 des ﬁs %
8064 128" e
N (283685 13147 N
16128 2688 1+ 1557 ) e)]}

(3.17)

Following exactly a similar procedure, we obtain the 2PN correction to < dJ/dt >.

The final result we obtain is:

dJ 4
<—=> = =
)

un (= 2E)%{ 2 4
7 = 8—e Te

_%8% [(292 0+ 70567) + (19738 + 144347) 2 + (1271 13309) ef]

_(‘E)Z[( 1 )l<24o—96n—(30—1277)63‘(210‘84”)69

ct 1—e2?)z

1 (299623 _ 22025 351,

T(1-e)\ 1134 2 -+ 1T o
1316273 815597 20207
_( 864 336 | 96 1) €
2001133 124403 7187
_( 6048 % | A8 e}
* (7236 B 228264977 * 1325 "2> e§>] } ' (3.18)

To the 1PN order, Eqgs.(3.17) and (3.18) agree with [126, 127] as required. For the
special case of circular orbits, e, = 0 and we observethat, < d€/dt >=w < dJ/dt >
to the 2PN order, where w, the mean angular frequency of the relative motion,
defined by w = n(I T k) is given by

(-2E)3
Gm

1 1 o
{1—402(9+n) —— (2811~ 11707 + 11y )E}. (3.19)

w =
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It is not very difficult to trace the origin of the two types of termsin Egs.(3.17)
and (3.18) at the 2PN order. It isrelated to thefact that 'Corrections' in Egs.(3.9),
arising from the transformation equations connecting the harmonic and the ADM
coordinates have a different functional form than the 2PN contributions to the corre-
sponding far-zone fluxes in the harmonic coordinates. For example, in the far-zone
energy flux, 'Corrections’ contain a common factor (G*m3/r%), unlike the 2PN
contributions in harmonic coordinates which have only (G®m?/r%) as the common
factor (c.f Eqgs.(2.57) and (3.9)). These different functional forms, after the av-
eraging procedure give rise to the two different types of terms in Eqs.(3.17) and
(3.18).

We display below < d€/dt > and < dJ/dt > in terms of Gm/a, and e,
which can easily be obtained from Egs.(3.17) and (3.18), using E written in terms
o Gm/a, and e, to the 2PN order. The required equation for E is obtained from
Egs.(3.5) for a, and e, by inverting them for E and h? respectively, order by order.

Eliminating h? from the expression for E we finaly get,

(17 = 11n)

B o= -Sc{i-30-mc+g [(25~2n+772)—2wl ¢} (3:20)

where ¢ = Gm/c%a,. Using the above expression for E, Eq.(3.17) becomes

<E 18 ¢
i~ T 15GT1-2)F

{ [(96 +292¢2 + 37e4)(1 — ez)?’]

1
—%((1 —e?)? [(468 32 + 672 0n) + (198664 + 376 32n)e?
—(153 30 — 280 56m)e? — (12753 — 207 2n)e§]

1
2 2
——(1- 22405312 + 122492 16

- (( + )
+(912 416 00 + 973 409 761 + 290 304n*)e?
— (97767744 — 731619 007 — 239 500 8n°)e?
— (757105 2 4 606 592 81 — 280 627 21%)el

+(6805287 — 148921 21 + 223 776n2)e§)
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—gu — e1)F (96 +292¢2 + 37¢) (5 - 217))]} , (3.21)
while Eq.(3.18) gets transformed to,
<Ws = a4 T~ Y

dt 3

1
——%C(l —€?) [(193 84 + 4704n) + (176 80 + 147 28n)e?

—(14279 — 338 8n)eﬁ]
1
2 2
+¢ [—181 1 ((381 3496 4 314114 4n + 725 767?)
—(346 264 8 — 137197 261 — 815 724n%)e?

