Chapter 4

The second post-Newtonian gravitational wave polarizations

4.1 Introduction

The basic aim of the present chapter is to obtain the instantaneous 2 PN corrections to the 'plus' and 'cross' polarization waveforms for inspiraling compact binaries of arbitrary mass ratio moving in elliptical orbits starting from the corresponding 2PN contributions to $\left(h_{k m}^{T T}\right)_{\text {inst }}$, given by Eqs.(2.42) and (2.43) presented in chapter 2. Most of the results presented in this chapter are based on Ref. [146]. As emphasised in [79], the gravitational wave observations of inspiraling compact binaries, is analogous to the high precision radio-wave observations of binary pulsars. The latter makes use of an accurate relativistic 'timing formula' based on the solution - in quasi-Keplerian parametrization - to the relativistic equation of motion for a compact binary in elliptical orbit [147]. In a similar manner, the former demands accurate 'phasing' i.e., an accurate mathematical modeling of the continuous time evolution of the gravitational wave phase. This requires for elliptical binaries, a convenient solution to the 2 PN accurate equations of motion. As mentioned in the last chapter, a very elegant 2PN accurate generalized quasi-Keplerian parametrization for elliptical orbits has been implemented by Damour, Schafer, and Wex [40, 41, 42]. This representation is thus the most natural and best suited for our purpose to parametrize the dynamical variables that enter the gravitational waveforms, given
by Eqs.(2.42) and (2.43). It should be noted that the complete 2PN accurate expressions for h_{+}and h_{\times}require computations of the tail contributions at 1.5 PN and 2PN orders. These are not considered here. We also explore the effects of the orbital inclination and the eccentricity on the Newtonian part of h_{+}and h,. The orbital phase evolution for binaries in quasi-elliptical orbits, implicitly addressed in chapter 3 is explicitly discussed further in this chapter. Note that results of the present chapter will form the first step in the direction of obtaining 'ready to use' theoretical templates to search for gravitational waves from inspiraling compact binaries moving in quasi-elliptical orbits.

The chapter is organized as follows: In section 4.2 we present the details of the computation to obtain the 'instantaneous' 2PN corrections to h_{+}and h_{\times}for inspiraling compact binaries moving in elliptical orbits. Section 4.3 deals with the influence of the orbital parameters on the polarizations waveforms. In section 4.4 we derive the equations that determine the phasing formulae for the quasi-elliptic case while section 4.5 comprises our concluding remarks.

4.2 The 'plus' and 'cross' polarizations

The two independent polarization states of the gravitational wave h_{+}and h_{\times}are given by

$$
\begin{align*}
h_{+} & =\frac{1}{2}\left(p_{i} p_{j}-q_{i} q_{j}\right) h_{i j}^{T T} \tag{4.1a}\\
h_{\times} & =\frac{1}{2}\left(p_{i} q_{j}+p_{j} q_{i}\right) h_{i j}^{T T} \tag{4.1b}
\end{align*}
$$

where p and q are the two polarization vectors, forming along with the unit vector N pointing from the source to the detector, an orthonormal right-handed triad [47]. From Eqs.(4.1) it is clear that the explicit computation of 2 PN corrections to h_{+}and h_{\times}requires the following: a) The 2 PN corrections to $h_{i j}^{T T}$, generally given in terms of the dynamical variables of the binary, namely $v^{2}, \frac{G m}{r}, \mathrm{r}, n_{i}, v_{i}$, N.n and N.v.

Here r and v are the relative position and velocity vectors for the two masses m_{1} and m_{2} in the center of mass frame of the binary. Also $\mathrm{r}=|\mathbf{r}|, v=|\mathbf{v}|, n=\frac{\mathbf{r}}{r}, \dot{r}=\frac{d r}{d t}$ and $\mathrm{m}=m_{1}+m_{2}$; b) A 2PN accurate orbital representation for elliptical orbits to parametrize these dynamical variables.

To see why one needs a 2 PN accurate orbital representation, let us consider the explicit computation of h_{\times}at the Newtonian order. We have

$$
\begin{equation*}
\left(h_{k m}^{T T}\right)_{N}=\frac{4 G}{c^{4} R} \mathcal{P}_{i j k m}(\mathbf{N})\left(v_{i j}-\frac{G m}{r} n_{i j}\right) \tag{4.2}
\end{equation*}
$$

where $\mathcal{P}_{i j k m}(\mathrm{~N})$ is the usual transverse traceless projection operator projecting normal to N and $v_{i j}=v_{i} v_{j}, n_{i j}=n_{i} n_{j}$. Employing the standard convention adopted in [47], gives $p=(0,1,0), q=(-\cos i, 0, \sin i), N=(\sin i, 0, \cos i)$, $\mathrm{n}=(\sin \phi,-\cos \phi, 0)$, and $\mathrm{v}=(1: \sin \phi+\mathrm{r} \dot{\phi} \cos \phi,-\dot{r} \cos \phi+\mathrm{r} \dot{\phi} \sin \phi, 0)$, where ϕ is the orbital phase angle, $\dot{\phi}=d \phi / d t$ and i the inclination angle of the source. Using above convention we obtain, using Eq.(4.2)

$$
\begin{equation*}
h_{\times}=2 \frac{G m \eta C}{c^{4} R}\left\{\left(\frac{G m}{r}+r^{2} \dot{\phi}^{2}-\dot{r}^{2}\right) \sin 2 \phi-2 \dot{r} r \dot{\phi} \cos 2 \phi\right\}, \tag{4.3}
\end{equation*}
$$

where $\eta=\mu / m$. Here, as usual, μ is the reduced mass of the binary given by $m_{1} m_{2} / m$ and C is a shorthand notation for cosi. When dealing with elliptical orbits, it is convenient and useful to use a representation to rewrite the dynamical variables r, \dot{r}, ϕ and $\dot{\phi}$ in terms of the parameters describing an elliptical orbit. For example, in Newtonian dynamics, the Keplerian representation in terms of angular velocity, eccentricity and eccentric anomaly is a convenient solution to the Newtonian equations of motion for two masses on elliptical orbits. Similarly, to compute h_{+} and h_{x} to 2 PN order, one needs a 2 PN accurate orbital representation. In our computation here, we employ the most Keplerian-like solution to the 2PN accurate equations of motion. This solution was obtained by Damour, Schafer, and Wex [40, 41, 42], and is given in the usual polar representation associated with the Arnowit, Deser and Misner (ADM) coordinates. It is known as the generalized quasi-Keplerian
parametrization and represents the 2 PN motion of a binary containing two compact objects of arbitrary mass ratio, moving in elliptical orbits. The relevant details of the representation is summarized in what follows.

Let $r(t), \phi(t)$ be the usual polar coordinates associated with the ADM coordinates in the plane of relative motion of the two compact objects. The radial motion $r(\mathrm{t})$ is conveniently parametrized by

$$
\begin{align*}
r & =\mathrm{a},(1-\mathrm{e}, \cos u) \tag{4.4a}\\
n\left(t-t_{0}\right) & =u-e_{t} \sin u+\frac{\mathrm{ft}}{c^{4}} \sin v+\frac{g_{t}}{\mathrm{c}^{4}}(v-u) \tag{4.4b}
\end{align*}
$$

where u is the 'eccentric anomaly' parametrizing the motion and the constants $a, \mathrm{e}, e_{t}, \mathrm{n}$ and t_{0} are some 2 PN semi-major axis, radial eccentricity, time eccentricity, mean motion, and initial instant respectively. The angular motion $\phi(t)$ is given by

$$
\begin{align*}
\phi-\phi_{0} & =\left(1+\frac{k}{c^{2}}\right) v+\frac{f_{\phi}}{c^{4}} \sin 2 v+\frac{g_{\phi}}{c^{4}} \sin 3 v \tag{4.5a}\\
\text { where } v & =2 \tan ^{-1}\left\{\left(\frac{1+e_{\phi}}{1-e_{\phi}}\right)^{\frac{1}{2}} \tan \left(\frac{u}{2}\right)\right\} \tag{4.5b}
\end{align*}
$$

. In the above v is some real anomaly, $\phi_{0}, \mathrm{k}, e_{\phi}$ are some constant, periastron precession constant, and angular eccentricity respectively. The explicit expressions for the parameters $\mathrm{n}, \mathrm{k}, \mathrm{a}, e_{t}, \mathrm{e}, e_{\phi}, f_{t}, g_{t}, f_{\phi}$ and g_{ϕ} in terms of the 2 PN conserved energy and angular momentum per unit reduced mass were obtained in [41, 42] and displayed in the last chapter as Eqs.(3.5). It is straightforward to obtain the 2PN accurate expressions for $r, \phi, \dot{r}, \dot{\phi}$, in terms of $\xi=G m n, e_{r}$ and u, using Eqs.(3.5) and the following relations,

$$
\begin{align*}
(-2 E)= & \xi^{2 / 3}\left\{1+\frac{\xi^{2 / 3}}{12 c^{2}}(15-\eta)\right. \\
& \left.+\frac{\xi^{4 / 3}}{24 c^{4}\left(1-e_{r}^{2}\right)^{1 / 2}}\left(\left(15-15 \eta-\eta^{2}\right)\left(1-e_{r}^{2}\right)^{1 / 2}+120-48 \eta\right)\right\} \tag{4.6a}
\end{align*}
$$

Chapter 4

$$
\begin{align*}
\left(-2 E h^{2}\right)= & \left(1-e_{r}^{2}\right)\left\{1+\frac{\xi^{2 / 3}}{4 c^{2}\left(1-e_{r}^{2}\right)}(24-4 \eta)-5\left(1-e_{r}^{2}\right)(3-\eta)\right. \\
& +\frac{\xi^{4 / 3}}{24 c^{4}(1-e f)}\left(\left(1-e_{r}^{2}\right)^{2}\left(23 \eta^{2}-15-15 \eta\right)\right. \\
& \left.\left.+\left(1-e_{r}^{2}\right)\left(234 \eta-22 \eta^{2}-204\right)+(408-264 \eta)\right)\right\} \tag{4.6b}\\
\cos v= & \frac{\cos u-e_{\phi}}{\left(1-e_{\phi} \cos u\right)} \tag{4.6c}\\
\sin v= & \frac{\left(1-\phi^{2}\right)^{(1 / 2)} \sin u}{\left(1-e_{\phi} \cos u\right)} \tag{4.6~d}
\end{align*}
$$

, Using the equations above, we can, for instance, write:

$$
\begin{align*}
\phi= & v+3 \frac{\xi^{2 / 3}}{c^{2}\left(1-e_{r}^{2}\right)} v \\
& +\frac{\xi^{4 / 3}}{32\left(1-e_{r}^{2}\right)^{2}}\left\{\left((360-80 \eta)\left(1-e_{r}^{2}\right)+264-144 \eta\right) v\right. \\
& -\left(\left(12 \sin v \cos ^{2}-3 \sin v\right) e_{r}^{3}+24 \sin v \cos v e_{r}^{2}\right) \eta^{2} \\
& \left.+8 \sin v \cos v e_{r}^{2} \eta\right\} . \tag{4.7}
\end{align*}
$$

Proceeding along the above lines, we obtain expressions for r, \dot{r}, ϕ and $\dot{\phi}$, listed below:

$$
\begin{align*}
r= & \left(\frac{G m}{n^{2}}\right)^{1 / 3}\left\{1+\frac{\xi^{2 / 3}}{3 c^{2}}(\eta-9)+\frac{\xi^{4 / 3}}{72 c^{4}}\left[\left(8 \eta^{2}+75 \eta+72\right)\right.\right. \\
& \left.\left.+\frac{1}{\left(1-e_{r}^{2}\right)}(198 \eta-306)+\frac{1}{\left(1-e_{r}^{2}\right)^{1 / 2}}(144 \eta-360)\right]\right\}(1-e, \cos u) \tag{4.8a}\\
\phi= & v+\frac{3 \xi^{2 / 3}}{c^{2}\left(1-e_{r}^{2}\right)} v \\
& +\frac{\xi^{4 / 3}}{128 c^{4}} \frac{1}{\left(1-e_{r}^{2}\right)^{2}\left(1-e_{r} \cos u\right)^{3}}\left\{\left[(480 \eta-2160) e_{r}^{4}\right.\right. \\
& -(1024 \eta-2304) e_{r}^{2}-896 \eta+2496 \\
& +\left(\left(-240 e_{r}^{5} \eta+1080\right) e_{r}^{5}+\left(-288 e_{r}^{3} \eta+2448\right) e_{r}^{3}\right. \\
& \left.+2688 e_{r} \eta-7488 e,\right) \cos u+\left((480 \eta-2160) e_{r}^{4}\right. \\
& \left.-(1344 \eta-3744) e_{r}^{2}\right) \cos 2 u+\left((-80 \eta+360) e_{r}^{5}\right. \\
& \left.\left.+(224 \eta-624) e_{r}^{3}\right) \cos 3 u\right] v
\end{align*}
$$

Chapter 4

$$
\begin{align*}
& +\left(1-e_{r}^{2}\right)^{1 / 2} e_{r}^{2}\left[\left(-45 e_{r}^{3} \eta^{2}+(120 \eta-40) e_{r} \eta\right) \sin u\right. \\
& +\left((-12 \eta+16) e_{r}^{2} \eta-48 \eta^{2}+16 \eta\right) \sin 2 u \\
& \left.\left.+\left(3 \eta^{2} e_{r}^{3}+(12 \eta-8) e_{r} \eta\right) \sin 3 u\right]\right\} \tag{4.8b}\\
& \dot{r}=\frac{\xi^{1 / 3} e_{r} \sin u}{(1-e, \cos u)}\{1 \\
& +\frac{\xi^{2 / 3}}{6 c^{2}(1-e, \cos u)}\left[(7 \eta-6) e_{r} \cos u+2 \eta-18\right] \\
& +\frac{\xi^{4 / 3}}{288\left(1-e_{r}^{2}\right)\left(1-e_{r} \cos u\right)^{3} c^{4}}\left[\left(204 \eta^{2}-810 \eta+1872\right) e_{r}^{4}\right. \\
& -\left(236 q^{2}+42 q-612\right) e_{r}^{2}+32 \eta^{2}+1956 \eta-3096 \\
& +\left(\left(105 \eta^{2}-693 \eta+216\right) e_{r}^{5}-\left(585 \eta^{2}-4545 \eta+6120\right) e_{r}^{3}\right. \\
& \text { + (480 } \left.\left.\eta^{2}-5436 \eta+8352\right) e \text {, }\right) \cos u \\
& +\left(\left(168 \eta^{2}-954 \eta+1872\right) e_{r}^{4}\right. \\
& \left.+\left(-168 \eta^{2}+1350 \eta-2484\right) e_{r}^{2}\right) \cos 2 u \\
& +\left(\left(35 \eta^{2}-231 \eta+72\right) e_{r}^{5}-\left(35 \eta^{2}-231 \eta+72\right) e_{r}^{3}\right) \cos 3 u \\
& +\left(1-e_{r}^{2}\right)^{\frac{1}{2}}\left((-432 \eta+1080) e_{r}^{2}-288 \eta+720\right. \\
& +\left((216 \eta-540) e_{r}^{3}+(864 \eta-2160) e,\right) \cos u \\
& \left.\left.\left.+(-432 \eta+1080) e_{r}^{2} \cos 2 u+(72 \eta-180) e_{r}^{3} \cos 3 u\right)\right]\right\} \tag{4.8c}\\
& \dot{\phi}=\frac{n\left(1-e_{r}^{2}\right)^{1 / 2}}{\left(1-e_{r} \cos u\right)^{2}}\{1 \\
& +\frac{\xi^{2 / 3}}{6 c^{2}\left(1-e_{r} \cos u\right)\left(1-e_{r}^{2}\right)}\left[\left((-9 \eta+24) e_{r}^{3}+(12 \eta-42) e,\right) \cos u\right. \\
& \left.+18-3 e_{r}^{2} \eta\right]+\frac{\xi^{4 / 3}}{48\left(1-e_{r}^{2}\right)^{2}\left(1-e_{r} \cos u\right)^{3} c^{4}}\left[\left(-\eta^{2}-142 \eta+192\right) e_{r}{ }^{6}\right. \\
& +\left(-30 \eta^{2}+1238 \eta-2436\right) e_{r}^{4}+\left(16 \eta^{2}-1384 \eta+2148\right) e_{r}^{2}-192 \eta+576 \\
& +\left(\frac{1}{2}\left(-63, \eta^{2}+363 \eta-432\right) e_{r}^{7}+\left(178 \eta^{2}-1637 \eta+2406\right) e_{r}^{5}\right. \\
& -\left(188 \eta^{2}-802 \eta-138\right) e_{r}^{3}+\left(64 \eta^{2}+1192 \eta-2832\right) e, \text { cos } u \\
& -\left(\left(49 \eta^{2}+118 \eta-192\right) e_{r}{ }^{6}+\left(-56 \eta^{2}-962 \eta+2076\right) e_{r}{ }^{4}\right.
\end{align*}
$$

Chapter 4

$$
\begin{align*}
& \left.+\left(16 \eta^{2}+1132 \eta-2172\right) e_{r}^{2}\right) \cos 2 u \\
& +\left(-\frac{1}{2}\left(21 \eta^{2}+121 \eta-144\right) e_{r}^{7}+\left(32 \eta^{2}-395 \eta+618\right) e_{r}^{5}\right. \\
& \left.+\left(-20 \eta^{2}+322 \eta-522\right) e_{r}^{3}\right) \cos 3 u \\
& +\left(1-e_{r}^{2}\right)^{\frac{1}{2}}\left((216 \eta-540) e_{r}^{4}+(-72 \eta+180) e_{r}^{2}-144 \eta+360\right. \\
& +\left((-108 \eta+270) e_{r}^{5}+(-324 \eta+810) e_{r}^{3}+(432 \eta-1080) e_{r}\right) \cos u \\
& +\left((216 \eta-540) e_{r}^{4}+(-216 \eta+540) e_{r}^{2}\right) \cos 2 u \\
& \left.\left.\left.+\left((-36 \eta+90) e_{r}^{5}+(36 \eta-90) e_{r}^{3}\right) \cos 3 u\right)\right]\right\} \tag{4.8d}
\end{align*}
$$

