
Chapter 3 

The evolution of  the orbital elements in 
the generalized quasi-Keplerian parameterization 

of the binary 

3.1 Introduction 

In this chapter, we compute the 2PN corrections to the rate of decay of the orbital 

elements of a compact binary, in quasi-elliptical orbit, i.e. the effect of the 4.5PN 

radiation reaction on a 2PN accurate conservative elliptical motion, extending the 

earlier computations [126, 128, 127, 1291. The basic ingredients we employ for the 

calculations are the far-zone energy and angular momentum fluxes in the harmonic 

coordinates computed in the previous chapter and a 2PN accurate description of 

the relative motion of the compact binary available in a generalized quasi-Keplerian 

parameterization given in the ADM coordinates [40, 41, 421. Since the 2PN accurate 

orbital representation is in the ADM coordinates, we use the coordinate transfor- 

mations connecting the harmonic and the ADM coordinates [142], t o  rewrite the 

far-zone fluxes in the ADM coordinates. The far-zone fluxes, in the ADM coordi- 

nates are averaged over an orbital period, extending the earlier computations at  the 

1PN and the 1.5PN order [126, 128, 127, 1291. The 2PN corrections to the rate of 

decay of the orbital elements are computed using heuristic arguments based on the 

conservation of energy and angular momentum to the 2PN order. The argument 

is that the energy and the angular momentum carried away from the binary by 



Chapter 3 78 

gravitational waves, theoretically computed to the 2PN order in chapter 1, should 

be balanced by a decrease of the 2PN accurate energy and angular momentum of 

the binary. Hence emission of gravitational radiation will result in the decay of the 

orbital elements of the generalized quasi-Keplerian representation, as they are es- 

pressed in terms of the conserved energy and the angular momentum of the binary. 

Though we are extending the computations of [126, 128, 127, 1291 to obtain the 

2PN corrections to  the evolution of orbital elements, we have to take care of a new 

complication a t  this order. The complication arises due to the fact that  the far-zone 

fluxes are computed in the harmonic or De-Donder coordinates, while the orbital 

representation is available only in the ADhl coordinates. In the limit of rl + 0 our 

results reduce to the test particle results [61] to 2PN accuracy. 

This chapter is organized as follows. In Section 3.2 we summarize the gener- 

alized quasi-Keplerian description of the bound orbits of the binary in the ADM 

coordinates. Section 3.3 deals with the transformation equations relating the De- 

Donder and the ADM gauges. In Section 3.4 we rewrite the expressions for the 

far-zone fluxes using the the generalized quasi-Keplerian representation for ellipti- 

cal motion and average the fluxes over an orbital period of the binary. Section 3.5 

deals with the evolution of some of the important orbital elements of the 2PN accu- 

rate representation. In section 3.6 we discuss different limiting cases and compare 

them with earlier results. Most of the results presented in this chapter have been 

published in Ref. [44]. 

3.2 The second post-Newtonian motion of compact binaries 

Let r ( t ) ,  $(t) be the planar relative motion of the two point masses in a bound 

binary. It  is well know that the solution of the Newtonian equations of motion for 

a bound binary (E < 0) can be expressed in the following form, 
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n(t  - to) = u - e sin u , 

4-40  = v ,  

(3. l b )  

(3. lc) 

l + e  
where v = 2 tan-' { (-) 1 - e  tan(;)} . (3. ld )  

The above description is known in the literature as the Keplerian representation. 

Here n, the mean motion is given by n = where P is the orbital period. Also e is 

the eccentricity and a is the semi-major axis of the orbit. The auxiliary quantities 

u and v are called eccentric and true anomalies. Note that the parameters n, a and 

e are functions of the conserved energy and angular momentum per unit reduced 

mass p of the binary. To avoid introducing additional notation following [40, 41, 421, 

in what follows, these are also denoted as E and J = I JI. 

Damour and Deruelle found a remarkably simple parameterization for the so- 

lution to the 1PN accurate Damour-Deruelle equations of motion [104, 391. This 

representation known in the literature as the quasi-Keplerian parametrization, is 

given by, 

r = a (1 - e, cos u) , (3.2a) 

n(t  - to) = u - et sinu , 

where u = 2 tan-' { (-) tan(;)) . 