N

— (11275491 — 786 483n — 139 784 4n%)e

+(3578724 — 121 329 97 + 238 8967%) e’

S - -20) 8+ 7]} (3.22)

3.5 The evolution of the orbital elements

In this section, we compute the 2PN corrections to the evolution of orbital elements
due to theemission of gravitational radiation. \We describe the procedure to compute
the rate of decrease of the orbital period of the binary in some detail and display
the final expressions for the rate of decay of other elements namely, < da,/dt >
and < de,/dt >. Employing the heuristic argument, based on the energy and the
angular momentum conservation to the 2PN order, the rate of decrease of the orbital
period, P o the two compact objects moving in quasi-€lliptical orbits is computed.
The 2PN accurate orbital period, P= 27 /n givenin [40, 41, 42] reads as
(—2E)%]}

3
(3.23)

27Gm 1
pP= ——3{1—— 15—n)E —
(25} 2218

3
37 (35+30n+3n?)E* - 16 (5 —2n)

Differentiating Eq.(3.23) with respect tot and equating dE/dt to (— < d€/dt > /pu)
and dh/dt to (— < dJ/dt > /Gmu) we find
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6mrGm 1 1 ”
= z¢1— 15 —nE + —— 2 2} ac
(—2E)5{ o (18— ME + 553(35 430 + 30) B p < —- >
3w 47
_c4h2(5—277)< Ef-> . (3.24)

Note that, in the above equation we need < d7/dt > to only the Newtonian accu-
racy. Using in Eq.(3.24), < d€/dt > given by Eq.(3.17) and the Newtonian part of

Eq.(3.18) for < dJ/dt >, we get

73 7
{1+—e +3 .

P = —
o 245 T 9%

(1-e?)z

1
¢ 1 [(598 561 309127) T (431352 1 134 8487)e?

16128 (1- ef)
+(168 210 + 556 08n)et — (7179 — 207 2n)e®

1 1
(7639552 + 607 737 6 1 + 483 840 %)
(1 — €2)2 580608

+(263 83280 + 814 273 207 + 251 596 8n?)e?

+(?

—(190 546 44 — 825636 067 — 170 553 67%)e?
—(1451772 — 532202 47 — 935 424n?) e’
+(159608 7 — 193 3747 + 745 92 n2)e§)

614 (5—2m) (1—e)? (64 +296¢2 + 65 e;*)] } . (3.25)

Finally, inserting the expressions for e2 and Gm/a, intermsof E and h? in Eq.(3.25) we

obtain
: mn 1 { 2 2,4
p = 49
~g [CEyw 425 + 82BN’ + LSE%h
1 [40341 38135 _, 72237 _ .
P [ =+ =R
49 48195
783E3h6 (56235 + == Eh*+ 5354 E%h* + 14§6E3h6) ]

171 1
~ 291 982 =
+- [ 672( 9198255 — 309 096 907 + 690 606 0n?) >

E
+ 37 (29341853 — 505570597 + 187777 807°)
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In the expression above, P is given as a function of the masses and of the 2PN-
conserved energy and angular momentum. This expression for P is independent of
the coordinate system used to deriveit. Since Pisa measurable quantity, one would
have liked to express P in terms of other directly observable parameters like the
orbital period and some convenient eccentricity asin the 1PN case [126]. However
at present, to 2PN accuracy we do not have any such suitable and convenient choice

and therefore we |eave the expression for P in terms of the 2PN accurate E and h2.

Similarly, using the definition of a, and e, in terms of E and h? and follow-

ing the method described above, we obtain after a rather long but straightforward

calculation

da,

<
dt

1
+35 (6375 — 255 0n)

— (3195 — 12787) (=2E)

1
+55 (163085 — 693 687 + 445 481%) E“h‘*] } .

N

(—2E)
h

(864 9650 — 219467 701 + 13750275 n2) E?

[N(< ]

h

1
+2i (166 451 5 — 206 289 37 + 171 21729%) E*H?