To obtain the desired 2PN expressions for $\sin \phi$ and $\cos \phi$, we need to obtain $\sin \mathrm{v}$ and $\cos \mathrm{v}$ in terms of ξ, e_{r} and u . Using Eqs.(4.6) and the relation connecting e_{ϕ} to e,, we obtain after some manipulations,

$$
\begin{aligned}
\cos v= & \frac{1}{\left(1-e_{r} \cos \mathrm{u}\right)}\left\{\operatorname{cosu}-e_{r}-\frac{\xi^{2 / 3}}{2 c^{2}} \frac{e_{r} \eta \sin ^{2} u}{(1-\mathrm{e}, \cos u)}\right. \\
& +\frac{\xi^{4 / 3}}{384 \mathrm{c}^{4}} \frac{1}{\left(1-e_{r}^{2}\right)(1-\mathrm{e}, \cos u)^{2}}\left[\left(66 \eta^{3}-8 \eta^{2}+240 \eta\right) e_{r}^{3}\right. \\
& +\left(-66 \eta^{3}+98 \eta^{2}+96 \eta-816\right) e_{r} \\
& +\left(\left(-33 \eta^{3}+28 \eta^{2}-120 \eta\right) e_{r}^{4}+\left(33 \eta^{3}-73 \eta^{2}-48 \eta+408\right) e_{r}^{2}\right) \cos u \\
& +\left(\left(-66 \eta^{3}+8 \eta^{2}-240 \eta\right) e_{r}^{3}+\left(66 \eta^{3}-98 \eta^{2}-96 \eta+816\right) e_{r}\right) \cos 2 u \\
& \left.\left.+\left(\left(33 \eta^{3}-28 \eta^{2}+120 \eta\right) e_{r}^{4}-\left(33 \eta^{3}-73 \eta^{2}-48 \eta+408\right) e_{r}^{2}\right) \cos 3 u\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
\operatorname{sinv}= & \frac{\left(1-e_{r}^{2}\right)^{1 / 2}}{\left(1-e_{r} \cos u\right)}\left\{1+\frac{\xi^{2 / 3}}{2 c^{2}} \frac{1}{\left(1-e_{r} \cos u\right)\left(1-e_{r}^{2}\right)}\left(-e_{r}^{2} \eta+\eta e_{r}\right) \cos u\right. \tag{4.9a}\\
& +\frac{\xi^{4 / 3}}{192 c^{4}} \frac{1}{\left(1-e_{r}^{2}\right)^{2}\left(1-e_{r} \cos u\right)^{2}}\left[\left(99 \eta^{3}-48 \eta^{2}+360 \eta\right) \mathrm{e}, 4\right. \\
& +\left(-99 \eta^{3}+147 \eta^{2}+144 \eta-1224\right) e_{r}^{2} \\
& +\left(\left(-66 \mathrm{q}^{3}+56_{\eta}^{2}-240 \eta\right) \mathrm{e}_{\mathrm{T}}^{5}+\left(-90 \mathrm{q}^{2}-336 \eta+816\right) e_{r}^{3}\right. \\
& \left.+\left(66 \mathrm{q}^{3}-98 \mathrm{q}^{2}-96 \eta+816\right) e_{r}\right) \operatorname{cosu}+\left(\left(33 \mathrm{q}^{3}-40 \eta^{2}+120 \eta\right) e_{r^{4}}\right. \\
& \left.\left.\left.+\left(-33 \eta^{3}+73 \eta^{2}+48 \eta-408\right) \mathrm{e}_{\mathrm{T}}^{2}\right) \cos 2 u\right]\right\} \tag{4.9b}
\end{align*}
$$

Eqs.(4.8) and (4.9) will be required to obtain h_{+}and h_{\times}in terms of ξ, e_{τ} and u from the expressions for 2PN corrections to $h_{i j}^{T T}$ in ADM coordinates.

The 2PN corrections to $h_{i j}^{T T}$, given by Eqs.(5.3) and (5.4) of [44], however, are available in the harmonic (De-Donder) coordinates. Using, in a straightforward manner, the transformation equations of Damour and Schafer [142] to relate the dynamical variables in the harmonic and the ADM gauge, we obtain the 2PN accurate instantaneous contributions to $h_{i j}^{T T}$ in the ADM gauge. For completeness, we quote again the relevant transformation equations displayed in the previous chapter as Eqs.(3.8) relating the harmonic (De-Donder) variables to the corresponding ADM ones,

$$
\begin{align*}
\mathbf{r}_{\mathrm{D}}= & \mathbf{r}_{\mathrm{A}}+\frac{G m}{8 c^{4} r}\left\{\left[\left(5 v^{2}-\dot{r}^{2}\right) \eta+2(1+12 \eta) \frac{G m}{r}\right] \mathbf{r}\right. \\
& -18 \eta r \dot{r} \mathbf{v}\} \tag{4.10a}\\
t_{\mathrm{D}}= & t_{\mathrm{A}}-\frac{G m}{c^{4}} \eta \dot{r} \tag{4.10b}\\
\mathbf{v}_{\mathrm{D}}= & \mathbf{v}_{\mathrm{A}}-\frac{G m \dot{r}}{8 c^{4} r^{2}}\left\{\left[7 v^{2}+38 \frac{G m}{r}-3 \dot{r}^{2}\right] \eta+4 \frac{G m}{r}\right\} \mathbf{r} \\
& -\frac{G m}{8 c^{4} r}\left\{\left[5 v^{2}-9 \dot{r}^{2}-34 \frac{G m}{r}\right] \eta-2 \frac{G m}{r}\right\} \mathbf{v}, \tag{4.10c}\\
r_{\mathrm{D}}= & r_{\mathrm{A}}+\frac{G m}{8 c^{4}}\left\{5 \eta v^{2}+2(1+12 \eta) \frac{G m}{r}-19 \eta \dot{r}^{2}\right\} . \tag{4.10d}
\end{align*}
$$

The subscripts ' D ' and ' A ' denote quantities in the De-Donder (harmonic) and in the ADM coordinates respectively. Note that in all the above equations the differences between the two gauges are of the 2 PN order. As there is no difference between the harmonic and the ADM coordinates to 1PN accuracy, in Eqs.(4.10) no suffix is used for the 2 PN terms.

Using Eqs.(4.10) the 2PN corrections to $h_{i j}^{T T}$ in ADM coordinates can easily be obtained from Eqs.(5.3) and (5.4) of [44]. For economy of presentation, we write $\left(h_{i j}^{T T}\right)_{\mathrm{A}}$ in the following manner, $\left(h_{i j}^{T T}\right)_{\mathrm{A}}=\left(h_{i j}^{T T}\right)_{\mathrm{O}}+$ 'Corrections', where $\left(h_{i j}^{T T}\right)_{\mathrm{A}}$ represent the metric perturbations in the ADM coordinates. $\left(h_{i j}^{T T}\right)_{\mathrm{O}}$ is a short hand notation for expressions on the r.h.s of Eqs.(5.3) and (5.4) of [44],
where $\mathrm{N}, \mathrm{n}, \mathrm{v}, v^{2}, \dot{r}, \mathrm{r}$ are the ADM variables $\mathrm{N}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}, \mathrm{v}_{\mathrm{A}}, v_{\mathrm{A}}^{2}, \dot{r}_{\mathrm{A}}, r_{\mathrm{A}}$ respectively. The 'Corrections' represent the differences at the 2 PN order, that arise due to the change of the coordinate system, given by Eqs.(4.10). As the two coordinates are different only at the 2 PN order, the 'Corrections' come only from the leading Newtonian terms in Eqs. (5.3) and (5.4) of [44].

$$
\begin{align*}
\left(h_{i j}^{T T}\right)_{\mathrm{ADM}}^{\mathrm{inst}}= & \left(h_{i j}^{T T}\right)_{\mathrm{O}}^{\mathrm{inst}}+\frac{G}{c^{4} R} \frac{G m}{2 c^{4} r_{\mathrm{A}}}\left\{\left[5 \eta v_{\mathrm{A}}^{2}-55 \eta \dot{r}_{\mathrm{A}}^{2}\right.\right. \\
& \left.+2(1+12 \eta) \frac{G m}{r_{\mathrm{A}}}\right] \frac{G m}{r_{\mathrm{A}}}\left(n_{i j}\right)_{\mathrm{A}}^{T T} \\
& \left.+\left[-14 \eta v_{\mathrm{A}}^{2}+6 \eta \dot{r}_{\mathrm{A}}^{2}-8(1+5 \eta) \frac{G m}{r_{\mathrm{A}}}\right] \frac{G m}{r_{\mathrm{A}}}\left(n_{(i} v_{j}\right)\right)_{\mathrm{A}}^{T T} \\
& \left.-\left[10 \eta v_{\mathrm{A}}^{2}-18 \eta \dot{r}_{\mathrm{A}}^{2}-(4+68 \eta) \frac{G m}{r_{\mathrm{A}}}\right]\left(v_{i j}\right)_{\mathrm{A}}^{T T}\right\} \tag{4.11}
\end{align*}
$$

To check the algebraic correctness of the above transformation, we compute the far-zone energy flux directly in the ADM coordinates using

$$
\begin{equation*}
\left(\frac{d \mathcal{E}}{d t}\right)_{\mathrm{A}}=\frac{c^{3} R^{2}}{32 \pi G} \int\left(\left(\dot{h}_{i j}^{T T}\right)_{\mathrm{A}}\left(\dot{h}_{i j}^{T T}\right)_{\mathrm{A}}\right) d \Omega(\mathbf{N}) \tag{4.12}
\end{equation*}
$$

After a careful use of the transformation equations, the expression for $(d \mathcal{E} / d t)_{\mathrm{A}}$ calculated above, matches with the expression for the far-zone energy flux, Eq.(4.7a) of [44] obtained earlier. This provides a useful check on the transformation from $\left(h_{i j}^{T T}\right)_{\mathrm{D}}^{\text {inst }}$ to $\left(h_{i j}^{T T}\right)_{\mathrm{A}}^{\text {inst }}$.

As mentioned in $[43,44]$, there is no need to apply the TT projection to $\left(h_{i j}^{T T}\right)$ given by Eq.(4.11) before contracting with p and \mathbf{q}, as required by Eqs.(4.1). Thus, we schematically write,

$$
\begin{equation*}
h_{i j}^{T T}=\alpha_{1} v_{i j}+\alpha_{2} n_{i j}+\alpha_{3} n_{(i} v_{j)} . \tag{4.13}
\end{equation*}
$$

The polarization states h_{+}and h,, for Eqs.(4.13) are given by,

$$
\begin{aligned}
h_{+} & =\frac{1}{2}\left(p_{i} p_{j}-q_{i} q_{j}\right)\left(\alpha_{1} v_{i j}+\alpha_{2} n_{i j}+\alpha_{3} n_{(i} v_{j)}\right) \\
& =\frac{\alpha_{1}}{2}\left((\mathbf{p} . \mathbf{v})^{2}-(\mathbf{q} \cdot \mathbf{v})^{2}\right)+\frac{\alpha_{2}}{2}\left((\mathbf{p . n})^{2}-(\mathbf{q} \cdot \mathbf{n})^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\alpha_{3}}{2}((\mathbf{p . n})(\mathbf{p . v})-(\mathbf{q} \cdot \mathbf{n})(\mathbf{q} \cdot \mathbf{v})), \tag{4.14a}\\
h_{\times}= & \left.\frac{1}{2}\left(p_{i} q_{j}+p_{j} q_{i}\right)\left(\alpha_{1} v_{i j}+\alpha_{2} n_{i j}+\alpha_{3} n_{(i} v_{j}\right)\right) \\
= & \alpha_{1}(\mathbf{p . v})(\mathbf{q} \cdot \mathbf{v})+\alpha_{2}(\mathbf{p . n})(\mathbf{q} \cdot \mathbf{n}) \\
& +\frac{\alpha_{3}}{2}((\mathbf{p . n})(\mathbf{q} \cdot \mathbf{v})+(\mathbf{p . v})(\mathbf{q . n})) . \tag{4.14b}
\end{align*}
$$

Using Eqs.(4.13), (4.14), (4.8) and (4.9), we obtain after a lengthy but straightforward computation the instantaneous 2PN accurate polarizations h_{+}and h_{\times}in terms of ξ, e, and u . In order to compare with existing gauge independent circular limit results, we rewrite the expressions for h_{+}and h_{\times}in terms of the orbital angular frequency w, using a 2 PN accurate relation connecting the mean motion n to w given by $\mathrm{w}=n(1+\mathrm{k})$. From Eqs.(39), (44) and (46) of [42], after some manipulation we obtain:

$$
\begin{equation*}
\xi=\tau\left\{1-\frac{3 \tau^{2 / 3}}{\left(1-e_{r}^{2}\right)}+\frac{\tau^{4 / 3}}{4\left(1-e_{r}^{2}\right)^{2}}\left[(27+18 \eta)-(45-10 \eta)\left(1-e_{r}^{2}\right)\right]\right\} \tag{4.15}
\end{equation*}
$$

where $\tau=\frac{G m \omega}{c^{3}}$. All the computations are performed using MAPLE [134]. The final result for the two polarizations of the gravitational wave from an inspiraling, non-spinning, compact binary in elliptic orbit, is then written as,

$$
\begin{equation*}
\left(h_{+, \times}\right)_{\text {inst }}=\frac{2 G m \eta}{c^{2} R} \tau^{2 / 3}\left\{H_{+, \times}^{(0)}+\tau^{1 / 2} H_{+, \times}^{(1 / 2)}+\tau H_{+, \times}^{(1)}+\tau^{3 / 2} H_{+, \times}^{(3 / 2)}+\tau^{2} H_{+, \times}^{(2)}\right\} \tag{4.16}
\end{equation*}
$$

where the curly brackets contain a post-Newtonian expansion. The explicit expressions for various post -Newtonian terms for the 'plus' polarization are given by

$$
\begin{align*}
& H_{+}^{(0)}=\frac{1}{4\left(1-e_{r} \cos (u)\right)^{3}}\left\{-4 e_{r}^{2}-e_{r}\left(\left(3 e_{r}^{2}-3\right) C^{2}-7\right) \cos u\right. \\
& \left.+\left(\left(1-e_{r}^{2}\right) C^{2}+1\right)\left[-4 \cos 2 u+e_{r} \cos 3 u\right]\right\} \tag{4.17a}\\
& H_{+}^{(1 / 2)}=\frac{6}{64} S \frac{\left(1-e_{r}^{2}\right)^{1 / 2}}{\left(\begin{array}{l}
\left(1-e_{-} \cos u\right)^{\prime} \\
-\cos u)^{6}
\end{array}\right.}\left\{\begin{array}{c}
\left.20 e,\left(e_{r}^{4}-2 e_{r}^{2}+1\right) \mathbf{C}^{2}-5 e_{r}^{2}+5\right)
\end{array}\right.
\end{align*}
$$

Chapter 4

$$
\begin{align*}
& +8\left(\left(-10 e_{r}^{4}+11 e_{r}^{2}-1\right) C^{2}+6 e_{r}^{4}+8 e_{r}^{2}-5\right) \cos u \\
& +2 e_{r}\left(\left(15 e_{r}^{4}+57 e_{r}^{2}-72\right) C^{2}-7 e_{r}^{2}-80\right) \cos 2 u \\
& +4\left(\left(-23 e_{r}^{4}+5 e_{r}^{2}+18\right) C^{2}-4 e_{r}^{4}+27 e_{r}^{2}+18\right) \cos 3 u \\
& +e_{r}\left(\left(12 e_{r}^{4}+56 e_{r}^{2}-68\right) C^{2}-12 e_{r}^{2}-68\right) \cos 4 u \\
& \left.+20 e_{r}^{2}\left(\left(1-e_{r}^{2}\right) C^{2}+1\right) \cos 5 u+2 e_{r}^{3}\left(\left(e_{r}^{2}-1\right) C^{2}-1\right) \cos 6 u\right\} \\
& H_{+}^{(1)}=\frac{1}{\left(1-e_{r}^{2}\right)(1-\mathrm{e}, \cos u)^{3}}\left\{\frac{1}{384} \frac{1}{(1-\mathrm{e}, \cos u)^{4}} H P_{21}\right. \tag{4.17b}\\
& \left.+\frac{\left(1+\mathrm{C}^{2}\right)\left(1-e_{r}^{2}\right)^{1 / 2}}{2} v H P_{22}\right\} \tag{4.17c}\\
& H P_{21}=e_{r}^{2}\left[2 4 \left(\left(13 e_{r}^{6}-39 e_{r}^{4}+39 e_{r}^{2}-13\right) C^{4}\right.\right. \\
& +\left(14 e_{r}^{6}+266 e_{r}^{4}-88 e_{r}^{2}-192\right) C^{2} \\
& \left.-15 e_{r}^{6}+147 e_{r}^{4}-9 e_{r}^{2}+273\right) \\
& +12\left(1-e_{r}^{2}\right)\left(\left(78 e_{r}^{4}-156 e_{r}^{2}+78\right) C^{4}\right. \\
& \left.\left.+\left(29 e_{r}^{4}-223 e_{r}^{2}+338\right) C^{2}-128 e_{r}^{4}+493 e_{r}^{2}-332\right) \eta\right] \\
& +e_{r}\left[\left(\left(210 e_{r}^{8}-958 e_{r}^{6}+1614 e_{r}^{4}-1194 e_{r}^{2}+328\right) C^{4}\right.\right. \\
& +\left(105 e_{r}^{8}-5454 e_{r}^{6}-8427 e_{r}^{4}+12960 e_{r}^{2}+816\right) C^{2} \\
& \left.-1009 e_{r}^{6}-4965 e_{r}^{4}-6774 e_{r}^{2}-4280\right) \\
& +\left(1-e_{r}^{2}\right)\left(\left(630 e_{r}^{6}-2244 e_{r}^{4}+2598 e_{r}^{2}-984\right) C^{4}\right. \\
& +\left(-455 e_{r}^{6}+1005 e_{r}^{4}-1368 e_{r}^{2}-2656\right) C^{2} \\
& \left.+573 e_{r}^{4}-5406 e_{r}^{2}+\mathbf{3 4 8 0}\right) \eta \mid \cos u \\
& +\left[4 \left(\left(-246 e_{r}^{8}+770 e_{r}^{6}-834 e_{r}^{4}+342 e_{r}^{2}-32\right) C^{4}\right.\right. \\
& +\left(165 e_{r}^{8}+2280 e_{r}^{6}-1917 e_{r}^{4}-672 e_{r}^{2}+144\right) C^{2} \\
& \left.+168 e_{r}^{8}+17 e_{r}^{6}+2217 e_{r}^{4}+330 e_{r}^{2}+304\right) \\
& -2\left(1-e_{r}^{2}\right)\left(\left(1476 e_{r}^{6}-3144 e_{r}^{4}+1860 e_{r}^{2}-192\right) C^{4}\right.
\end{align*}
$$