Instead of a single eccentricity e as in the Newtonian case, there are three differ- 

ent eccentricities, e,, et and ed. Further the 4 equation contains k, the periastron 

precession constant. As before all parameters are functions of E and J of the binary. 

Damour and Schafer observed that in the ADM coordinates there exists an 

elegant and most Keplerian like representation to the second post-Newtonian motion 

of a binary system [40]. This generalized quasi-Keplerian description for the general 

binary orbits to the 2PN order, developed by Damour, Schafer, and Wex [40, 41, 421 
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is best suited for the calculation we propose to do in the following sections and 

we summarize it in what follows. Let rA(t.4), $*(til) be the planar relative motion 

of the two compact objects in usual polar coordinates associated with the .4DM 

coordinates. The radial motion rA(t,4) is conveniently parameterized by 

T A  = a, (1 - e, cos u) , (3.3a) 

ft St n( tA - to )  = u - et sin u + - sin v + - (v - u) , 
c4 c4 

(3.3b) 

where 'u' is the 'eccentric anomaly' parameterizing the motion and the constants 

a,, e,, et, n and to are some 2PN semi-major axis, radial eccentricity, time eccen- 

tricity, mean motion, and initial instant respectively. The angular motion $ A  ( tA) is 

given by 

1 + e4 
where v = 2 tan-' { (-) 1 - e+ tan(:)} . 

In the above $0, k, e4 are some constant, periastron precession constant, and 

angular eccentricity respectively. All the parameters n ,  k, a,, et, e,, e4, f t ,  gt, f4 

and g4 are functions of the 2PN conserved energy and angular momentum per unit 

reduced mass p, E and J. Their explicit functional forms, given in [41] are displayed 

below 
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where h = I JI/(G m). Using these parametric equations of the motion, we compute 

ii, v i  to the 2PN order in terms of El  h2. (1 - e, cosu) using, 

The subscript 'A ' present in Eqs.(3.6) is a reminder that the expressions refer to 

the ADM gauge. We have 

i: = { - I +  2 + 
(1 - e, cos U) (1 - e, cos u ) ~  

1 
(1 - e, cos u) 

[38 - 30q] 

- [40 - 20q - (36 - 281)) ~h~ 
(1 - e, cos u ) ~  

- [(64 - 247) Eh2 

I 
(1 - e, cos u ) ~  



Chapter 3 82 

1 1 
- 1 { 4  - 197 + 1 6 7 ~  - [168 - 3267 + 98q2 - - (34 - 227)] 

c4 (1 - e, cos u) E h2 

+ [496 - 7127 + 1647~ - (213 - 2987 + 85.r12) Eh2] 
(1 - e, cos u ) ~  

- 
1 

[212 - 3327 + 8oV2 - (800 - 9327 + 1887~) Eh2] 
(1 - e, cos u ) ~  

- 1 
[528 - 5287 + 96q2] Eh2  

(1 - e, cos u ) ~  

+ 1 
(1 - e, cos u ) ~  

[32 + gO2] 7 E2 h4)  (- E ) ~  , 

v; = {-I+ 2 
(1 - e, cos u) 

1 1 
- 1 { 3  - 97 - [38 - 3071 + (1 - ,or cos u)2  [40 - 2 0 ~ 1  c2 (1 - e, cos u) 

1 
+8 

(1 - e, cos u ) ~  
7 EV} ~2 

- 1 { 4  - 197 + 1 6 7 ~  - 
c4 [168 - 3267 + 98.r12 

(1 - e, cos u )  
1 

-- (34 - 2274 + ( 
E h2 [428 - 6687 + 1 6 4 ~ ~  

1 - e, cos u ) ~  I 
- [212 - 3327 + 8o02 - (76 - 847) 7 Eh2  

(1 - e, cos u ) ~  I 
- 1 1 

[80 - 12871 7 ~h~ + 72 
(1 - e, cos u ) ~  (1 - e, cos u ) ~  

q2 E2h4} (- E ) ~  . 

These expressions for .i.i and v i  are consistent with Eqs.(6) and (7) of [141]. 