1
+3 (975 — 300n) (—2E)5R3

2 ¢3

22 2 4
ey {(1 &2)? (96 + 292¢? + 37e!)

1
— 561 - e?) [(280 16 + 940 8n) + (160 248 + 431 207)e? +

(346 50 + 209 167)e? — (5501 — 1036 n)eSJ

1 1
’ I + 2

1 2 +

¢ (1-e2)% [6048 (( 3774816 + 585129 6m + 290 3047°)

+(428 878 40 + 874 684 807 + 188 395 2n°)e?
— (396 797 28 — 824 068 087 — 221 886 0n%)e

—(4497534 — 103 0867 — 123 832 87%)e’

+(2628009 — 632 7187 + 839 16172)@2)

(3.26)
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(1-e2)? ((5 — 27)(96 + 202 € + 37e;%)] } ,

(1-e)
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(3.27)

4
‘e {(304 +121€2)(1 — €2)2

) [(133 640 + 374 087) + (108 984 + 336 847)e>

—(25211 — 338 8n)eﬁ]

1
2 —
¢ [201 6

~(120536 4

((174 096 16 + 170 583 841 + 491 9047?)

— 397143 72 — 760 788n*)e>

—(150 068 86 — 224 584 2 — 560 952n%)e?

+(3840435

3
“5(1 —e7)°

— 6196147 + 914 76n2)e§)

(304 + 121€2) (5 — 277)] } . (3.28)

To 1PN accuracy we recover the results of [127].

3.6 Limits

We observe that in the test particle limit ( n — 0) and for small radial eccentricities,

Egs.(3.21) and (3.22) become

d€

<@

dJ

S

>p=0

22 ol T T
(AT

%%; ¢t {1 B 2343263 ¢+ 31480164047 ¢

B lamiiy  om

Such expressions for average energy and angular momentum fluxes for a test particle

moving in a slightly eccentric orbit around a Schwarzschild black hole have been

obtained by Tagoshi [61], using the black hole perturbation methods: Egs.(4.9) and
(4.12) of [61] (with g =0). They are given by

<d€>
dt

32

5 Gm2cd

p 124707 44711 07

10{1 1247 02 44711 o*
336 2 9072
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37 6502 4653370'] ,
Sf _Sov v 3.
{24 512 9072 64]6 } (3-30a)
47 32 2 7{ 1247 2 44711 v
A oy § I T - hal
<@ 5 mo "t 336 2 9072 o
5 74907 232181 vt ,
["§+ 96 2 6048 c_“]e } (3.30b)

where v and e refer to the radial velocity and the eccentricity in Schwarzschild
coordinates. Egs.(3.29) and (3.30) are consistent, if the ADM variables a, and ¢
are related to the Schwarzschild variables v and ebﬁ

[

.2
Gm 9 v 5wt [ vt 2)
_ LA _2v , 31
o v{1+ 2-&-4@& 1+ 5| ¢ (3.31a)
el = e2{1+2{3§+4ge§}. (3.31b)

As stressed by Tagoshi, the fluxes reveal the more familiar coefficients in terms of a
parameter v’, related to the angular frequency in the ¢ coordinates rather than v,
which is adapted to the radial coordinate r. For slightly eccentric orbits, v and v’

are related by

1 ,U12 ,UI4
v:v'{1+§ {1—30—2—120—4] e2}. (3.32)

In terms of o' the far-zone fluxes for a test particle in Schwarzschild geometry,

Egs.(3.30) may be written as

A v,10{1_1247gf_44711gf
Gt~ ~ 5 Gm2cs 33/ 2 9072 A
[157 678107 14929 v_4]}
24~ 168 2 189 & (3.33)
47 2 2 { 124702 44711 0"
< —= > = el — —
at Sma 336 e @
,[23 325942 10413499_’3]} .
w8 - 1R} (3.33b)

In thisform at the Newtonian order, one recovers the results of Peters and Mathews
[144]. The quantitiesa, and e in the ADM coordinates are related to v’ and e by
the following relations