Chapter 4

$$
\begin{aligned}
& +\left(-665 e_{r}^{6}-995 e_{r}^{4}+416 e_{r}^{2}-352\right) C^{2} \\
& \left.\left.\mathbf{- 7 0 4} e_{r}^{6}+\mathbf{2 2 0 5} e_{r}^{4}-\mathbf{3 2 2 0} e_{r}^{2}+608 \eta\right)\right] \cos 2 u \\
& +3 e_{r}\left[\left(\left(42 e_{r}^{8}+262 e_{r}^{6}-1038 e_{r}^{4}+1122 e_{r}^{2}-388\right) C^{4}\right.\right. \\
& +\left(21 e_{r}^{8}-1110 e_{r}^{6}+97 e_{r}^{4}+1456 e_{r}^{2}-464\right) C^{2} \\
& \left.-273 e_{r}^{6}-621 e_{r}^{4}-1370 e_{r}^{2}+20\right) \\
& +\left(1-e_{r}^{2}\right)\left(\left(126 e_{r}^{6}+912 e_{r}^{4}-2202 e_{r}^{2}+1164\right) C^{4}\right. \\
& +\left(-91 e_{r}^{6}-1139 e_{r}^{4}+372 e_{r}^{2}+96\right) C^{2} \\
& \left.\left.-187 e_{r}^{4}+806 e_{r}^{2}-1356\right) \eta\right] \cos 3 u \\
& +4\left[2 \left(\left(-51 e_{r}^{8}+89 e_{r}^{6}+39 e_{r}^{4}-141 e_{r}^{2}+64\right) C^{4}\right.\right. \\
& +\left(42 e_{r}^{8}+186 e_{r}^{6}-372 e_{r}^{4}+144 e_{r}^{2}\right) C^{2} \\
& \left.+9 e_{r}^{8}+111 e_{r}^{6}+139 e_{r}^{4}+153 e_{r}^{2}-64\right) \\
& -\left(1-e_{r}^{2}\right)\left(\left(306 e_{r}^{6}-228 e_{r}^{4}-462 e_{r}^{2}+384\right) C^{4}\right. \\
& +\left(-289 e_{r}^{6}-277 e_{r}^{4}+278 e_{r}^{2}\right) C^{2} \\
& \left.\left.-16 e_{r}^{6}+111 e_{r}^{4}-52 e_{r}^{2}-384\right) \eta\right] \cos 4 u \\
& +e_{r}\left[\left(\left(42 e_{r}^{8}+190 e_{r}^{6}-822 e_{r}^{4}+906 e_{r}^{2}-316\right) C^{4}\right.\right. \\
& +\left(21 C^{2} e_{r}^{8}-438 C^{2} e_{r}^{6}+849 C^{2} e_{r}^{4}-432 e_{r}^{2}\right) C^{2} \\
& \left.-153 e_{r}^{6}-261 \text { ef }-706 e_{r}^{2}+316\right) \\
& +\left(1-e_{r}^{2}\right)\left(\left(126 e_{r}^{6}+696 e_{r}^{4}-1770 e_{r}^{2}+948\right) C^{4}\right. \\
& \left.+\left(-91 e_{r}^{6}-\mathbf{8 5 9} \text { ef }+\mathbf{5 7 2} e_{r}^{2}\right) C^{2}-\mathbf{1 9} \mathbf{e f}+\mathbf{4 4 6} e_{r}^{2}-\mathbf{9 4 8}\right) \eta \mid \cos 5 u \\
& +6 e_{r}^{2}\left[2 \left(\left(-6 e_{r}^{6}+18 e_{r}^{4}-18 e_{r}^{2}+6\right) C^{4}\right.\right. \\
& \left.+\left(e_{r}^{4}-8 e_{r}^{2}+7\right) C^{2} e_{r}^{2}+5 e_{r}^{4}+13 e_{r}^{2}-6\right) \\
& -\left(1-e_{r}^{2}\right)\left(\left(36 e_{r}^{4}-72 e_{r}^{2}+36\right) C^{4}\right. \\
& \left.\left.+\left(-29 C^{2} e_{r}^{4}+17\right) C^{2} e_{r}^{2}+17 e_{r}^{2}-36\right) \eta\right] \cos 6 u \\
& +e_{r}^{3}\left[3 \left(\left(2 e_{r}^{6}-6 e_{r}^{4}+6 e_{r}^{2}-2\right) C^{4}\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(e_{r}^{4}+2 e_{r}^{2}-3\right) C^{2} e_{r}^{2}-e_{r}^{4}-5 e_{r}^{2}+2\right) \\
& +\left(1-e_{r}^{2}\right)\left(\left(18 e_{r}^{4}-36 e_{r}^{2}+18\right) C^{4}\right. \\
& \left.\left.+\left(-13 e_{r}^{2}+7\right) C^{2} e_{r}^{2}+7 e_{r}^{2}-18\right) \eta\right] \cos 7 u \tag{4.17~d}\\
& H P_{22}=\{12 \sin 2 u-15 e, \sin u-3 e, \sin 3 u\} \tag{4.17e}\\
& H_{+}^{(3 / 2)}-\frac{\delta}{\left(1-e_{r}^{2}\right)(1-e, \cos u)^{5}} \boldsymbol{\int}\left\{\begin{array}{c}
1 \\
1536 \\
(1-e, \\
\left(1-e_{r}^{2}\right)^{1 / 2} \\
\cos u)^{4}
\end{array} H P_{31}\right. \\
& \left.+\frac{3}{16} v H P_{32}\right\} \tag{4.17f}\\
& H P_{31}=2 e_{r}\left[2 \left(\left(714 e_{r}^{8}-2150 e_{r}^{6}+2166 e_{r}^{4}-738 e_{r}^{2}+8\right) C^{4}\right.\right. \\
& +\left(150 e_{r}^{8}+12021 e_{r}^{6}-171 e_{r}^{4}-11472 e_{r}^{2}-528\right) C^{2} \\
& \left.-624 e_{r}^{8}+1152 e_{r}^{6}-19245 e_{r}^{4}+12978 e_{r}^{2}-696\right) \\
& +\left(\left(-2856 C^{4} e_{r}^{8}+8600 C^{4} e_{r}^{6}-8664 C^{4} e_{r}^{4}+2952 C^{4} e_{r}^{2}-32\right) C^{4}\right. \\
& +\left(369 e_{r}^{8}+6726 e_{r}^{6}-20163 e_{r}^{4}+13524 e_{r}^{2}-456\right) C^{2} \\
& \left.\left.+3360 e_{r}^{8}-15953 e_{r}^{6}+28545 e_{r}^{4}-15444 e_{r}^{2}+1208\right) \eta\right] \\
& +2\left[\left(\left(378 e_{r}^{10}-3237 e_{r}^{8}+7447 e_{r}^{6}-6699 e_{r}^{4}+2115 e_{r}^{2}-4\right) C^{4}\right.\right. \\
& +\left(567 e_{r}^{10}-16137 e_{r}^{8}-49161 e_{r}^{6}+51051 e_{r}^{4}+13440 e_{r}^{2}+240\right) C^{2} \\
& \left.+129 e_{r}^{8}+26292 e_{r}^{6}+16788 e_{r}^{4}-25419 e_{r}^{2}+228\right) \\
& +\left(\left(-756 e_{r}^{10}+6474 e_{r}^{8}-14894 e_{r}^{6}+13398 e_{r}^{4}-4230 e_{r}^{2}+8\right) C^{4}\right. \\
& +\left(378 e_{r}^{10}-4491 e_{r}^{8}+10518 e_{r}^{6}+3891 e_{r}^{4}-10392 e_{r}^{2}+96\right) C^{2} \\
& \left.-2208 e_{r}^{8}+11447 e_{r}^{6}-27519 e_{r}^{4}+14382 e_{r}^{2}-392\right) \eta(\cos u \\
& +4 e_{r}\left[\left(-1422 e_{r}^{8}+5065 e_{r}^{6}-6663 e_{r}^{4}+3819 e_{r}^{2}-799\right) C^{4}\right. \\
& +\left(351 e_{r}^{8}+19962 e_{r}^{6}-2749 e_{r}^{4}-18028 e_{r}^{2}+464\right) C^{2} \\
& \left.+1038 e_{r}^{8}-6119 e_{r}^{6}+1031 e_{r}^{4}-5189 e_{r}^{2}+8303\right) \\
& +\left(\left(2844 e_{r}^{8}-10130 e_{r}^{6}+13326 e_{r}^{4}-7638 e_{r}^{2}+1598\right) C^{4}\right. \\
& +\left(-825 e_{r}^{8}-4032 e_{r}^{6}+4510 e_{r}^{4}-2165 e_{r}^{2}+2512\right) C^{2}
\end{align*}
$$

$$
\left.\begin{array}{l}
\left.-1710 e_{r}^{8}+8249 e_{r}^{6}-14587 e_{r}^{4}+15725 e_{r}^{2}-4830\right) \eta \mid \cos 2 u \\
+2\left[\left(\left(252 e_{r}^{10}+3729 e_{r}^{8}-13185 e_{r}^{6}+14661 e_{r}^{4}-5943 e_{r}^{2}+486\right) C^{4}\right.\right. \\
+\left(378 e_{r}^{10}-10419 e_{r}^{8}-25440 e_{r}^{6}+30441 e_{r}^{4}+7200 e_{r}^{2}-2160\right) C^{2} \\
\left.-1286 e_{r}^{8}+2409 e_{r}^{6}-3452 e_{r}^{4}-3557 e_{r}^{2}-3942\right) \\
-3\left(\left(168 e_{r}^{10}+2486 e_{r}^{8}-8790 e_{r}^{6}+9774 e_{r}^{4}-3962 e_{r}^{2}+324\right) C^{4}\right. \\
+\left(-84 e_{r}^{10}-3236 e_{r}^{8}+1563 e_{r}^{6}+1473 e_{r}^{4}-4 e_{r}^{2}+288\right) C^{2} \\
\left.-728 e_{r}^{8}+3826 e_{r}^{6}-6077 e_{r}^{4}+5790 e_{r}^{2}-900\right) \eta \mid \cos 3 u \\
+8 e_{r}\left[\left(\left(-309 e_{r}^{8}+7 e_{r}^{6}+1833 e_{r}^{4}-2451 e_{r}^{2}+920\right) C^{4}\right.\right. \\
+\left(33 e_{r}^{8}+3492 e_{r}^{6}-637 e_{r}^{4}-3880 e_{r}^{2}+992\right) C^{2} \\
\left.-24 e_{r}^{8}+891 e_{r}^{6}+20 e_{r}^{4}+2043 e_{r}^{2}-32\right) \\
+\left(\left(618 e_{r}^{8}-14 e_{r}^{6}-3666 e_{r}^{4}+4902 e_{r}^{2}-1840\right) C^{4}\right. \\
+\left(-606 e_{r}^{8}-1740 e_{r}^{6}+2125 e_{r}^{4}+307 e_{r}^{2}-86\right) C^{2} \\
\left.\left.-70 e_{r}^{6}+1076 e_{r}^{4}-1939 e_{r}^{2}+1962\right) \eta\right] \cos 4 u \\
+2\left[\left(\left(108 e_{r}^{10}+1591 e_{r}^{8}-4171 e_{r}^{6}+1887 e_{r}^{4}+1835 e_{r}^{2}-1250\right) C^{4}\right.\right. \\
+\left(162 e_{r}^{8}-1481 e_{r}^{6}-6164 e_{r}^{4}+10075 e_{r}^{2}-2592\right) C^{2} e_{r}^{2} \\
\left.-366 e_{r}^{8}-2993 e_{r}^{6}-3472 e_{r}^{4}-1799 e_{r}^{2}+1250\right) \\
+\left(\left(-216 e_{r}^{10}-3182 e_{r}^{8}+8342 e_{r}^{6}-3774 e_{r}^{4}-3670 e_{r}^{2}+2500\right) C^{4}\right. \\
+\left(108 e_{r}^{8}+3536 e_{r}^{6}+41 e_{r}^{4}-4849 e_{r}^{2}+1164\right) C^{2} e_{r}^{2} \\
\left.+24 e_{r}^{8}-1198 e_{r}^{6}+2005 e_{r}^{4}-422 e_{r}^{2}-2500\right) \eta(\cos 5 u \\
+4 e_{r}\left[\left(\left(-186 C^{4} e_{r}^{8}+71 C^{4} e_{r}^{6}+903 C^{4} e_{r}^{4}-1275 C^{4} e_{r}^{2}+487\right) C^{4}\right.\right. \\
+\left(-159 e_{r}^{6}+966 e_{r}^{4}-1203 e_{r}^{2}+396\right) C^{2} e_{r}^{2} \\
\left.-30 e_{r}^{8}+455 e_{r}^{6}+881 e_{r}^{4}+693 e_{r}^{2}-487\right) \\
+\left(\left(372 e_{r}^{8}-142 e_{r}^{6}-1806 e_{r}^{4}+2550 e_{r}^{2}-974\right) C^{4}-864 e_{r}^{4}+1314 e_{r}^{2}-219\right) C^{2} e_{r}^{2} \\
+20
\end{array}\right)
$$

$$
\begin{align*}
&\left.+30 e_{r}^{8}-41 e_{r}^{6}+219 e_{r}^{4}-813 e_{r}^{2}+974\right) \eta \mid \cos 6 u \\
&+e_{r}^{2}\left[\left(\left(54 e_{r}^{8}+460 e_{r}^{6}-1704 e_{r}^{4}+1812 e_{r}^{2}-622\right) C^{4}\right.\right. \\
&+\left(81 e_{r}^{6}+10 e_{r}^{4}+259 e_{r}^{2}-350\right) C^{2} e_{r}^{2} \\
&\left.-81 e_{r}^{6}-1225 e_{r}^{4}-918 e_{r}^{2}+622\right) \\
&+\left(\left(-108 e_{r}^{8}-920 e_{r}^{6}+3408 e_{r}^{4}-3624 e_{r}^{2}+1244\right) C^{4}\right. \\
&+\left(54 e_{r}^{6}+929 e_{r}^{4}-985 e_{r}^{2}+2\right) C^{2} e_{r}^{2} \\
&\left.-239 e_{r}^{4}+1138 e_{r}^{2}-1244\right) \eta \cos 7 u \\
&+6 e_{r}^{3}\left[2 \left(\left(-8 e_{r}^{6}+24 e_{r}^{4}-24 e_{r}^{2}+8\right) C^{4}\right.\right. \\
&\left.+\left(-8 e_{r}^{4}+e_{r}^{2}+7\right) C^{2} e_{r}^{2}+14 e_{r}^{4}+15 e_{r}^{2}-8\right) \\
&+\left(\left(32 e_{r}^{6}-96 e_{r}^{4}+96 e_{r}^{2}-32\right) C^{4}\right. \\
&\left.\left.+\left(-19 e_{r}^{4}+14 e_{r}^{2}+5\right) C^{2} e_{r}^{2}+3 e_{r}^{4}-27 e_{r}^{2}+32\right) \eta\right] \cos 8 u \\
&+3 e_{r}^{4}\left[\left(\left(2 e_{r}^{6}-6 e_{r}^{4}+6 e_{r}^{2}-2 C^{4}\right.\right.\right. \\
&\left.+\left(3 e_{r}^{4}-3\right) C^{2} e_{r}^{2}-3 e_{r}^{4}-5 e_{r}^{2}+2\right) \\
&+\left(\left(-4 e_{r}^{6}+12 e_{r}^{4}-12 e_{r}^{2}+4\right) C^{4}\right. \\
&\left.+\left(2 e_{r}^{4}-e_{r}^{2}-1\right) C^{2} e_{r}^{2}+3 e_{r}^{2}-4\right) \eta[\cos 9 u \tag{4.17~g}\\
& H P_{32}^{(2)}= 2\left[\left(44 e_{r}^{4}-45 e_{r}^{2}+1\right) C^{2}+40 e_{r}^{4}-66 e_{r}^{2}+5\right] \sin u \\
&=\left.\frac{1}{128} \frac{\left(1-e_{r}^{2}\right)^{1 / 2}}{\left(1-e_{r} \cos u\right)^{4}} v H_{43}+\frac{9}{4}\left(1+C^{2}\right) v^{2} H P_{44}\right\} \\
&+8 e_{r}\left[\left(-14 e_{r}^{2}+14\right) C^{2}-9 e_{r}^{2}+15[\sin 2 u\right. \\
&+ {\left[\left(19 e_{r}^{4}+35 e_{r}^{2}-54\right) C^{2}+10 e_{r}^{4}+17 e_{r}^{2}-54[\sin 3 u\right.} \\
&-8 e,\left[\left(3 e_{r}^{2}-3\right) C^{2}+2 e_{r}^{2}-3\right] \sin 4 u \tag{4.17~h}\\
&+\left.28\left(3 e_{r}^{2}-3\right) C^{2}+2 e^{2}-3\right] \sin 5 u \\
& \hline
\end{align*}
$$