3.3 The transformation between De-Donder (harmonic) 
and ADM gauges 

As pointed out earlier, the far-zone fluxes obtained in the last chapter are in the har- 

monic coordinates, whereas, the 2PN accurate orbital description given by Eqs.(3.3), 

(3.4), and (3.5) are in the ADM coordinates. For the purpose of averaging the far- 

zone fluxes using the the 2PN accurate orbital representation, we need to go from 

the De-Donder(harmonic) to the ADM gauge, and rewrite the expressions for the 

far-zone fluxes in the ADM coordinates. These follow straightforwardly from the 
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transformation equations in [I421 and we list below the transformation equations, 

relating the harmonic(De-Donder) variables to the corresponding ADM variables: 

Gm 
r~ = r~ + - {[(5v2 - 52) 17 + 2 (1 + 1217) *] r 

8 c4 r r 

- 1 8 q r f v ) ,  (3.8a) 

Gm 
to = t A - T q i ,  (3.8b) 

Gmf Gm 
VD = V A -  -{[7v2+38- 8c4 r2 r -3i2]9+4*}r r 

- E { [ 5 v 2  8 c4r 
- 9f - 34- Gm] r 17 - 2 - Grm}v, (3 .8~)  

G m  Gm 
(LN)D = ( L N ) A { ~  + - 4 c4 r [(2 + 2917)- r + 49f2]} , (3.8d) 

Gm 
r~ = r ~ + ~ { 5 ~ v ~ + 2  8 c4 (1+1217)-- r 19vi2} , (3.8e) 

v; = 2 Gm v, - -{[5v4 
- 2v2f2 - 3f4] 7 

4 c4 r 
Gm 

2 (1 + 1717) v2 - (4 + 38s) f2] -- } , 
r 

(3.8f) 

i; = rA - 2  - - Gm i2 (15 (v2 - i2) 17 + (1 + 217) *) . 
2 c4 r r (3 .W 

The subscript 'D' denotes quantities in the De-Donder ( harmonic ) coordinates. 

Note that in all the above equations the differences between the two gauges are of 

the 2PN order. As there is no difference between the harmonic and the ADM 

coordinates to 1PN accuracy, in Eqs.(3.8), for the 2PN terms, no suffix is used. The 

2PN extension of the evolution of the orbital elements thus requires more technical 

care than the 1PN case due to the differences in the ADM and harmonic coordinates 

given by Eqs.(3.8). Finally using the above equations we have verified that the 

expressions given by Eqs.(2.20), relating the individual locations of the two bodies 

to the centre of mass coordinate are consistent with the corresponding choice in 

ADM coordinates, given by Eqs.(A5) - (A8) of [42]. 
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3.4 2PN corrections to  < d £ / d t  > and < d J / d t  > 

Starting from Eqs.(2.57) and (2.61) for the far-zone fluxes in the harmonic coordi- 

nates obtained in the previous chapter, we use Eqs.(3.8), to obtain dE/dt and dJ/dt 

in the ADM coordinates. For economy of presentation, we write the results in the 

following manner, = (Flux)o+ 'Corrections', where represent 

the far-zone flux in the ADM coordinates.   flux)^ is a short hand notation for 

expressions on the r.h.s of Eqs.(2.57) and (2.61), where v2, i ,  r are the ADM vari- 

ables v i ,  iA, TA respectively. For example, the Newtonian part of (d&/dt)o will be 

1 - 1 1  The 'Corrections' represent the differences at  the 2PN 15 c rA 

order, that arise due to the change of the coordinate system, given by Eqs.(3.8). 

As the two coordinates are different at  the 2PN order, the 'Corrections' come only 

from the leading Newtonian terms in Eqs. (2.57) and (2.61). 

4 3 2  Grn ' {[(48 + 3367)~: - (36 + 232q)fi] - ( = (%) 0 - 15c9ri TA 

3 2 2 i  Grn ' ( N)' { [(4 + 68 7 )v i  - (8 + 767) - 
5 cgr; r A 

Note that all the variables on the r.h.s of Eqs.(3.9) are in the ADM coordinates. 