Gm

ar

1
= v'2{1 + 51— 2¢%) 0% + 211—4 (5 — 39¢*) v"‘} : (3.34a)
C
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& = 62{1+2f+4f} (3.34b)
" c? ct '

The above relations may be rewritten, in terms o the conserved energy E using

[145]
E E?
2 2
ve = “2E{1+62_ﬁ<3_e)+—CZ'<18+462)}’ (3.35a)
E E?
2 _
v? = —2E{1—ﬁ<3+862>+F<18+5262)}. (3.35b)
We obtain
Gm _ v’2{1_5(2_4e2)+5(8—37e2)}, (3.36a)
ar c2 c
E E?
2 _ 2
& = e {1_425“2?}’ (3.36b)

which are the generalizations of similar 1PN relations in [127]. For the special case

of circular orbits Eq.(3.27) for < da,/dt >, takes the simple form

< da,
dt

64 4 1751 7 5 [294383 26365 1 2]}
=2 | ===+ - - . (3.37
” 5C”C{1 C[336+477]+< [18144+2016"+2" (3:37)
Eq.(3.37) isconsistent with the expression for 7 givenin [45], after taking due account
of the coordinate transformations required to relate the ADM and the harmonic

gauges for the circular orbits.

3.7 Conclusions

In this chapter employing the 2PN accurate expressions for the instantaneous far-
zone energy and angular momentum fluxes for general orbits and the 2PN accurate
generalized quasi-Keplerian representation for elliptic orbits, we have computed the
instantaneous 2PN contributions to < d€/dt > and < dJ /dt >, the far-zone fluxes
averaged over one orbital timescale in the ADM coordinates. Using the averaged
far-zone fluxes and a heuristic argument based on energy and angular momentum

balance to the 2PN order, we compute the evolution of the orbital elements o the
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generalized quasi-Keplerian representation, in particular the 2PN contributions to
P, ¢, and d, It should be noted that in a similar manner, it is possible to obtain
the orbital evolution for all the other parameters o the generalized quasi-Keplerian
representation. The method employed to compute < d€/dt > and < dJ /dt > could
also be adapted to the case of hyperbolic orbits to generalize the work of Simone,
Poisson and Will on the head-on collision [139].

As mentioned earlier, Blanchet and Schafer have obtained the 1PN and the
1.5PN corrections to P, the rate of decay of the orbital period P [126, 128]. They
have shown that for the binary pulsar PSR 1913+16, the relative 1PN and 1.5PN
corrections are numerically equal to +2.15 x 107% and +1.65 X 107 respectively.
These are unfortunately far below the present accuracy in the measurements of P
for 1913+16. Therefore 2PN corrections to the decay of the orbital elements of
the binary may not be useful for the timing observations of the known relativistic
binary pulsars. However these expressions may be useful for the construction o
'ready to use' search templates needed to detect gravitational radiation from inspi-
raling compact binariesin quasi-elliptical orbits. The construction of 'ready to use
search templates (waveforms) for gravitational radiation from inspiraling binaries
can be decomposed into two different parts. These two distinct parts are referred as
the 'wave generation problem' and the 'radiation reaction problem' [2]. The wave
generation problem deals with the computation o the gravitational wave polariza-
tions at the leading order in 1/R, when the orbital phase and other parameters of
the binary orbit take some specific values. The radiation reaction problem consists
in determining the evolution of the orbital phase and other orbital elements as a
function of time under the effects of gravitational radiation reaction forces. The
expressions derived in this chapter will be useful for the evolution of the orbital
elements in the 'ready to use' search waveforms. In the next chapter, we will tackle

the ‘wave generation problem' and will obtain al the instantaneous 2PN corrections
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to the 'plus’ and 'cross gravitational wave polarizations for inspiraling binaries o

arbitrary mass ratio, moving in elliptical orbits.