$$
\begin{align*}
& H P_{41}=\left\{-4 e_{r}^{2}-e_{r}\left(\left(3 e_{r}^{2}-3\right) C^{2}-7\right) \cos u+4\left(\left(e_{r}^{2}-1\right) C^{2}-1\right) \cos 2 u\right. \\
& \left.-e_{r}\left(\left(e_{r}^{2}-1\right)-1\right) \cos 3 u\right\} \tag{4.17j}\\
& H P_{42}=\left\{H P_{421}+H P_{422}+H P_{423}+H P_{424}+H P_{425}+H P_{426}\right. \\
& \left.+H P_{427}+H P_{428}+H P_{429}+H P_{4210}+H P_{4211}+H P_{4212}\right\} \tag{4.17k}\\
& H P_{421}=20 e_{r}^{2}\left[1 2 \left(\left(-11412 e_{r}^{12}+58190 e_{r}^{10}-119770 e_{r}^{8}+125420 e_{r}^{6}\right.\right.\right. \\
& \left.-68360 e_{r}^{4}+17062 e_{r}^{2}-1130\right) C^{6} \\
& +\left(11358 e_{r}^{12}-200354 e_{r}^{10}+397966 e_{r}^{8}-121140 e_{r}^{6}\right. \\
& \left.-191206 e_{r}^{4}+87590 e_{r}^{2}+15786\right) C^{4} \\
& +\left(-9888 e_{r}^{12}-545279 e_{r}^{10}-257984 e_{r}^{8}+1302345 e_{r}^{6}\right. \\
& \left.+250406 e_{r}^{4}-994618 e_{r}^{2}+255018\right) C^{2} \\
& -9075 e_{r}^{12}-9858 e_{r}^{10}-474666 e_{r}^{8}+609319 e_{r}^{6} \\
& \left.-2119432 e_{r}^{4}+183150 e_{r}^{2}+56982\right) \\
& +4\left(\left(171180 e_{r}^{12}-872850 e_{r}^{10}+1796550 e_{r}^{8}\right.\right. \\
& \left.-1881300 e_{r}^{6}+1025400 e_{r}^{4}-255930 e_{r}^{2}+16950\right) C^{6} \\
& +\left(-189582 e_{r}^{12}+2027658 e_{r}^{10}-3553282 e_{r}^{8}+499372 e_{r}^{6}\right. \\
& \left.+2388726 e_{r}^{4}-1063238 e_{r}^{2}-109654\right) C^{4} \\
& +\left(-136626 e_{r}^{12}+225777 e_{r}^{10}-2980566 e_{r}^{8}+8658903 e_{r}^{6}\right. \\
& \left.-13660176 e_{r}^{4}+8143398 e_{r}^{2}-250710\right) C^{2} \\
& +149025 e_{r}^{12}-556978 e_{r}^{10}+4505192 e_{r}^{8}-12372133 e_{r}^{6} \\
& \left.+9879830 e_{r}^{4}-6524422 e_{r}^{2}+384566\right) \eta \\
& +3\left(1-e_{r}^{2}\right)^{2}\left(\left(-228240 e_{r}^{8}+707320 e_{r}^{6}-752520 e_{r}^{4}\right.\right. \\
& \left.+296040 e_{r}^{2}-22600\right) C^{6} \\
& +\left(295272 e_{r}^{8}-57304 e_{r}^{6}-967968 e_{r}^{4}+845640 e_{r}^{2}-115640\right) C^{4} \\
& +\left(161642 e_{r}^{8}-1867277 e_{r}^{6}+3654850 e_{r}^{4}\right.
\end{align*}
$$

$$
\begin{align*}
& \left.-2930376 e_{r}^{2}+544296\right) C^{2} \\
& \left.-231200 e_{r}^{8}+1072023 e_{r}^{6}-2105622 e_{r}^{4}+2119096 e_{r}^{2}-261224\right) \eta^{2} \\
& \left.-1881\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(7 e_{r}^{6}+70 e_{r}^{4}+112 e_{r}^{2}+32\right) \eta^{3}\right] \tag{4.17l}\\
& H P_{422}=2 e_{r}\left[6 \left(\left(-27720 e_{r}^{14}+542232 e_{r}^{12}-2306920 e_{r}^{10}+4371320 e_{r}^{8}\right.\right.\right. \\
& \left.-4290520 e_{r}^{6}+2161480 e_{r}^{4}-461432 e_{r}^{2}+11560\right) C^{6} \\
& +\left(-41580 e_{r}^{14}+1324848 e_{r}^{12}+5936800 e_{r}^{10}-23012760 e_{r}^{8}\right. \\
& \left.+21061540 e_{r}^{6}-3475600 e_{r}^{4}-1524408 e_{r}^{2}-268840\right) C^{4} \\
& +\left(31185 e_{r}^{14}+5180817 e_{r}^{12}+31023187 e_{r}^{10}-29441285 e_{r}^{8}\right. \\
& \left.-41684856 e_{r}^{6}+37543688 e_{r}^{4}-96280 e_{r}^{2}-2556456\right) C^{2} \\
& +367499 e_{r}^{12}+7465814 e_{r}^{10}+908535 e_{r}^{8} \\
& \left.+27291860 e_{r}^{6}+42451792 e_{r}^{4}-12161208 e_{r}^{2}-1071832\right) \\
& +10\left(\left(83160 e_{r}^{14}-1626696 e_{r}^{12}+6920760 e_{r}^{10}-13113960 e_{r}^{8}\right.\right. \\
& \left.+12871560 e_{r}^{6}-6484440 e_{r}^{4}+1384296 e_{r}^{2}-34680\right) C^{6} \\
& +\left(36036 e_{r}^{14}-1235424 e_{r}^{12}-15180216 e_{r}^{10}+47999416 e_{r}^{8}\right. \\
& \left.-41545420 e_{r}^{6}+6216528 e_{r}^{4}+3266912 e_{r}^{2}+442168\right) C^{4} \\
& +\left(-68607 e_{r}^{14}+2131725 e_{r}^{12}+6417939 e_{r}^{10}-21510849 e_{r}^{8}\right. \\
& \left.+25180608 e_{r}^{6}+12128928 e_{r}^{4}-25011384 e_{r}^{2}+731640\right) C^{2} \\
& -721885 e_{r}^{12}-7520226 e_{r}^{10}+12056715 e_{r}^{8}+25823916 e_{r}^{6} \\
& \left.-16573992 e_{r}^{4}+21606384 e_{r}^{2}-1112504\right) \eta \\
& -15\left(1-e_{r}^{2}\right)^{2}\left(\left(55440 e_{r}^{10}-973584 e_{r}^{8}+2611232 e_{r}^{6}-2546592 e_{r}^{4}\right.\right. \\
& \left.+876624 e_{r}^{2}-23120\right) C^{6}+\left(-72072 e_{r}^{10}+1878192 e_{r}^{8}-3982184 e_{r}^{6}\right. \\
& \left.+1266960 e_{r}^{4}+978528 e_{r}^{2}-69424\right) C^{4}+\left(18942 e_{r}^{10}-613157 e_{r}^{8}\right. \\
& \left.-1216036 e_{r}^{6}+5076104 e_{r}^{4}-4793712 e_{r}^{2}+527184\right) C^{2} \\
& \left.-432285 e_{r}^{8}+1754916 e_{r}^{6}-3265128 e_{r}^{4}+3956544 e_{r}^{2}-373200\right) \eta^{2}
\end{align*}
$$

$$
\begin{align*}
&+495\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(49 e_{r}^{8}+1820 \mathrm{ef}+6440 e_{r}^{4}\right. \\
&\left.\left.+4032 e_{r}^{2}+256\right) \eta^{3}\right] \operatorname{cosu} \tag{4.17~m}\\
& H P_{423}= 4\left[1 2 \left(\left(85740 \mathrm{ef}^{4}-542888 \mathrm{ef}^{2}+1428980 e_{r}^{10}-2002480 e_{r}^{8}\right.\right.\right. \\
&\left.+1576980 e_{r}^{6}-663080 e_{r}^{4}+117388 e_{r}^{2}-640\right) C^{6} \\
&+\left(-85080 \mathrm{ef}^{4}-828832 e_{r}^{12}+548980 e_{r}^{10}\right. \\
&\left.+4078240 e_{r}^{8}-5982640 e_{r}^{6}+2207840 e_{r}^{4}+42932 e_{r}^{2}+18560\right) C^{4} \\
&+\left(-220455 e_{r}^{14}-3199870 \mathrm{ef}^{2}-5009561 \mathrm{ef}^{0}+16140398 e_{r}^{8}\right. \\
&\left.-8484236 e_{r}^{6}+333800 e_{r}^{4}+312436 e_{r}^{2}+127488\right) C^{2} \\
&+64920 e_{r}^{14}-870755 e_{r}^{12}+793 e_{r}^{10}-6982190 e_{r}^{8} \\
&\left.-4598448 e_{r}^{6}-3370960 e_{r}^{4}+2789324 e_{r}^{2}+79616\right) \\
&-20\left(\left(257220 e_{r}^{14}-1628664 e_{r}^{12}+4286940 e_{r}^{10}-6007440 e_{r}^{8}\right.\right. \\
&\left.+4730940 e_{r}^{6}-1989240 e_{r}^{4}+352164 e_{r}^{2}-1920\right) C^{6} \\
&+\left(-267594 e_{r}^{14}-991092 e_{r}^{12}-228440 e_{r}^{10}+9076848 e_{r}^{8}\right. \\
&\left.-11967202 e_{r}^{6}+4210772 e_{r}^{4}+134580 e_{r}^{2}+32128\right) C^{4} \\
&+\left(-169419 e_{r}^{14}+3114384 e_{r}^{12}-7856703 e_{r}^{10}+9976014 e_{r}^{8}-\right. \\
&\left.+4224904 e_{r}^{4}-2171568 e_{r}^{2}+55296\right) C^{2} \\
&\left.+2401696 e_{r}^{6}-1720896 e_{r}^{4}+464432 e_{r}^{2}-2560\right) C^{6} \\
&+\left(-405384 e_{r}^{10}+748928 e_{r}^{8}-1670008 e_{r}^{6}\right. \\
&\left.+1070928 e_{r}^{4}+259120 e_{r}^{2}-3584\right) C^{4} \\
&\left.-6176586 e_{r}^{8}+12809934 e_{r}^{6}-5629764 e_{r}^{4}+3243660 e_{r}^{2}-71936\right) \eta \\
&+15\left(1-e_{r}^{2}\right)^{2}\left(\left(342960 e_{r}^{10}-1485632 e_{r}^{8}\right.\right. \\
&+1855201 e_{r}^{12}+4118901 e_{r}^{10} \\
&+46080) C^{2} \\
& \hline
\end{align*}
$$

Chapter 4

$$
\left.\begin{array}{rl}
& +250432 e_{r}^{10}-1314151 e_{r}^{8}+2741592 e_{r}^{6}-3120584 e_{r}^{4} \\
& \left.+1494864 e_{r}^{2}-50176\right) \eta^{2} \\
& +e_{r}^{2}\left(4 9 5 (C ^ { 2 } + 1) (1 - e _ { r } ^ { 2 } +) \left(119 e_{r}^{8}+777 e_{r}^{6}\right.\right. \\
& \left.\left.\left.-168 e_{r}^{4}-856 e_{r}^{2}+128\right)\right) \eta^{3}\right] \cos 2 u \tag{4.17n}\\
H P_{424}= & 2 e_{r}\left[\left(\left(6-19800 e_{r}^{14}-517616 e_{r}^{12}+3150304 e_{r}^{10}-7294280 e_{r}^{8}\right.\right.\right. \\
& \left.+8719400 e_{r}^{6}-5715520 e_{r}^{4}+1942736 e_{r}^{2}-265224\right) C^{6} \\
& +\left(-29700 e_{r}^{14}+1707296 e_{r}^{12}+1586376 e_{r}^{10}-8586280 e_{r}^{8}\right. \\
& \left.-1091780 e_{r}^{6}+13943520 e_{r}^{4}-8234336 e_{r}^{2}+704904\right) C^{4} \\
& +\left(22275 e_{r}^{14}+3547307 e_{r}^{12}+16757169 e_{r}^{10}-20002495 e_{r}^{8}\right. \\
& \left.-9132584 e_{r}^{6}+16456512 e_{r}^{4}-7334144 e_{r}^{2}-314040\right) C^{2} \\
& +1909 e_{r}^{12}+2104658 e_{r}^{10}+12650105 e_{r}^{8}+24648924 e_{r}^{6} \\
& \left.+4084144 e_{r}^{4}-4611824 e_{r}^{2}-4284616\right) \\
& +10\left(\left(59400 e_{r}^{14}+1552848 e_{r}^{12}-9450912 e_{r}^{10}+21882840 e_{r}^{8}\right.\right. \\
& \left.-26158200 e_{r}^{6}+17146560 e_{r}^{4}-5828208 e_{r}^{2}+795672\right) C^{6} \\
& +\left(25740 e_{r}^{14}-4391080 e_{r}^{12}+2203168 e_{r}^{10}+6599160 e_{r}^{8}\right. \\
& \left.+11829100 e_{r}^{6}-31788280 e_{r}^{4}+16843080 e_{r}^{2}-1320888\right) C^{4} \\
& +\left(-49005 e_{r}^{14}+1545015 e_{r}^{12}+2938569 e_{r}^{10}-15481563 e_{r}^{8}\right. \\
& \left.+20170296 e_{r}^{6}-9285144 e_{r}^{4}+4161408 e_{r}^{2}-3999576\right) C^{2} \\
& +257917 e_{r}^{12}-1895710 e_{r}^{10}+520525 e_{r}^{8}-154964 e_{r}^{6} \\
& +15\left(1-51480 e_{r}^{2}\right)^{2}\left(\left(39600 e_{r}^{10}+1114432 e_{r}^{8}-4111344 e_{r}^{6}\right.\right. \\
\left.+5251440 e_{r}^{4}-2824576 e_{r}^{2}+530448\right) C^{6} \\
\left.+9469912 e_{r}^{2}+5180152\right) \eta \\
+
\end{array}\right)
$$

Chapter 4

$$
\begin{align*}
& +\left(13530 e_{r}^{10}+990001 e_{r}^{8}+2135208 e_{r}^{6}\right. \\
& \left.-3797880 e_{r}^{4}+4281920 e_{r}^{2}-1925520\right) C^{2} \\
& \left.+443249 e_{r}^{8}-2034432 e_{r}^{6}+3309272 e_{r}^{4}-4553232 e_{r}^{2}+1435472\right) \eta^{2} \\
& +495\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(3 e_{r}^{8}-168 e_{r}^{6}-1960 e_{r}^{4}\right. \\
& \left.\left.-2464 e_{r}^{2}-256\right) \eta^{3}\right] \cos 3 u \tag{4.17o}
\end{align*}
$$

$$
\begin{aligned}
& H P_{425}= 16\left[1 2 \left(\left(8010 e_{r}^{14}+3358 e_{r}^{12}-141036 e_{r}^{10}+374460 e_{r}^{8}\right.\right.\right. \\
&\left.-434990 e_{r}^{6}+249990 e_{r}^{4}-63888 e_{r}^{2}+4096\right) C^{6} \\
&+\left(-2700 e_{r}^{14}-174398 e_{r}^{12}+212856 e_{r}^{10}+356100 e_{r}^{8}\right. \\
&\left.-538940 e_{r}^{6}+24330 e_{r}^{4}+144768 e_{r}^{2}-22016\right) C^{4} \\
&+\left(-22110 e_{r}^{14}-494551 e_{r}^{12}+137510 e_{r}^{10}+495473 e_{r}^{8}\right. \\
&\left.-268856 e_{r}^{6}-66890 e_{r}^{4}+231712 e_{r}^{2}-12288\right) C^{2} \\
&-3735 e_{r}^{14}+30788 e_{r}^{12}-412830 e_{r}^{10}-955031 e_{r}^{8} \\
&\left.-640062 e_{r}^{6}+498570 e_{r}^{4}+231152 e_{r}^{2}+30208\right) \\
&-20\left(\left(24030 e_{r}^{14}+10074 e_{r}^{12}-423108 e_{r}^{10}+1123380 e_{r}^{8}\right.\right. \\
&\left.-1304970 e_{r}^{6}+749970 e_{r}^{4}-191664 e_{r}^{2}+12288\right) C^{6} \\
&+\left(-22806 e_{r}^{14}-353296 e_{r}^{12}+654564 e_{r}^{10}+169272 e_{r}^{8}\right. \\
&\left.-517654 e_{r}^{6}-229944 e_{r}^{4}+342360 e_{r}^{2}-42496\right) C^{4} \\
&+\left(8382 e_{r}^{14}+42855 e_{r}^{12}+142104 e_{r}^{10}-1027287 e_{r}^{8}\right. \\
&\left.+1451856 e_{r}^{6}-686190 e_{r}^{4}+105144 e_{r}^{2}-36864\right) C^{2} \\
&-8685 e_{r}^{14}+108194 e_{r}^{12}-362384 e_{r}^{10}+245511 e_{r}^{8} \\
&\left.+180480 e_{r}^{6}+513644 e_{r}^{4}-115920 e_{r}^{2}+67072\right) \eta \\
&+15\left(1-e_{r}^{2}\right)^{2}\left(\left(32040 e_{r}^{10}+77512 e_{r}^{8}-441160 e_{r}^{6}\right.\right. \\
&+\left.538008 e_{r}^{4}-222784 e_{r}^{2}+16384\right) C^{6}
\end{aligned}
$$