In the circular limit, energy and angular momentum fluxes are again related as in 

Eqs.(2.67), via the corresponding 'v2' in the ADM coordinates given by 

Grn 1 
1 - (3 - q ) ,  + -(42 - 5 ~ + 8 7 ~ )  

c r~ 8 

From this point onwards, in this section, we work exclusively in the ADM 

gauge and hence we drop the subscript 'A' for the ease of presentation. We now 

have all the ingredients needed to calculate the 2PN corrections in < d&/dt > and 

< dJ/dt >. We explain in detail, the procedure to compute < dE/dt > and only 
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display the final expression for < d J / d t  >, as the procedure is the same in both 

the cases. Starting from Eqs. (3 .9 ) ,  (2.57),  and (2.61) which give the far-zone fluxes 

as functions of v 2 ,  f 2 ,  and G m l r ,  we use the 2PN accurate orbital representation, 

to rewrite d l l d t  as a polynomial in ( 1  - e, cos u)-'. This polynomial is of the form 

d l  d u  -- - QN ( E ,  h )  
d t  ndt z2 ( 1  - e, cos u ) ( ~ + ' )  

where for the convenience we have factored out d u l n d t  given by 

d u  - - - E 
n d t  ( 1  - e, cos u)  { l - - ( 8 - 3 7 ) ( 1 -  c2 ( 1  - e, cos u )  

1 -- 1 1 
( I 7  - l lq)( l  - ( 1  - e, cos u)  ) - ( 1  - e, cos u)  

(184 - 1597 + 2 4 ~ j ~ ~ )  
E h2 

1 + (68 - 767  + 1 7 7 ~ )  - 
2 E h2 

( 1  - e, cos u ) ~  ( 1  - e, cos u ) ~  ~ ( 4  + 7 ) )  

It is a straightforward algebra to show that the coefficients a N ( E ,  h) in Eq.(3.11) 

take the form 

where PN(E, h) for N = 1 , 2 , .  . . 8  are given by 
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To the 1PN order Eqs. (3.14) agree with Eqs. (4.15) of [126]. The far-zone energy flux 

(dE/dt) is a periodic function of time with period P = 2 ~ l n .  Averaging (dEldt), 

given by Eqs.(3.11), (3.13) and (3.14) over one time period P, we obtain 

1 ndt dE 
P dt = - / 2 T ( - ) - ( ~ ) d ~ .  dt 

(3.15) 
27r o du dt 

The integrals in Eq.(3.15) are the Laplace second integrals for the Legendre poly- 

nomials [I431 which yield, 

where PN is Legendre polynomial. Using Eq. (3.16) in Eq. (3.15), we obtain 

< dE/dt > in terms of E and e,: 
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879 749 301 37 1877 
- ( 4536 

-- 
72 'I- 48 'I2

) e: 
513337 531871 1139 

- ( 6048 
- 

672 'I + rn'12) e: 
249479 5 4823 383 

+ ( 8064 
+- 

128 
283685 13147 37 -- 
16128 2688 'I + ='I2) e:)]} 

Following exactly a similar procedure, we obtain the 2PN correction to < d J / d t  >. 

The final result we obtain is: 

(-E) --- [(292 0 + 705 67) + (197 38 + 144 34 'I) e: + (127 + 133 0 7 )  ef] 
168 c2 

- 299623 22025 351 , -- 
252 ~ + T O  

131 627 3 815 597 292 07 
- ( 864 

- 
336 'I- 96 'I2

) e: 
290 1133 124403 7187 

- ( 6048 
- 

96 'I- 48 'I2
) ef 

To the 1PN order, Eqs.(3.17) and (3.18) agree with [126, 1271 as required. For the 

special case of circular orbits, e, = 0 and we observe that,  < d&/dt  >= w < d J / d t  > 

to the 2PN order, where w, the mean angular frequency of the relative motion, 

defined by w = n( l  + k) is given by 
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It is not very difficult to trace the origin of the two types of terms in Eqs. (3.17) 

and (3.18) at  the 2PN order. It is related to the fact that 'Corrections' in Eqs.(3.9), 

arising from the transformation equations connecting the harmonic and the ADM 

coordinates have a different functional form than the 2PN contributions to the corre- 

sponding far-zone fluxes in the harmonic coordinates. For example, in the far-zone 

energy flux, 'Corrections' contain a common factor (G4 m3/r5), unlike the 2PN 

contributions in harmonic coordinates which have only (G3 m2/r4)  as the common 

factor (c.f Eqs.(2.57) and (3.9)). These different functional forms, after the av- 

eraging procedure give rise to the two different types of terms in Eqs.(3.17) and 

(3.18). 