Chapter 4

$$
\begin{aligned}
& +\left(-68328 e_{r}^{10}-301120 e_{r}^{8}+488152 e_{r}^{6}-353328 e_{r}^{4}\right. \\
& \left.+244864 e_{r}^{2}-10240\right) C^{4}+\left(38794 e_{r}^{10}+166415 e_{r}^{8}\right. \\
& \left.+148738 e_{r}^{6}-333748 e_{r}^{4}+252648 e_{r}^{2}-49152\right) C^{2} \\
& -2752 e_{r}^{10}+43067 e_{r}^{8}-187750 e_{r}^{6}+151908 e_{r}^{4} \\
& \left.-278616 e_{r}^{2}+43008\right) \eta^{2} \\
& \left.+495\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(23 \mathrm{ef}+294 e_{r}^{4}+532 e_{r}^{2}+120\right) \eta^{3} e_{r}^{2}\right] \cos 4 u
\end{aligned}
$$

$$
\begin{align*}
H P_{426}= & 5 e_{r}\left[6 \left(\left(-3960 e_{r}^{14}-102296 e_{r}^{12}+393072 e_{r}^{10}-292320 e_{r}^{8}\right.\right.\right. \tag{4.17p}\\
& \left.-576920 e_{r}^{6}+1171560 e_{r}^{4}-766944 e_{r}^{2}+177808\right) C^{6} \\
& +\left(-5940 e_{r}^{14}+124904 e_{r}^{12}+826824 e_{r}^{10}-2702352 e_{r}^{8}\right. \\
& \left.+1978892 e_{r}^{6}+260376 e_{r}^{4}-489984 e_{r}^{2}+7280\right) \mathrm{C}^{4} \\
& +\left(4455 e_{r}^{14}+709031 \mathrm{ef}^{2}+1376269 e_{r}^{10}-2582315 e_{r}^{8}\right. \\
& \left.+1550280 e_{r}^{6}-116968 e_{r}^{4}-756160 e_{r}^{2}-184592\right) C^{2} \\
& +13385 e_{r}^{12}+189506 e_{r}^{10}+3585485 e_{r}^{8}+3156500 e_{r}^{6} \\
& \left.-1048376 e_{r}^{4}-2233184 e_{r}^{2}-496\right) \\
& +2\left(\left(59400 e_{r}^{14}+1534440 e_{r}^{12}-5896080 e_{r}^{10}+4384800 e_{r}^{8}\right.\right. \\
& \left.+8653800 e_{r}^{6}-17573400 e_{r}^{4}+11504160 e_{r}^{2}-2667120\right) C^{6} \\
& +\left(25740 e_{r}^{14}-2244152 e_{r}^{12}-5403864 e_{r}^{10}+26021856 e_{r}^{8}\right. \\
& \left.-24584900 e_{r}^{6}+4783944 e_{r}^{4}+403440 e_{r}^{2}+997936\right) C^{4} \\
& +\left(-49005 e_{r}^{14}-239049 e_{r}^{12}+3911673 e_{r}^{10}-13313283 e_{r}^{8}\right. \\
& \left.+5234568 e_{r}^{6}+13510536 e_{r}^{4}-11824320 e_{r}^{2}+2768880\right) C^{2} \\
& -73979 e_{r}^{12}+2019186 e_{r}^{10}-9275659 e_{r}^{8}+8708964 e_{r}^{6} \\
& \left.+2469096 e_{r}^{4}+6670768 e_{r}^{2}-1099696\right) \eta \\
& -3\left(1-e_{r}^{2}\right)^{2}\left(\left(39600 e_{r}^{10}+1102160 e_{r}^{8}-1766000 e_{r}^{6}\right.\right.
\end{align*}
$$

Chapter 4

$$
\begin{aligned}
& \left.-1710960 e_{r}^{4}+4113280 e_{r}^{2}-1778080\right) C^{6} \\
& +\left(-51480 e_{r}^{10}-2245760 e_{r}^{8}-963640 e_{r}^{6}\right. \\
& \left.+4621776 e_{r}^{4}-3046432 e_{r}^{2}+1685536\right) C^{4} \\
& +\left(13530 e_{r}^{10}+1120041 e_{r}^{8}+2429824 e_{r}^{6}\right. \\
& \left.-1635904 e_{r}^{4}-1367936 e_{r}^{2}+1845920\right) C^{2} \\
& \left.-39191 e_{r}^{8}+57544 e_{r}^{6}-1444480 e_{r}^{4}+248224 e_{r}^{2}-1753376\right) \eta^{2} \\
& \left.-99\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(53 e_{r}^{6}+2128 e_{r}^{4}+7280 e_{r}^{2}+3136\right) \eta^{3} e_{r}^{2}\right] \cos 5 u
\end{aligned}
$$

$$
\begin{align*}
H P_{427}= & 2\left[1 2 \left(\left(25680 e_{r}^{14}+25096 e_{r}^{12}-448472 e_{r}^{10}+967120 e_{r}^{8}-784480 e_{r}^{6}\right.\right.\right. \tag{4.17q}\\
& \left.+119720 e_{r}^{4}+157544 e_{r}^{2}-62208\right) C^{6} \\
& +\left(25500 e_{r}^{14}-369496 e_{r}^{12}+529712 e_{r}^{10}+459600 e_{r}^{8}\right. \\
& \left.-1306820 e_{r}^{6}+872680 e_{r}^{4}-273384 e_{r}^{2}+62208\right) C^{4} \\
& +\left(-95175 e_{r}^{14}-944590 e_{r}^{12}+1077719 e_{r}^{10}-281682 e_{r}^{8}\right. \\
& \left.-888416 e_{r}^{6}+1095640 e_{r}^{4}-25704 e_{r}^{2}+62208\right) C^{2} \\
& -8880 e_{r}^{14}-15019 e_{r}^{12}-1015099 e_{r}^{10}-2719906 e_{r}^{8} \\
& \left.-98252 e_{r}^{6}+2030200 e_{r}^{4}+141544 e_{r}^{2}-62208\right) \\
& -20\left(\left(77040 e_{r}^{14}+75288 e_{r}^{12}-1345416 e_{r}^{10}+2901360 e_{r}^{8}\right.\right. \\
& \left.-2353440 e_{r}^{6}+359160 e_{r}^{4}+472632 e_{r}^{2}-186624\right) C^{6} \\
& +\left(7662 e_{r}^{14}-847368 e_{r}^{12}+1797868 e_{r}^{10}-262264 e_{r}^{8}\right. \\
& \left.-1828290 e_{r}^{6}+1629392 e_{r}^{4}-683624 e_{r}^{2}+186624\right) C^{4} \\
& +\left(-62799 e_{r}^{14}+104784 e_{r}^{12}-179151 e_{r}^{10}-1626474 e_{r}^{8}\right. \\
& \left.+3067176 e_{r}^{6}-1413048 e_{r}^{4}-77112 e_{r}^{2}+186624\right) C^{2} \\
& -20400 e_{r}^{14}+122267 e_{r}^{12}-226623 e_{r}^{10} \\
& \left.-532166 e_{r}^{8}+602362 e_{r}^{6}+851856 e_{r}^{4}+288104 e_{r}^{2}-186624\right) \eta
\end{align*}
$$

Chapter 4

$$
\begin{align*}
& +15\left(1-e_{r}^{2}\right)^{2}\left(\left(102720 e_{r}^{10}+305824 e_{r}^{8}-1284960 e_{r}^{6}\right.\right. \\
& \left.+992736 e_{r}^{4}+132512 e_{r}^{2}-248832\right) C^{6} \\
& +\left(-142824 e_{r}^{10}-1020208 e_{r}^{8}+1280376 e_{r}^{6}\right. \\
& \left.-176640 e_{r}^{4}-189536 e_{r}^{2}+248832\right) C^{4} \\
& +\left(55342 e_{r}^{10}+573957 e_{r}^{8}+171264 e_{r}^{6}-877168 e_{r}^{4}\right. \\
& \left.+394848 e_{r}^{2}+248832\right) C^{2}-17536 e_{r}^{10}+60389 e_{r}^{8}-302200 e_{r}^{6} \\
& \left.+29424 e_{r}^{4}-337824 e_{r}^{2}-248832\right) \eta^{2} \\
& \left.+495 e_{r}^{4}\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(229 e_{r}^{4}+1792 e_{r}^{2}+1456\right) \eta^{3}\right] \cos 6 u \tag{4.17r}
\end{align*}
$$

$$
\begin{aligned}
H P_{428}= & e_{r}\left[6 \left(\left(-6600 e_{r}^{14}-138848 e_{r}^{12}+560552 e_{r}^{10}-489040 e_{r}^{8}\right.\right.\right. \\
& \left.-641400 e_{r}^{6}+1474240 e_{r}^{4}-991592 e_{r}^{2}+232688\right) C^{6} \\
& +\left(-9900 \mathrm{ef}^{4}+13928 \mathrm{ef}^{2}+552928 e_{r}^{10}-1982160 e_{r}^{8}\right. \\
& \left.+2870820 e_{r}^{6}-2249800 e_{r}^{4}+1036872 e_{r}^{2}-232688\right) \mathrm{C}^{4} \\
& +\left(7425 e_{r}^{14}+873065 \mathrm{ef}^{2}-155341 e_{r}^{10}-1909885 e_{r}^{8}+4307064 e_{r}^{6}\right. \\
& \left.-3411632 e_{r}^{4}+521992 e_{r}^{2}-232688\right) \mathrm{C}^{2} \\
& +53907 \mathrm{ef}^{2}+503710 e_{r}^{10}+3405455 e_{r}^{8}+2686636 e_{r}^{6} \\
& \left.-4200424 e_{r}^{4}-567272 e_{r}^{2}+232688\right) \\
& +10\left(\left(19800 \mathrm{ef}^{4}+416544 e_{r}^{12}-1681656 \mathrm{ef}^{0}+1467120 e_{r}^{8}\right.\right. \\
& \left.+1924200 e_{r}^{6}-4422720 e_{r}^{4}+2974776 e_{r}^{2}-698064\right) C^{6} \\
& +\left(8580 e_{r}^{14}-286864 e_{r}^{12}-425088 e_{r}^{10}+3814096 e_{r}^{8}\right. \\
& \left.-6849884 e_{r}^{6}+6038736 e_{r}^{4}-2997640 e_{r}^{2}+698064\right) C^{4} \\
& +\left(-16335 \mathrm{ef}^{4}-348483 \mathrm{ef}^{2}+627315 e_{r}^{10}-2704137 e_{r}^{8}\right. \\
& \left.+3130512 e_{r}^{6}+179040 e_{r}^{4}-1565976 e_{r}^{2}+698064\right) \mathrm{C}^{2} \\
& -72837 e_{r}^{12}+396174 e_{r}^{10}-1126909 e_{r}^{8}-146316 e_{r}^{6}
\end{aligned}
$$

Chapter 4

$$
\begin{align*}
& \left.+1146672 e_{r}^{4}+1588840 e_{r}^{2}-698064\right) \eta \\
& -15\left(1-e_{r}^{2}\right)^{2}\left(\left(13200 e_{r}^{10}+304096 e_{r}^{8}-526112 e_{r}^{6}-378240 e_{r}^{4}\right.\right. \\
& \left.+1052432 e_{r}^{2}-465376\right) C^{6}+\left(-17160 e_{r}^{10}-531952 e_{r}^{8}-55384 e_{r}^{6}\right. \\
& \left.+1130592 e_{r}^{4}-991472 e_{r}^{2}+465376\right) C^{4}+\left(4510 e_{r}^{10}+201395 e_{r}^{8}\right. \\
& \left.+447860 e_{r}^{6}-624368 e_{r}^{4}-113232 e_{r}^{2}+465376\right) C^{2} \\
& \left.-10405 e_{r}^{8}-32628 e_{r}^{6}-203152 e_{r}^{4}+52272 e_{r}^{2}-465376\right) \eta^{2} \\
& \left.+e_{r}^{4}\left(-495\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2}\left(39 e_{r}^{4}+1036 e_{r}^{2}+1680\right)\right) \eta^{3}\right] \cos 7 u \tag{4.17~s}\\
& H P_{429}=4 e_{r}^{2}\left[1 2 \left(\left(2940 e_{r}^{12}-2942 e_{r}^{10}-29390 e_{r}^{8}+88180 e_{r}^{6}-102880 e_{r}^{4}\right.\right.\right. \\
& \left.+55850 e_{r}^{2}-11758\right) C^{6}+\left(2970 e_{r}^{12}-13278 e_{r}^{10}+40730 e_{r}^{8}\right. \\
& \left.-83980 e_{r}^{6}+95790 e_{r}^{4}-53990 e_{r}^{2}+11758\right) C^{4} \\
& +\left(-9960 e_{r}^{12}-38761 e_{r}^{10}+147624 e_{r}^{8}-254449 e_{r}^{6}+176098 e_{r}^{4}\right. \\
& \left.-32310 e_{r}^{2}+11758\right) C^{2}-165 e_{r}^{12}-11334 e_{r}^{10}-55542 e_{r}^{8}-193895 e_{r}^{6} \\
& \left.+181344 e_{r}^{4}+30450 e_{r}^{2}-11758\right)-20\left(\left(8820 e_{r}^{12}-8826 e_{r}^{10}-88170 e_{r}^{8}\right.\right. \\
& \left.+264540 e_{r}^{6}-308640 e_{r}^{4}+167550 e_{r}^{2}-35274\right) C^{6}+\left(906 e_{r}^{12}-28790 e_{r}^{10}\right. \\
& \left.+132974 e_{r}^{8}-270516 e_{r}^{6}+288014 e_{r}^{4}-157862 e_{r}^{2}+35274\right) C^{4} \\
& +\left(-8874 e_{r}^{12}-3819 e_{r}^{10}-28278 e_{r}^{8}+10995 e_{r}^{6}\right. \\
& \left.+91632 e_{r}^{4}-96930 e_{r}^{2}+35274\right) C^{2} \\
& -363 e_{r}^{12}-1338 e_{r}^{10}+15592 e_{r}^{8}-82113 e_{r}^{6} \\
& \left.+47574 e_{r}^{4}+87242 e_{r}^{2}-35274\right) \eta \\
& +15\left(1-e_{r}^{2}\right)^{2}\left(\left(11760 e_{r}^{8}+11752 e_{r}^{6}-105816 e_{r}^{4}\right.\right. \\
& \left.+129336 e_{r}^{2}-47032\right) C^{6} \\
& +\left(-16584 e_{r}^{8}-55336 e_{r}^{6}+133824 e_{r}^{4}-108936 e_{r}^{2}+47032\right) C^{4} \\
& +\left(4206 e_{r}^{8}+33489 e_{r}^{6}-27082 e_{r}^{4}-35176 e_{r}^{2}+47032\right) C^{2}
\end{align*}
$$

$$
\begin{align*}
&\left.+32 e_{r}^{8}-1667 e_{r}^{6}-13650 e_{r}^{4}+14776 e_{r}^{2}-47032\right) \eta^{2} \\
&\left.+495 e_{r}^{4}\left(1+C^{2}+1\right)\left(1-e_{r}^{2}\right)^{2}\left(41 e_{r}^{2}+154\right) \eta^{3}\right] \cos 8 u \tag{4.17t}\\
& H P_{4210}= e_{r}^{3}\left[-6\left(\left(1320 e_{r}^{12}+13904 e_{r}^{10}-89320 e_{r}^{8}+191840 \mathrm{ef}\right.\right.\right. \\
&\left.-198440 e_{r}^{4}+101200 e_{r}^{2}-20504\right) C^{6}+\left(1980 e_{r}^{12}+5896 e_{r}^{10}\right. \\
&\left.\$ 12000 e_{r}^{8}-111680 e_{r}^{6}+174380 e_{r}^{4}-103080 e_{r}^{2}+20504\right) C^{4} \\
&+\left(-1485 e_{r}^{12}-76517 e_{r}^{10}+284361 e_{r}^{8}-492695 e_{r}^{6}+326024 e_{r}^{4}\right. \\
&\left.-60192 e_{r}^{2}+20504\right) C^{2}-7815 e_{r}^{10}-26518 e_{r}^{8}-380915 e_{r}^{6} \\
&\left.+293460 e_{r}^{4}+62072 e_{r}^{2}-20504\right)+10\left(\left(3960 \mathrm{ef}^{2}+41712 e_{r}^{10}\right.\right. \\
&\left.-267960 e_{r}^{8}+575520 e_{r}^{6}-595320 e_{r}^{4}+303600 e_{r}^{2}-61512\right) C^{6} \\
&+\left(1716 \mathrm{ef}^{2}-15856 e_{r}^{10}+144112 e_{r}^{8}-415872 e_{r}^{6}+515764 e_{r}^{4}\right. \\
&\left.-291376 e_{r}^{2}+61512\right) C^{4}+\left(-3267 \mathrm{ef}^{2}-47655 e_{r}^{10}+37431 e_{r}^{8}\right. \\
&\left.-85605 \mathrm{ef}^{8}+218160 e_{r}^{4}-180576 e_{r}^{2}+61512\right) C^{2} \\
&-5649 e_{r}^{10}+47382 e_{r}^{8}-158633 e_{r}^{6}+51316 e_{r}^{4} \\
&\left.+168352 e_{r}^{2}-61512\right) \eta \\
&-15\left(1-e_{r}^{2}\right)^{2}\left(\left(2640 e_{r}^{8}+33088 e_{r}^{6}-115104 e_{r}^{4}\right.\right. \\
&\left.+120384 e_{r}^{2}-41008\right) C^{6} \\
&+\left(-3432 e_{r}^{8}-57328 e_{r}^{6}+113064 e_{r}^{4}-93312 e_{r}^{2}+41008\right) \mathrm{C}^{4} \\
&++\left(902 e_{r}^{8}+20007 e_{r}^{6}-9484 e_{r}^{4}-38368 e_{r}^{2}+41008\right) C^{2} \\
&\left.-977 e_{r}^{6}-6580 e_{r}^{4}+11296 e_{r}^{2}-41008\right) \eta^{2} \\
&\left.-495 e_{r}^{4}\left(1+C^{2}+1\right)\left(1-e_{r}^{2}\right)^{2}\left(11 e_{r}^{2}+140\right) \eta^{3}\right] \cos 9 u \\
&= 30 e_{r}^{4}\left[1 2 \left(\left(40 e_{r}^{10}-200 e_{r}^{8}+400 e_{r}^{6}-400 e_{r}^{4}+200 e_{r}^{2}-40\right) C^{6}\right.\right. \\
&+\left(44 e_{r}^{10}-24 e_{r}^{8}-232 e_{r}^{6}+400 e_{r}^{4}-228 e_{r}^{2}+40\right) C^{4} \\
&+\left(-101 e_{r}^{10}+534 e_{r}^{8}-1035 e_{r}^{6}+682 e_{r}^{4}-120 e_{r}^{2}+40\right) C^{2} \\
& \hline
\end{align*}
$$

$$
\begin{align*}
& -4\left(\left(600 e_{r}^{10}-3000 e_{r}^{8}+6000 e_{r}^{6}-6000 e_{r}^{4}+3000 e_{r}^{2}-600\right) C^{6}\right. \\
& +\left(98 e_{r}^{10}+976 e_{r}^{8}-4116 e_{r}^{6}+5512 e_{r}^{4}-3070 e_{r}^{2}+600\right) C^{4} \\
& +\left(-521 e_{r}^{10}+432 e_{r}^{8}-1041 e_{r}^{6}+2330 \text { eff }-1800 e_{r}^{2}+600\right) C^{2} \\
& \left.+269 e_{r}^{8}-1209 e_{r}^{6}+30 e_{r}^{4}+1870 e_{r}^{2}-600\right) \eta \\
& +\left(1-e_{r}^{2}\right)^{2}\left(\left(2400 e_{r}^{6}-7200 e_{r}^{4}+7200 e_{r}^{2}-2400\right) C^{6}\right. \\
& +\left(-3336 e_{r}^{6}+6192 e_{r}^{4}-5256 e_{r}^{2}+2400\right) C^{4} \\
& +\left(934 e_{r}^{6}-279 e_{r}^{4}-2400 e_{r}^{2}+2400\right) C^{2} \\
& \left.-279 \text { elf }+456 e_{r}^{2}-2400\right) \eta^{2} \\
& +e_{r}^{4}\left(297\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2} \eta^{3}\right] \cos 10 u \tag{4.17v}\\
& H P_{4212}=15 e_{r}^{5}\left[-6\left(\left(8 e_{r}^{10}-40 e_{r}^{8}+80 e_{r}^{6}-80 e_{r}^{4}+40 e_{r}^{2}-8\right) C^{6}\right.\right. \\
& +\left(12 e_{r}^{10}-8 e_{r}^{8}-56 e_{r}^{6}+96 \text { elf }-52 e_{r}^{2}+8\right) C^{4} \\
& +\left(-9 e_{r}^{10}+103 \text { ef }-227 e_{r}^{6}+149 \text { eff }-24 \text { ef }+8\right) C^{2} \\
& \left.+9 e_{r}^{8}-174 e_{r}^{6}+109 e_{r}^{4}+36 e_{r}^{2}-8\right) \\
& +2\left(\left(120 e_{r}^{10}-600 e_{r}^{8}+1200 e_{r}^{6}-1200 e_{r}^{4}+600 e_{r}^{2}-120\right) C^{6}\right. \\
& +\left(52 e_{r}^{10}+152 e_{r}^{8}-888 e_{r}^{6}+1232 \text { elf }-668 e_{r}^{2}+120\right) \mathrm{C}^{4} \\
& +\left(-99 e_{r}^{10}+57 e_{r}^{8}-201 e_{r}^{6}+483 \text { elf }-360 e_{r}^{2}+120\right) C^{2} \\
& \left.+27 e_{r}^{8}-178 e_{r}^{6}-85 e_{r}^{4}+428 e_{r}^{2}-120\right) \eta \\
& -\left(1-e_{r}^{2}\right)^{2}\left(\left(240 e_{r}^{6}-720 e_{r}^{4}+720 e_{r}^{2}-240\right) C^{6}\right. \\
& +\left(-312 e_{r}^{6}+576 e_{r}^{4}-504 e_{r}^{2}+240\right) C^{4} \\
& \left.+\left(82 e_{r}^{6}-27 e_{r}^{4}-240 e_{r}^{2}+240\right) C^{2}-27 \text { eff }+24 e_{r}^{2}-240\right) \eta^{2} \\
& \left.-33 e_{r}^{4}\left(1+C^{2}\right)\left(1-e_{r}^{2}\right)^{2} \eta^{3}\right] \cos 11 u \tag{4.17w}\\
& H P_{43}=e_{r}\left[\left(4392 \text { ef }-9488 \text { eff }+5800 e_{r}^{2}-704\right) C^{4}\right. \\
& +\left(279 \text { ef }+5916 \text { elf }+336 e_{r}^{2}-9600\right) \mathrm{C}^{2} \\
& -2841 \text { ef }+22804 \text { elf }-17144 e_{r}^{2}-5888
\end{align*}
$$

Chapter 4

$$
\begin{aligned}
& -2\left(\left(6588 e_{r}^{6}-14232 e_{r}^{4}+8700 e_{r}^{2}-1056\right) C^{4}\right. \\
& +\left(-905 e_{r}^{6}-5115 e_{r}^{4}+6120 e_{r}^{2}-5248\right) C^{2} \\
& \left.\left.-5585 e_{r}^{6}+20217 e_{r}^{4}-20100 e_{r}^{2}+320\right) \eta\right] \sin u \\
& +4\left[\left(-1688 e_{r}^{6}+3440 e_{r}^{4}-1816 e_{r}^{2}+64\right) C^{4}\right. \\
& +\left(-975 e_{r}^{6}-2472 e_{r}^{4}+3696 e_{r}^{2}+576\right) C^{2} \\
& -1151 e_{r}^{6}-4912 e_{r}^{4}+6632 e_{r}^{2}+256 \\
& +\left(\left(5064 e_{r}^{6}-10320 e_{r}^{4}+5448 e_{r}^{2}-192\right) C^{4}\right. \\
& +\left(-2491 e_{r}^{6}+1195 e_{r}^{4}-1336 e_{r}^{2}-800\right) C^{2} \\
& \left.\left.-1963 e_{r}^{6}+8515 e_{r}^{4}-10144 e_{r}^{2}+160\right) \eta\right] \sin 2 u \\
& +3 e_{r}\left[\left(240 e_{r}^{6}+1456 e_{r}^{4}-3632 e_{r}^{2}+1936\right) C^{4}\right. \\
& +\left(261 e_{r}^{6}+3372 e_{r}^{4}-2464 e_{r}^{2}-1664\right) \mathrm{C}^{2} \\
& +509 e_{r}^{6}+3460 e_{r}^{4}-672 e_{r}^{2}-3792 \\
& -2\left(\left(360 e_{r}^{6}+2184 e_{r}^{4}-5448 e_{r}^{2}+2904\right) C^{4}\right. \\
& +\left(-311 e_{r}^{6}-729 e_{r}^{4}-100 e_{r}^{2}-576\right) C^{2} \\
& \left.+61 e_{r}^{6}-597 e_{r}^{4}+2588 e_{r}^{2}-3768\right) \eta \sin 3 u \\
& +16\left[\left(-122 e_{r}^{6}+116 e_{r}^{4}+134 e_{r}^{2}-128\right) C^{4}\right. \\
& +\left(-249 e_{r}^{4}-36 e_{r}^{2}+288\right) C^{2} e_{r}^{2} \\
& -267 e_{r}^{6}-144 e_{r}^{4}+286 e_{r}^{2}+128 \\
& +\left(\left(366 e_{r}^{6}-348 e_{r}^{4}-402 e_{r}^{2}+384\right) C^{4}\right. \\
& +\left(-110 e_{r}^{4}-117 e_{r}^{2}-85\right) C^{2} e_{r}^{2} \\
& \left.-56 e_{r}^{6}+207 e_{r}^{4}-79 e_{r}^{2}-384\right) \eta \sin 4 u \\
& +e_{r} \mid\left(192 e_{r}^{6}+880 e_{r}^{4}-2336 e_{r}^{2}+1264\right) C^{4} \\
& +\left(555 e_{r}^{4}+1860 e_{r}^{2}-2160\right) C^{2} e_{r}^{2} \\
& +57 e_{r}^{6}+2028 e_{r}^{4}-1088 e_{r}^{2}-1264 \\
& +1020
\end{aligned}
$$

Chapter 4

$$
\begin{align*}
& -2\left(\left(288 e_{r}^{6}+1320 e_{r}^{4}-3504 e_{r}^{2}+1896\right) C^{4}\right. \\
& +\left(-33 e_{r}^{4}-535 e_{r}^{2}-212\right) C^{2} e_{r}^{2} \\
& \left.\left.+3 e_{r}^{6}-283 e_{r}^{4}+1396 e_{r}^{2}-1896\right) \eta\right] \sin 5 u \\
& +12 e_{r}^{2}\left[\left(-24 e_{r}^{4}+48 e_{r}^{2}-24\right) C^{4}\right. \\
& +\left(-49 e_{r}^{2}+40\right) C^{2} e_{r}^{2}-49 e_{r}^{4}+16 e_{r}^{2}+24 \\
& +\left(\left(72 e_{r}^{4}-144 e_{r}^{2}+72\right) C^{4}+\left(-13 e_{r}^{4}-11\right) C^{2} e_{r}^{2}\right. \\
& \left.\left.-13 e_{r}^{4}+61 e_{r}^{2}-72\right) \eta\right] \sin 6 u \\
& +e_{r}^{3}\left[24 e_{r}^{4}-48 e_{r}^{2}+24\right) C^{4}+\left(51 e_{r}^{2}-36\right) C^{2} e_{r}^{2} \\
& +51 e_{r}^{4}-12 e_{r}^{2}-24-2\left(\left(36 e_{r}^{4}-72 e_{r}^{2}+36\right) C^{4}\right. \\
& \left.\left.+\left(-5 e_{r}^{4}-7\right) C^{2} e_{r}^{2}-5 e_{r}^{4}+29 e_{r}^{2}-36\right) \eta\right] \sin 7 u \\
H P_{44}= & \left\{4 e_{r}^{2}+\mathrm{e},\left(3 e_{r}^{2}-10\right) \cos \mathrm{u}+4\left(-e_{r}^{2}+2\right) \cos 2 u\right. \tag{4.17x}\\
& \left.+e_{r}\left(e_{r}^{2}-2\right) \cos 3 \mathrm{u}\right) . \tag{4.17y}
\end{align*}
$$

Similarly, for the 'cross' polarization we have

$$
\begin{align*}
H_{\times}^{(0)}= & \frac{C}{2} \frac{\left(1-e_{r}^{2}\right)^{(1 / 2)}}{\left(1-e_{r} \cos u\right)^{3}}\left\{5 e_{r} \sin u-4 \sin 2 u+e_{r} \sin 3 u\right\} \tag{4.18a}\\
H_{\times}^{(1 / 2)}= & \frac{\delta}{8} S C \frac{\left(1-e_{r}^{2}\right)}{\left(1-e_{r} \cos u\right)^{5}}\left\{2\left(14 e_{r}^{2}-3\right) \sin u-32 e_{r} \sin 2 u\right. \\
& \left.+\left(5 e_{r}^{2}+18\right) \sin 3 u-8 \mathrm{e}, \sin 4 u+e_{r}^{2} \sin 5 u\right\} \tag{4.18b}\\
H_{\times}^{(1)}= & C \frac{1}{\left(1-e_{r} \cos u\right)^{3}\left(1-e_{r}^{2}\right)}\left\{\frac{\left(1-e_{r}^{2}\right)^{1 / 2}}{\left(1-e_{r} \cos u\right)^{4}} H X_{21}-96 \mathrm{v} H X_{22}\right\} \tag{4.18c}\\
H X_{21}= & e_{r}\left\{\left[\left(-1014 e_{r}^{6}+2708 e_{r}^{4}-2374 e_{r}^{2}+680\right) C^{2}\right.\right. \\
& \left.+849 e_{r}^{6}-3187 e_{r}^{4}+4190 e_{r}^{2}-2248\right]
\end{align*}
$$

Chapter 4

$$
\begin{align*}
&+\left[\left(3042 e_{r}^{6}-8124 e_{r}^{4}+7122 e_{r}^{2}-2040\right) C^{2}\right. \\
&\left.\left.-3058 e_{r}^{6}+7701 e_{r}^{4}-7890 e_{r}^{2}+1960\right] \eta\right\} \sin \mathrm{u} \\
&+2\left\{2 \left[\left(314 \mathrm{ef}-692 e_{r}^{4}+442 e_{r}^{2}-64\right) C^{2}\right.\right. \\
&\left.-58 \mathrm{ef}+355 e_{r}^{4}-338 e_{r}^{2}+272\right] \\
&-\left[\left(1884 \mathrm{ef}-4152 e_{r}^{4}+2652 e_{r}^{2}-384\right) C^{2}\right. \\
&\left.\left.-1889 e_{r}^{6}+3755 e_{r}^{4}-3140 e_{r}^{2}+416\right] \eta\right\} \sin 2 u \\
&-3 e_{r}\left\{\left[\left(30 e_{r}^{6}+352 e_{r}^{4}-794 e_{r}^{2}+412\right) C^{2}\right.\right. \\
&\left.+65 e_{r}^{6}-71 e_{r}^{4}+398 e_{r}^{2}+4\right] \\
&-\left[\left(90 e_{r}^{6}+1056 e_{r}^{4}-2382 e_{r}^{2}+1236\right) C^{2}\right. \\
&\left.\left.-70 e_{r}^{6}-969 e_{r}^{4}+1894 e_{r}^{2}-1284\right] \eta\right\} \sin 3 u \\
&+8\left\{2 \left[\left(26 e_{r}^{6}-20 e_{r}^{4}-38 e_{r}^{2}+32\right) C^{2}\right.\right. \\
&\left.+21 e_{r}^{6}-9 e_{r}^{4}+77 e_{r}^{2}-32\right] \\
&-\left[\left(156 e_{r}^{6}-120 e_{r}^{4}-228 e_{r}^{2}+192\right) C^{2}\right. \\
&\left.\left.-106 e_{r}^{6}+51 e_{r}^{4}+169 e_{r}^{2}-192\right] \eta\right\} \sin 4 u \\
&+e_{r}\left\{-\left[\left(42 e_{r}^{6}+232 e_{r}^{4}-590 e_{r}^{2}+316\right) C^{2}\right.\right. \\
&\left.+87 e_{r}^{6}-57 e_{r}^{4}+706 e_{r}^{2}-316\right] \\
&++\left[\left(126 e_{r}^{6}+696 e_{r}^{4}-1770 e_{r}^{2}+948\right) C^{2}\right. \\
&\left.\left.+42 e_{r}^{6}-599 e_{r}^{4}+1394 e_{r}^{2}-948\right] \eta\right\} \sin 5 u \\
&+ 6 e_{r}^{2}\left\{2\left[\left(e_{r}^{4}-12 e_{r}^{2}+6\right) C^{2}+2 e_{r}^{4}+13 e_{r}^{2}-6\right]\right. \\
&\left.-\left[\left(36 e_{r}^{4}-72 e_{r}^{2}+36\right) C^{2}-23 e_{r}^{4}+53 e_{r}^{2}-36\right] \eta\right\} \sin 6 u \\
&+e_{r}^{3}\left\{-3\left[\left(2 e_{r}^{4}-4 e_{r}^{2}+2\right) C^{2}+e_{r}^{4}+5 e_{r}^{2}-2\right]\right. \\
& {\left.\left[\left(18 e_{r}^{4}-36 e_{r}^{2}+18\right) C^{2}-10 e_{r}^{4}+25 e_{r}^{2}-18\right] \eta\right\} \sin 7 u } \tag{4.18d}\\
& \hline
\end{align*}
$$

$$
\begin{align*}
&+3 e_{1}\left(e_{r}^{2}-2 \cos 3 u+12 \mathrm{e}^{2}\right\} \tag{4.18e}\\
& H_{\times}^{(3 / 2)}= \frac{\delta}{\left(1-e_{1} \cos \mathrm{u}\right)^{5}} C S\left\{\begin{array}{l}
1 \\
768\left(1-e_{1} \cos u\right)^{4} H X_{31}
\end{array}\right. \\
&\left.+\frac{3}{8} \frac{v}{\left(1-e_{r}^{2}\right)^{1 / 2}} H X_{32}\right\} \tag{4.18f}\\
& H X_{31}= 2\left\{\left[\left(-3228 e_{r}^{8}+10661 e_{r}^{6}-11658 e_{r}^{4}+4245 e_{r}^{2}-20\right) C^{2}\right.\right. \\
&\left.+2508 e_{r}^{8}-9015 e_{r}^{6}+41118 e_{r}^{4}-11697 e_{r}^{2}+252\right] \\
&+\left[\left(6456 e_{r}^{8}-21322 e_{r}^{6}+23316 e_{r}^{4}-8490 e_{r}^{2}+40\right) C^{2}\right. \\
&\left.\left.-6636 e_{r}^{8}+17569 e_{r}^{6}-28581 e_{r}^{4}+8394 \mathrm{ef}-184\right] \eta\right\} \sin \mathrm{u} \\
&+4 e_{r}\left\{\left[\left(1959 e_{r}^{6}-5323 e_{r}^{4}+4769 e_{r}^{2}-1405\right) C^{2}\right.\right. \\
&\left.+26 e_{r}^{6}-6449 e_{r}^{4}-13474 e_{r}^{2}+5389\right] \\
&-\left[\left(3918 e_{r}^{6}-10646 e_{r}^{4}+9538 e_{r}^{2}-2810\right) C^{2}\right. \\
&\left.\left.-4404 e_{r}^{6}+7127 e_{r}^{4}-13069 e_{r}^{2}+3170\right] \eta\right\} \sin 2 u \\
&+2\left\{\left[\left(48 e_{r}^{8}-5207 e_{r}^{6}+11080 e_{r}^{4}-6731 e_{r}^{2}+810\right) C^{2}\right.\right. \\
&\left.-1263 e_{r}^{8}+4838 e_{r}^{6}+14586 e_{r}^{4}+4177 e_{r}^{2}-3618\right] \\
&-\left[\left(96 e_{r}^{8}-10414 e_{r}^{6}+22160 e_{r}^{4}-13462 e_{r}^{2}+1620\right) C^{2}\right. \\
&\left.\left.-231 e_{r}^{8}+10696 e_{r}^{6}-10979 e_{r}^{4}+15982 e_{r}^{2}-2052\right] \eta\right\} \sin 3 u \\
&+ 4 e_{r}\left\{2 \left[\left(306 e_{r}^{6}+334 e_{r}^{4}-1586 e_{r}^{2}+946\right) \mathbf{C}^{2}\right.\right. \\
&+\left.+539 e_{r}^{6}-1939 e_{r}^{4}-88 e_{r}^{2}-6\right] \\
&- {\left[\left(1224 e_{r}^{6}+1336 e_{r}^{4}-6344 e_{r}^{2}+3784\right) C^{2}\right.} \\
&\left.\left.-423 e_{r}^{6}-3277 e_{r}^{4}+3056 e_{r}^{2}-3820\right] \eta\right\} \sin 4 u \\
&+ 2\left\{\left[\left(-108 e_{r}^{8}-1731 e_{r}^{6}+2536 e_{r}^{4}+553 e_{r}^{2}-1250\right) \mathbf{C}^{2}\right.\right. \\
&-\left.447 e_{r}^{8}-402 e_{r}^{6}+1070 e_{r}^{4}-1831 e_{r}^{2}+1250\right] \\
&+ {\left[\left(216 e_{r}^{8}+3462 e_{r}^{6}-5072 e_{r}^{4}-1106 e_{r}^{2}+2500\right) \mathbf{C}^{2}\right.} \\
&\left.\left.+135 e_{r}^{8}-2628 \text { ef }+1031 e_{r}^{4}-358 e_{r}^{2}-2500\right] \eta\right\} \sin 5 u \\
& \hline
\end{align*}
$$