We display below < dE/dt > and < dJldt > in terms of G m l a ,  and e,, 

which can easily be obtained from Eqs.(3.17) and (3.18), using E written in terms 

of G mla, and e, to the 2PN order. The required equation for E is obtained from 

Eqs.(3.5) for a, and e, by inverting them for E and h2 respectively, order by order. 

Eliminating h2 from the expression for E we finally get, 

where c = G m/c2a,. Using the above expression for E, Eq.(3.17) becomes 
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while Eq. (3.18) gets transformed to, 

3.5 The evolution of the orbital elements 

In this section, we compute the 2PN corrections to the evolution of orbital elements 

due to the emission of gravitational radiation. We describe the procedure to compute 

the rate of decrease of the orbital period of the binary in some detail and display 

the final expressions for the rate of decay of other elements namely, < da,/dt > 

and < d e r / d t  >. Employing the heuristic argument, based on the energy and the 

angular momentum conservation to the 2PN order, the rate of decrease of the orbital 

period, P of the two compact objects moving in quasi-elliptical orbits is computed. 

The 2PN accurate orbital period, P = 2 ~ / n  given in [40, 41, 421 reads as 

Differentiating Eq.(3.23) with respect to t and equating d E / d t  to (- < d E / d t  > 1') 
and d h l d t  to (- < d z l d t  > l G m p )  we find 
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Note that,  in the above equation we need < d J / d t  > to  only the Newtonian accu- 

racy. Using in Eq.(3.24), < d & / d t  > given by Eq.(3.17) and the Newtonian part of 

Eq.(3.18) for < d J ' / d t  >, we get 

1 -- c 1 
[(598 56 + 309 12q) + (431 352 + 134 848q)e: 

161 28 (1 - e f )  

Finally, inserting the expressions for e: and G m l a ,  in terms of E and h2 in Eq.(3.25) we 

obtain 
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In the expression above, P is given as a function of the masses and of the 2PN- 

conserved energy and angular momentum. This expression for P is independent of 

the coordinate system used to derive it. Since P is a measurable quantity, one would 

have liked to  express P in terms of other directly observable parameters like the 

orbital period and some convenient eccentricity as in the I P N  case 11261. However 

a t  present, to 2PN accuracy we do not have any such suitable and convenient choice 

and therefore we leave the expression for P in terms of the 2PN accurate E and h2. 

Similarly, using the definition of a, and e, in terms of E and h2 and follow- 

ing the method described above, we obtain after a rather long but straightforward 

calculation 
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To 1PN accuracy we recover the results of [127]. 

3.6 Limits 

We observe that in the test particle limit ( 7 -+ 0) and for small radial eccentricities, 

Eqs.(3.21) and (3.22) become 

Such expressions for average energy and angular momentum fluxes for a test particle 

moving in a slightly eccentric orbit around a Schwarzschild black hole have been 

obtained by Tagoshi [61], using the black hole perturbation methods: Eqs.(4.9) and 

(4.12) of [61] (with q = 0). They are given by 
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where v and e refer to the radial velocity and the eccentricity in Schwarzschild 

coordinates. Eqs.(3.29) and (3.30) are consistent, if the ADM variables a, and e, 

are related to  the Schwarzschild variables v and e by 

Gm " 5 v 4  [ ['I: 2 )  - = v2{1+-+---  I + - - - -  e , (3.31a) 
a, c2 4 c4 

v2 
e: = e 2 { 1 + 2 - + 4 f ) .  c2 c4 (3.31b) 

As stressed by Tagoshi, the fluxes reveal the more familiar coefficients in terms of a 

parameter v', related to the angular frequency in the 4 coordinates rather than v, 

which is adapted to the radial coordinate r. For slightly eccentric orbits, v and v' 

are related by 

In terms of v1 the far-zone fluxes for a test particle in Schwarzschild geometry, 