Chapter 4

$$
\begin{align*}
& +4 e_{r}\left\{\left(187 e_{r}^{6}+113 e_{r}^{4}-787 e_{r}^{2}+487\right) C^{2}\right. \\
& +274 e_{r}^{6}+131 e_{r}^{4}+694 e_{r}^{2}-487 \\
& -\left[\left(374 e_{r}^{6}+226 e_{r}^{4}-1574 e_{r}^{2}+974\right) C^{2}\right. \\
& -116 e_{r}^{6}-469 e_{r}^{4}+815 e_{r}^{2}-974|\eta| \sin 6 u \\
& +e_{r}^{2}\left\{\left(-54 e_{r}^{6}-514 e_{r}^{4}+1190 e_{r}^{2}-622\right) C^{2}\right. \\
& -81 e_{r}^{6}-685 e_{r}^{4}-918 e_{r}^{2}+622 \\
& +\left[\left(108 e_{r}^{6}+1028 e_{r}^{4}-2380 e_{r}^{2}+1244\right) C^{2}\right. \\
& -27 e_{r}^{6}-557 e_{r}^{4}+1138 e_{r}^{2}-1244|\eta| \sin 7 u \\
& +6 e_{r}^{3}\left\{2\left[\left(8 e_{r}^{4}-16 e_{r}^{2}+8\right) C^{2}+11 e_{r}^{4}+15 e_{r}^{2} \quad 8\right]\right. \\
& -\left[\left(32 e_{r}^{4}-64 e_{r}^{2}+32\right) \mathrm{C}^{2}-11 e_{r}^{4}+27 e_{r}^{2}-32\lceil\eta 1 \sin 8 u\right. \\
& +3 e_{r}^{4}\left\{\left(-2 e_{r}^{4}+4 e_{r}^{2}-2\right) C^{2}-3 e_{r}^{4}-5 e_{r}^{2}+2\right. \\
& \left.+\left[\left(4 e_{r}^{4}-8 e_{r}^{2}+4\right) C^{2}-e_{r}^{4}+3 e_{r}^{2}-4\right] \eta\right\} \sin 9 u \tag{4.18~g}\\
& H X_{32}=4 e_{r}\left(-11 e_{r}^{2}+3\right)+2\left(-5 e_{r}^{4}+46 e_{r}^{2}-3\right) \cos u \\
& +4 e_{r}\left(9 e_{r}^{2}-29\right) \cos 2 u+\left(-5 e_{r}^{4}+e_{r}^{2}+54\right) \cos 3 u \\
& +8 e_{r}\left(e_{r}^{2}-3\right) \cos 4 u+e_{r}^{2}\left(-e_{r}^{2}+3\right) \cos 5 u \tag{4.18h}\\
& H_{\times}^{(2)}=\frac{C}{\left(1-e_{r}^{2}\right)^{3 / 2}(1-\mathrm{e}, \cos u)^{3}}\left\{\frac{1}{737280(1-\mathrm{e}, \cos u)^{8}} H X_{44}\right. \\
& +\left(1-e_{r}^{2}\right)^{3 / 2} H X_{43} \\
& \left.+\frac{1}{128} \frac{\mathrm{I}}{\left(1-e_{r}^{2}\right)^{1 / 2}(1-\mathrm{e}, \cos u)^{4}} v H X_{41}+v^{2} H X_{42}\right\} \tag{4.18i}\\
& H X_{41}=24 e_{r}^{2}\left\{\left[\left(194 e_{r}^{6}-528 e_{r}^{4}+474 e_{r}^{2}-140\right) C^{2}\right.\right. \\
& \left.-305 e_{r}^{6}+1978 e_{r}^{4}-158 e_{r}^{2}-1020\right] \\
& -3\left[\left(194 e_{r}^{6}-528 e_{r}^{4}+474 e_{r}^{2}-140\right) C^{2}\right. \\
& \left.\left.-211 e_{r}^{6}+641 e_{r}^{4}-516 e_{r}^{2}-112\right] \eta\right\} \\
& +e_{r}\left\{\left(420 e_{r}^{8}-9896 e_{r}^{6}+21444 e_{r}^{4}-14880 e_{r}^{2}+2912\right) C^{2}\right.
\end{align*}
$$

$$
\left.\begin{array}{l}
+1785 e_{r}^{8}-3866 e_{r}^{6}-98244 e_{r}^{4}+65760 e_{r}^{2}+13280 \\
-2\left[\left(630 e_{r}^{8}-14844 e_{r}^{6}+32166 e_{r}^{4}-22320 e_{r}^{2}+4368\right) C^{2}\right. \\
\left.\left.\mathbf{- 2 8 0} e_{r}^{8}+\mathbf{1 3 8 4 3} e_{r}^{6}-\mathbf{4 2 1 2 0} e_{r}^{4}+\mathbf{3 9 7 1 2} e_{r}^{2}+\mathbf{1 6 1 6}\right] \eta\right\} \cos u \\
+4\left\{\left(-924 e_{r}^{8}+5656 e_{r}^{6}-8796 e_{r}^{4}+4320 e_{r}^{2}-256\right) C^{2}\right. \\
-207 e_{r}^{8}+5374 e_{r}^{6}+11652 e_{r}^{4}-12384 e_{r}^{2}-640 \\
+\left[\left(2772 e_{r}^{8}-16968 e_{r}^{6}+26388 e_{r}^{4}-12960 e_{r}^{2}+768\right) C^{2}\right. \\
\left.\left.\mathbf{- 2 3 7 5} e_{r}^{8}+\mathbf{1 3 3 7 5} e_{r}^{6}-\mathbf{2 5 0 8 6} e_{r}^{4}+\mathbf{1 8 5 7 6} e_{r}^{2}+\mathbf{6 4}\right] \eta\right\} \cos 2 u \\
+3 e_{r}\left\{\left(84 e_{r}^{8}+224 e_{r}^{6}-4668 e_{r}^{4}+8328 e_{r}^{2}-3968\right) C^{2}\right. \\
+357 e_{r}^{8}-1494 e_{r}^{6}-5836 e_{r}^{4}-3320 e_{r}^{2}+7488 \\
-2\left[\left(126 e_{r}^{8}+336 e_{r}^{6}-7002 e_{r}^{4}+12492 e_{r}^{2}-5952\right) C^{2}\right. \\
\mathbf{- 5 6} e_{r}^{8}-\mathbf{7 3 3} e_{r}^{6}+\mathbf{5 3 3 2} e_{r}^{4}-\mathbf{1 0 2 5 2} \mathbf{e f}+\mathbf{7 3 9 2}[\eta\} \cos 3 u \\
+8\left\{\left(-102 e_{r}^{8}+\mathbf{5 6 8} e_{r}^{6}-\mathbf{3 1 8} e_{r}^{4}-\mathbf{6 6 0} e_{r}^{2}+\mathbf{5 1 2}\right) \mathbf{C}^{\mathbf{2}}\right. \\
-213 e_{r}^{8}+762 e_{r}^{6}+1154 e_{r}^{4}-756 e_{r}^{2}-512 \\
+\left[\left(306 e_{r}^{8}-1704 e_{r}^{6}+954 e_{r}^{4}+1980 e_{r}^{2}-1536\right) C^{2}\right. \\
\mathbf{- 2 3 5} e_{r}^{8}+\mathbf{1 0 7 3} e_{r}^{6}-\mathbf{1 0 0 4} e_{r}^{4}-\mathbf{8 4 8} e_{r}^{2}+\mathbf{1 5 3 6}[\eta\} \cos 4 u \\
+e_{r}\left\{\left(84 e_{r}^{8}+80 e_{r}^{6}-2940 e_{r}^{4}+5304 e_{r}^{2}-2528\right) C^{2}\right. \\
+357 e_{r}^{8}+450 e_{r}^{6}-4620 e_{r}^{4}+280 e_{r}^{2}+2528 \\
\mathbf{- 2}\left[\left(126 e_{r}^{8}+120 e_{r}^{6}-\mathbf{4 4 1 0} e_{r}^{4}+7956 e_{r}^{2}-3792\right) C^{2}\right. \\
\left.\left.\mathbf{- 5 6} e_{r}^{8}-\mathbf{2 4 5} e_{r}^{6}+\mathbf{2 7 4 8} e_{r}^{4}-\mathbf{5 6 3 6} \mathbf{e f}+\mathbf{3 7 9 2}\right] \eta\right\} \cos 5 u \\
+12 e_{r}^{2}\left\{\left(-12 e_{r}^{6}+72 e_{r}^{4}-108 e_{r}^{2}+48\right) C^{2}\right. \\
-43 e_{r}^{6}+102 e_{r}^{4}+4 e_{r}^{2}-48 \\
+\left[\left(36 e_{r}^{6}-216 e_{r}^{4}+324 e_{r}^{2}-144\right) C^{2}\right. \\
\left.\left.-\mathbf{1 9} e_{r}^{6}+\mathbf{1 2 3} e_{r}^{4}-\mathbf{2 3 0} e_{r}^{2}+\mathbf{1 4 4}\right] \eta\right\} \cos 6 u \\
+\left(4 e_{r}^{6}-24 e_{r}^{4}+36 e_{r}^{2}-16\right) C^{2} \\
+5
\end{array}\right)
$$

Chapter 4

$$
\begin{align*}
&\left.+17 e_{r}^{6}-34 e_{r}^{4}-4 e_{r}^{2}+16\right] \\
&-2\left[\left(18 e_{r}^{6}-108 e_{r}^{4}+162 e_{r}^{2}-72\right) C^{2}\right. \\
&\left.\left.-8 e_{r}^{6}+57 e_{r}^{4}-112 e_{r}^{2}+72\right] \eta\right\} \cos 7 u \tag{4.18j}\\
& H X_{42}=-45 \mathrm{e}, \sin u+36 \sin 2 u-9 \mathrm{e}, \sin 3 u \tag{4.18k}\\
& H X_{43}=(5-2 \eta) \sin u\left\{3 e_{r}-4 \cos u+e_{r} \cos 2 u\right\} \tag{4.181}\\
& H X_{44}= 2 e_{r}\left\{1 2 \left[\left(427440 e_{r}^{12}-2575928 e_{r}^{10}+6064152 e_{r}^{8}\right.\right.\right. \\
&\left.-7046128 e_{r}^{6}+4101152 e_{r}^{4}-1005528 e_{r}^{2}+34840\right) C^{4} \\
&+\left(-749940 e_{r}^{12}+4203844 e_{r}^{10}-18484828 e_{r}^{8}\right. \\
&\left.+30713476 e_{r}^{6}-19449520 e_{r}^{4}+4178344 e_{r}^{2}-411376\right) C^{2} \\
&+ 350505 e_{r}^{12}-1279820 e_{r}^{10}+9107149 e_{r}^{8} \\
&\left.-28400076 e_{r}^{6}+18333032 e_{r}^{4}-6748112 e_{r}^{2}-1566248\right] \\
&-20\left[\left(282320 e_{r}^{12}-7727784 e_{r}^{10}+18192456 e_{r}^{8}\right.\right. \\
&\left.-21138384 e_{r}^{6}+12303456 e_{r}^{4}-3016584 e_{r}^{2}+104520\right) C^{4} \\
&+\left(-2379600 e_{r}^{1} 2+13416444 e_{r}^{10}-48065648 e_{r}^{8}\right. \\
&+\left.74076284 e_{r}^{6}-46627608 e_{r}^{4}+10484336 e_{r}^{2}-904208\right) C^{2} \\
&+ 1109523 e_{r}^{12}-5624018 e_{r}^{10}+28069747 e_{r}^{8}-55934684 e_{r}^{6} \\
&+\left.32750224 e_{r}^{4}-8715368 e_{r}^{2}+786376\right] \eta \\
&+ 15\left[\left(1709760 e_{r}^{12}-10303712 e_{r}^{10}+24256608 e_{r}^{8}\right.\right. \\
&-\left.28184512 e_{r}^{6}+16404608 e_{r}^{4}-4022112 e_{r}^{2}+139360\right) C^{4} \\
&+\left(-3518880 e_{r}^{12}+18838480 e_{r}^{10}-46637408 e_{r}^{8}+58796176 e_{r}^{6}\right. \\
&-\left.35967712 e_{r}^{4}+9017408 e_{r}^{2}-528064\right) C^{2} \\
&+ 1812789 e_{r}^{12}-8420599 e_{r}^{10}+22403662 e_{r}^{8} \\
&-\left.31362120 e_{r}^{6}+19667568 e_{r}^{4}-4781280 e_{r}^{2}+327264\right] e_{r}^{8}-2520 e_{r}^{6}-8400 e_{r}^{4} \\
& 2
\end{align*}
$$

Chapter 4

$$
\begin{aligned}
& \left.\left.-2560 e_{r}^{2}+512\right] \eta^{3}\right\} \sin u \\
& +4\left\{2 4 \left[\left(-122076 e_{r}^{12}+679796 e_{r}^{10}-1500344 e_{r}^{8}\right.\right.\right. \\
& \left.+1644936 e_{r}^{6}-899564 e_{r}^{4}+199172 e_{r}^{2}-1920\right) C^{4} \\
& +\left(112408 e_{r}^{12}+436040 e_{r}^{10}+1485516 e_{r}^{8}-5551896 e_{r}^{6}\right. \\
& \left.+4369972 e_{r}^{4}-880968 e_{r}^{2}+28928\right) C^{2} \\
& -68910 e_{r}^{12}-884141 e_{r}^{10}+2289422 e_{r}^{8}+3196984 e_{r}^{6} \\
& \left.-3136176 e_{r}^{4}+2369092 e_{r}^{2}+85504\right] \\
& +40\left[\left(366228 e_{r}^{12}-2039388 e_{r}^{10}+4501032 e_{r}^{8}\right.\right. \\
& \left.-4954808 e_{r}^{6}+2698692 e_{r}^{4}-597516 e_{r}^{2}+5760\right) C^{4} \\
& +\left(-500622 e_{r}^{12}+613566 e_{r}^{10}-6027710 e_{r}^{8}\right. \\
& \left.+14234186 e_{r}^{6}-10399116 e_{r}^{4}+2142416 e_{r}^{2}-62720\right) C^{2} \\
& +164401 e_{r}^{12}+1220351 e_{r}^{10}+308090 e_{r}^{8}-9929638 e_{r}^{6} \\
& \left.+7014656 e_{r}^{4}-1809412 e_{r}^{2}+54784\right] \eta \\
& -15\left[\left(976608 e_{r}^{12}-5438368 e_{r}^{10}+12002752 e_{r}^{8}\right.\right. \\
& \left.-13159488 e_{r}^{6}+7196512 e_{r}^{4}-1593376 e_{r}^{2}+15360\right) C^{4} \\
& +\left(-2267664 e_{r}^{12}+9755312 e_{r}^{10}-22386960 e_{r}^{8}\right. \\
& +\left(267300 e_{r}^{12}-2603300 e_{r}^{10}+578476 e_{r}^{8}+95548 e_{r}^{6}\right. \\
& \left.+27989584 e_{r}^{6}-16572896 e_{r}^{4}+3554304 e_{r}^{2}-71680\right) C^{2} \\
& +1313393 e_{r}^{12}-4226511 e_{r}^{10}+10008014 e_{r}^{8} \\
& \left.-15045368 e_{r}^{6}+9631120 e_{r}^{4}-2009312 e_{r}^{2}+57344\right] \eta^{2} \\
& -495\left(1-e_{r}^{2}\right) e_{r}^{2}\left[133 e_{r}^{8}-42 e_{r}^{6}-4872 e_{r}^{4}-4976 e_{r}^{2}-256\left[\eta^{3}\right\} \sin 2 u\right. \\
& +2 e_{r}\left\{1 2 \left[\left(-48000 e_{r}^{12}+958512 e_{r}^{10}-3770664 e_{r}^{8}\right.\right.\right. \\
& \left.+6457536 e_{r}^{6}-5613744 e_{r}^{4}+2432976 e_{r}^{2}-416616\right) C^{4} \\
& +4
\end{aligned}
$$