Eqs.(3.30) may be written as 

d l  32 p2 < - >  = - 
1247vI2 44711vI4 1 - -- - -- 

d t  5 G m 2c 5  u'lO{ 336 c2 9072 c4 

157 678 1 vI2 
+.2 [- - - - - -- 

:44] } , (3.33a) 24 168 c2 

d J  32 p2 < - >  = -- 
1247vI2 44711vI4 

v17{1 - -- - -- 
d t  5 mc5 336 c2 9072 c4 

2 23 325 9 vI2 104 134 9 vJ4 +e --  --- [ 8 168 c2 18144 dl]) ' (3.3313) 

In this form a t  the Newtonian order, one recovers the results of Peters and Mathews 

[144]. The quantities a, and e, in the ADM coordinates are related to v' and e by 

the following relations 
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The above relations may be rewritten, in terms of the conserved energy E using 

[I451 

We obtain 

Grn E E 
- = v"{l - -(2 - 4e2) + - (8 - 37e2)} , (3.36a) 

a ,  c2 c4 

2 e ,  = 
E 

(3.3613) 
c4 

which are the generalizations of similar 1PN relations in [127]. For the special case 

of circular orbits Eq.(3.27) for < da, /d t  >, takes the simple form 

Eq.(3.37) is consistent with the expression for .i. given in [45], after taking due account 

of the coordinate transformations required to relate the ADM and the harmonic 

gauges for the circular orbits. 

3.7 Conclusions 

In this chapter employing the 2PN accurate expressions for the instantaneous far- 

zone energy and angular momentum fluxes for general orbits and the 2PN accurate 

generalized quasi-Keplerian representation for elliptic orbits, we have computed the 

instantaneous 2PN contributions to < d&/d t  > and < d J / d t  >, the far-zone fluxes 

averaged over one orbital timescale in the ADM coordinates. Using the averaged 

far-zone fluxes and a heuristic argument based on energy and angular momentum 

balance to the 2PN order, we compute the evolution of the orbital elements of the 
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generalized quasi-Keplerian representation, in particular the 2PN contributions to 

P, 6, and a',. It should be noted that in a similar manner, it is possible to obtain 

the orbital evolution for all the other parameters of the generalized quasi-Keplerian 

representation. The method employed to compute < d&/dt  > and < d J / d t  > could 

also be adapted to the case of hyperbolic orbits to generalize the work of Simone, 

Poisson and Will on the head-on collision [139]. 

As mentioned earlier, Blanchet and Schafer have obtained the 1PN and the 

1.5PN corrections to P, the rate of decay of the orbital period P [126, 1281. They 

have shown that for the binary pulsar PSR 1913+16, the relative 1PN and 1.5PN 

corrections are numerically equal to +2.15 x and f1.65 x respectively. 

These are unfortunately far below the present accuracy in the measurements of P 

for 1913+16. Therefore 2PN corrections to the decay of the orbital elements of 

the binary may not be useful for the timing observations of the known relativistic 

binary pulsars. However these expressions may be useful for the construction of 

'ready to use' search templates needed to detect gravitational radiation from inspi- 

raling compact binaries in quasi-elliptical orbits. The construction of 'ready to use' 

search templates (waveforms) for gravitational radiation from inspiraling binaries 

can be decomposed into two different parts. These two distinct parts are referred as 

the 'wave generation problem' and the 'radiation reaction problem' [2]. The wave 

generation problem deals with the computation of the gravitational wave polariza- 

tions a t  the leading order in 1/R, when the orbital phase and other parameters of 

the binary orbit take some specific values. The radiation reaction problem consists 

in determining the evolution of the orbital phase and other orbital elements as a 

function of time under the effects of gravitational radiation reaction forces. The 

expressions derived in this chapter will be useful for the evolution of the orbital 

elements in the 'ready to use' search waveforms. In the next chapter, we will tackle 

the 'wave generation problem' and will obtain all the instantaneous 2PN corrections 
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to the 'plus7 and 'cross' gra~ita~tional wave polarizations for inspiraling binaries of 

arbitrary mass ratio, moving in elliptical orbits. 