Chapter 4

$$
\begin{aligned}
& \left.+9173200 e_{r}^{4}-9534248 e_{r}^{2}+2023024\right) C^{2} \\
& -161595 e_{r}^{12}+2203588 e_{r}^{10}-2495743 e_{r}^{8}-8589636 e_{r}^{6} \\
& \left.+1396888 e_{r}^{4}-3057256 e_{r}^{2}-3685896\right] \\
& +20\left[\left(144000 e_{r}^{12}-2875536 e_{r}^{10}+11311992 e_{r}^{8}\right.\right. \\
& \left.-19372608 e_{r}^{6}+16841232 e_{r}^{4}-7298928 e_{r}^{2}+1249848\right) C^{4} \\
& +\left(-621552 e_{r}^{12}+7022684 e_{r}^{10}-8557640 e_{r}^{8}+12893788 e_{r}^{6}\right. \\
& \left.-29888336 e_{r}^{4}+23941760 e_{r}^{2}-4790704\right) C^{2} \\
& +450705 e_{r}^{12}-4258038 e_{r}^{10}+590857 e_{r}^{8}+10013092 e_{r}^{6} \\
& \left.+14890984 e_{r}^{4}-13625808 e_{r}^{2}+3868536\right] \eta \\
& -15\left[\left(192000 e_{r}^{12}-3834048 e_{r}^{10}+15082656 e_{r}^{8}\right.\right. \\
& \left.-25830144 e_{r}^{6}+22454976 e_{r}^{4}-9731904 e_{r}^{2}+1666464\right) C^{4} \\
& +\left(-403488 e_{r}^{12}+8164304 e_{r}^{10}-25149824 e_{r}^{8}+42210448 e_{r}^{6}\right. \\
& \left.-43388288 e_{r}^{4}+22343936 e_{r}^{2}-3777088\right) C^{2} \\
& +206835 e_{r}^{12}-4414329 e_{r}^{10}+10443154 e_{r}^{8}-15699680 e_{r}^{6} \\
& \left.+20404528 e_{r}^{4}-12508416 e_{r}^{2}+2091168\right] \eta^{2} \\
& +495\left(1-e_{r}^{2}\right)\left[45 e_{r}^{10}+806 e_{r}^{8}-3584 e_{r}^{6}-12432 e_{r}^{4}\right. \\
& +20\left[\left(21141 e_{r}^{12}+55023 e_{r}^{10}-449934 e_{r}^{8}+826686 e_{r}^{6}\right.\right. \\
& +4533 e_{r}^{12}-109220 e_{r}^{10}+332451 e_{r}^{8}-198585 e_{r}^{6} \\
& +4672 e_{r}^{2}-512\left[\eta^{3}\right\} \sin 3 u \\
& +32\left\{1 2 \left[\left(-7047 e_{r}^{12}-18341 e_{r}^{10}+149978 e_{r}^{8}\right.\right.\right. \\
& \left.-275562 e_{r}^{6}+215933 e_{r}^{4}-71105 e_{r}^{2}+6144\right) C^{4} \\
& +\left(-17408 e_{r}^{12}+199683 e_{r}^{10}-227147 e_{r}^{8}\right. \\
& \left.+16327 e_{r}^{6}-97209 e_{r}^{4}+160058 e_{r}^{2}-34304\right) C^{2} \\
& \left.+4204+182919 e_{r}^{2}+28160\right] \\
& +
\end{aligned}
$$

Chapter 4

$$
\begin{aligned}
& \left.-647799 e_{r}^{4}+213315 e_{r}^{2}-18432\right) C^{4} \\
& +\left(25775 e_{r}^{12}-446396 e_{r}^{10}+732016 e_{r}^{8}-547062 e_{r}^{6}\right. \\
& \left.+634145 e_{r}^{4}-477838 e_{r}^{2}+79360\right) C^{2} \\
& -37999 e_{r}^{12}+336742 e_{r}^{10}-497517 e_{r}^{8}-297939 e_{r}^{6} \\
& \left.-195066 e_{r}^{4}+194563 e_{r}^{2}-60928\right] \eta \\
& -15\left[\left(28188 e_{r}^{12}+73364 e_{r}^{10}-599912 e_{r}^{8}+1102248 e_{r}^{6}\right.\right. \\
& \left.-863732 e_{r}^{4}+284420 e_{r}^{2}-24576\right) C^{4} \\
& +\left(-20044 e_{r}^{12}-347160 e_{r}^{10}+1173752 e_{r}^{8}-1729248 e_{r}^{6}\right. \\
& \left.+1485492 e_{r}^{4}-622184 e_{r}^{2}+59392\right) C^{2} \\
& -7252 e_{r}^{12}+263814 e_{r}^{10}-611009 e_{r}^{8} \\
& +652395 e_{r}^{6}-626096 e_{r}^{4}+339708 e_{r}^{2}-34816 \mid \eta^{2} \\
& +495\left(1-e_{r}^{2}\right) e_{r}^{2}\left[-20 \text { ef }-30 e_{r}^{6}+427 e_{r}^{4}+472 \mathrm{e}_{r}^{2}+120^{\circ} \eta^{3}\right\} \sin 4 u \\
& +5 e_{r}\left\{1 2 \left[\left(4440 e_{r}^{12}+106688 e_{r}^{10}-291648 e_{r}^{8}+10912 e_{r}^{6}\right.\right.\right. \\
& \left.+583672 e_{r}^{4}-593568 e_{r}^{2}+179504\right) C^{4} \\
& +\left(20556 e_{r}^{12}-48068 e_{r}^{10}-528492 e_{r}^{8}+1085412 e_{r}^{6}\right. \\
& \left.-673168 e_{r}^{4}+321072 e_{r}^{2}-177312\right) C^{2} \\
& -7305 e_{r}^{12}+41676 e_{r}^{10}-86749 e_{r}^{8}+738156 e_{r}^{6} \\
& \left.-838776 e_{r}^{4}-1850640 e_{r}^{2}-2192\right] \\
& -4\left[\left(66600 e_{r}^{12}+1600320 e_{r}^{10}-4374720 e_{r}^{8}\right.\right. \\
& \left.+163680 e_{r}^{6}+8755080 e_{r}^{4}-8903520 e_{r}^{2}+2692560\right) C^{4} \\
& +\left(195360 e_{r}^{12}-1441844 e_{r}^{10}-3225800 e_{r}^{8}+11019244 e_{r}^{6}\right. \\
& \left.-11337328 e_{r}^{4}+8557184 e_{r}^{2}-3766816\right) C^{2} \\
& -213615 e_{r}^{12}+40714 e_{r}^{10}+4092545 e_{r}^{8}-11657292 e_{r}^{6} \\
& \left.-701352 e_{r}^{4}-3030688 e_{r}^{2}+1074256\right] \eta
\end{aligned}
$$

Chapter 4

$$
\begin{aligned}
& +3\left[\left(88800 \mathrm{ef}^{2}+2133760 e_{r}^{10}-5832960 e_{r}^{8}\right.\right. \\
& \left.+218240 e_{r}^{6}+11673440 e_{r}^{4}-11871360 e_{r}^{2}+3590080\right) C^{4} \\
& +\left(75360 e_{r}^{12}-3946480 e_{r}^{10}+4792960 e_{r}^{8}+6487632 e_{r}^{6}\right. \\
& \left.-19007936 e_{r}^{4}+18661376 e_{r}^{2}-7062912\right) C^{2} \\
& -161685 e_{r}^{12}+1729535 e_{r}^{10}+284930 e_{r}^{8}-6420208 e_{r}^{6} \\
& \left.+7424768 e_{r}^{4}-6737152 e_{r}^{2}+3472832\right] \eta^{2} \\
& \left.+99\left(1-e_{r}^{2}\right) e_{r}^{2}\left[75 e_{r}^{8}+1450 e_{r}^{6}-2240 e_{r}^{4}-11424 e_{r}^{2}-6272\right] \eta^{3}\right\} \sin 5 u \\
& +2\left\{2 4 \left[\left(-25776 e_{r}^{12}-52248 e_{r}^{10}+404544 e_{r}^{8}\right.\right.\right. \\
& \left.-580176 e_{r}^{6}+222384 e_{r}^{4}+93480 e_{r}^{2}-62208\right) C^{4} \\
& +\left(-43032 e_{r}^{12}+140628 e_{r}^{10}-151880 e_{r}^{8}+65956 e_{r}^{6}\right. \\
& \left.+100792 e_{r}^{4}-236880 e_{r}^{2}+124416\right) C^{2} \\
& -4206 e_{r}^{12}+138189 e_{r}^{10}-978650 e_{r}^{8}+4796 e_{r}^{6} \\
& \left.+1735944 e_{r}^{4}+143400 e_{r}^{2}-62208\right] \\
& +40\left[\left(77328 e_{r}^{12}+156744 e_{r}^{10}-1213632 e_{r}^{8}+1740528 e_{r}^{6}\right.\right. \\
& \left.-667152 e_{r}^{4}-280440 e_{r}^{2}+186624\right) C^{4} \\
& +\left(50306 e_{r}^{12}-420214 e_{r}^{10}+954142 e_{r}^{8}-1021250 e_{r}^{6}\right. \\
& \left.+236152 e_{r}^{4}+574112 e_{r}^{2}-373248\right) C^{2} \\
& -81125 e_{r}^{12}+102313 e_{r}^{10}+6610 e_{r}^{8}-820022 e_{r}^{6} \\
& \left.-282680 e_{r}^{4}-293672 e_{r}^{2}+186624\right] \eta \\
& -15\left[\left(206208 e_{r}^{12}+417984 e_{r}^{10}-3236352 e_{r}^{8}+4641408 e_{r}^{6}\right.\right. \\
& \left.-1779072 e_{r}^{4}-747840 e_{r}^{2}+497664\right) C^{4} \\
& +\left(-195728 e_{r}^{12}-1371056 e_{r}^{10}+4922576 e_{r}^{8}\right. \\
& \left.-5857360 e_{r}^{6}+2414528 e_{r}^{4}+1082368 e_{r}^{2}-995328\right) C^{2} \\
& -11497 e_{r}^{12}+822839 e_{r}^{10}-1760854 e_{r}^{8}+1304000 e_{r}^{6}
\end{aligned}
$$

Chapter 4

$$
\begin{aligned}
& -603808 e_{r}^{4}-334528 e_{r}^{2}+497664 \mid \eta^{2} \\
& \left.+495\left(1-e_{r}^{2}\right) e_{r}^{4}\left[-195 e_{r}^{6}-570 e_{r}^{4}+2128 e_{r}^{2}+2912\right] \eta^{3}\right\} \sin 6 u \\
& +e_{r}\left\{1 2 \left[\left(6600 e_{r}^{12}+146504 e_{r}^{10}-419328 e_{r}^{8}\right.\right.\right. \\
& \left.+80272 e_{r}^{6}+711112 e_{r}^{4}-757848 e_{r}^{2}+232688\right) C^{4} \\
& +\left(5460 e_{r}^{12}+171684 e_{r}^{10}-267860 e_{r}^{8}+394252 e_{r}^{6}\right. \\
& \left.-1164336 e_{r}^{4}+1326176 e_{r}^{2}-465376\right) C^{2} \\
& +23295 e_{r}^{12}-229748 e_{r}^{10}+1105395 e_{r}^{8}+2040132 e_{r}^{6} \\
& \left.-3740584 e_{r}^{4}-568328 e_{r}^{2}+232688\right] \\
& -20\left[\left(19800 e_{r}^{12}+439512 e_{r}^{10}-1257984 e_{r}^{8}\right.\right. \\
& \left.+240816 e_{r}^{6}+2133336 e_{r}^{4}-2273544 e_{r}^{2}+698064\right) C^{4} \\
& +\left(1056 e_{r}^{12}+103060 e_{r}^{10}-32752 e_{r}^{8}+825396 e_{r}^{6}\right. \\
& \left.-3366184 e_{r}^{4}+3865552 e_{r}^{2}-1396128\right) C^{2} \\
& +4605 e_{r}^{12}-421902 e_{r}^{10}+723509 e_{r}^{8}-830900 e_{r}^{6} \\
& \left.-238016 e_{r}^{4}-1592008 e_{r}^{2}+698064\right] \eta \\
& +15\left[\left(26400 e_{r}^{12}+586016 e_{r}^{10}-1677312 e_{r}^{8}+321088 e_{r}^{6}\right.\right. \\
& \left.+2844448 e_{r}^{4}-3031392 e_{r}^{2}+930752\right) C^{4} \\
& +\left(-32736 e_{r}^{12}-773136 e_{r}^{10}+1426400 e_{r}^{8}+876208 e_{r}^{6}\right. \\
& \left.-4636896 e_{r}^{4}+5001664 e_{r}^{2}-1861504\right) C^{2} \\
& +8195 e_{r}^{12}+164559 e_{r}^{10}+87074 e_{r}^{8} \\
& \left.-1143784 e_{r}^{6}+1867616 e_{r}^{4}-1970272 e_{r}^{2}+930752\right] \eta^{2} \\
& \left.+3465\left(1-e_{r}^{2}\right) e_{r}^{4}\left[5 e_{r}^{6}+94 e_{r}^{4}-56 e_{r}^{2}-480\right] \eta^{3}\right\} \sin 7 u \\
& +16 e_{r}^{2}\left\{1 2 \left[\left(-1473 e_{r}^{10}+13 e_{r}^{8}+14678 e_{r}^{6}\right.\right.\right. \\
& \left.-29382 e_{r}^{4}+22043 e_{r}^{2}-5879\right) C^{4}
\end{aligned}
$$

$$
\left.\begin{array}{l}
+\left(-2072 e_{r}^{10}-1987 e_{r}^{8}-3565 e_{r}^{6}+33137 e_{r}^{4}-37271 e_{r}^{2}+11758\right) C^{2} \\
\left.-261 e_{r}^{10}+284 e_{r}^{8}-78355 e_{r}^{6}+83833 e_{r}^{4}+15228 e_{r}^{2}-5879\right] \\
+20\left[\left(4419 e_{r}^{10}-39 e_{r}^{8}-44034 e_{r}^{6}+88146 e_{r}^{4}-66129 e_{r}^{2}+17637\right) C^{4}\right. \\
+\left(1969 e_{r}^{10}+1604 e_{r}^{8}+30096 e_{r}^{6}-108154 e_{r}^{4}+109759 e_{r}^{2}-35274\right) C^{2} \\
\left.-2409 e_{r}^{10}-7422 e_{r}^{8}+18389 e_{r}^{6}-9637 e_{r}^{4}-43630 e_{r}^{2}+17637\right] \eta \\
-15\left[\left(5892 e_{r}^{10}-52 e_{r}^{8}-58712 e_{r}^{6}+117528 e_{r}^{4}-88172 e_{r}^{2}+23516\right) C^{4}\right. \\
+\left(-6452 e_{r}^{10}-9800 e_{r}^{8}+87496 e_{r}^{6}-166816 e_{r}^{4}+142604 e_{r}^{2}-47032\right) C^{2} \\
\left.+1072 e_{r}^{10}+7150 e_{r}^{8}-30615 e_{r}^{6}+52469 e_{r}^{4}-54432 e_{r}^{2}+23516\right] \eta^{2} \\
-495\left(1-e_{r}^{2}\right) e_{r}^{4}\left[8 e_{r}^{4}+18 e_{r}^{2}-77\left[\eta^{3}\right\} \sin 8 u\right. \\
+e_{r}^{3}\left\{1 2 \left[\left(1320 e_{r}^{10}+15224 e_{r}^{8}-74096 e_{r}^{6}\right.\right.\right. \\
\left.+117744 e_{r}^{4}-80696 e_{r}^{2}+20504\right) C^{4} \\
+\left(1980 e_{r}^{10}+22876 e_{r}^{8}+9060 e_{r}^{6}-135676 e_{r}^{4}+142768 e_{r}^{2}-41008\right) C^{2} \\
\left.+3165 e_{r}^{10}-27932 e_{r}^{8}+312905 e_{r}^{6}-279780 e_{r}^{4}-62072 e_{r}^{2}+20504\right] \\
-20\left[\left(3960 e_{r}^{10}+45672 e_{r}^{8}-222288 e_{r}^{6}+353232 e_{r}^{4}\right.\right. \\
\left.+242088 e_{r}^{2}+61512\right) C^{4} \\
\left.+1449 e_{r}^{10}+20045 e_{r}^{8}-84378 e_{r}^{6}+165224 e_{r}^{4}-186624 e_{r}^{2}+82016\right] \eta^{2} \\
+\left(2112 e_{r}^{10}+19868 e_{r}^{8}+118320 e_{r}^{6}-427716 e_{r}^{4}\right. \\
\left.+410440 e_{r}^{2}-123024\right) C^{2} \\
\left.+615 e_{r}^{10}-51786 e_{r}^{8}+98783 e_{r}^{6}-20476 e_{r}^{4}-168352 e_{r}^{2}+61512\right] \eta \\
+15\left[\left(5280 e_{r}^{10}+60896 e_{r}^{8}-296384 e_{r}^{6}+470976 e_{r}^{4}\right.\right. \\
\left.-322784 e_{r}^{2}+82016\right) C^{4} \\
+\left(-5280 e_{r}^{10}-80816 e_{r}^{8}+358816 e_{r}^{6}-618096 e_{r}^{4}\right. \\
\left.+509408 e_{r}^{2}-164032\right) C^{2} \\
+20
\end{array}\right)
$$

Chapter 4

$$
\begin{align*}
& \left.+495\left(1-e_{r}^{2}\right) e_{r}^{4}\left[9 e_{r}^{4}+118 e_{r}^{2}-280\right] \eta^{3}\right\} \sin 9 u \\
& +30 e_{r}^{4}\left\{2 4 \left[\left(-40 e_{r}^{8}+160 e_{r}^{6}-240 e_{r}^{4}+160 e_{r}^{2}-40\right) C^{4}\right.\right. \\
& +\left(-56 e_{r}^{8}-36 e_{r}^{6}+320 e_{r}^{4}-308 e_{r}^{2}+80\right) C^{2} \\
& \left.+50 e_{r}^{8}-647 e_{r}^{6}+534 e_{r}^{4}+148 e_{r}^{2}-40\right] \\
& +8\left[\left(600 e_{r}^{8}-2400 e_{r}^{6}+3600 e_{r}^{4}-2400 e_{r}^{2}+600\right) C^{4}\right. \\
& +\left(266 e_{r}^{8}+1338 e_{r}^{6}-4674 e_{r}^{4}+4270 e_{r}^{2}-1200\right) C^{2} \\
& \left.-413 e_{r}^{8}+777 e_{r}^{6}+138 e_{r}^{4}-1870 e_{r}^{2}+600\right] \eta \\
& -\left[\left(4800 e_{r}^{8}-19200 e_{r}^{6}+28800 e_{r}^{4}-19200 e_{r}^{2}+4800\right) C^{4}\right. \\
& +\left(-5232 e_{r}^{8}-20976 e_{r}^{6}-35856 e_{r}^{4}+29712 e_{r}^{2}-9600\right) C^{2} \\
& \left.+1093 e_{r}^{8}-4123 e_{r}^{6}+8622 e_{r}^{4}-10512 e_{r}^{2}+4800\right] \eta^{2} \\
& \left.+297\left(1-e_{r}^{2}\right) e_{r}^{4}\left[-e_{r}^{2}+2\right] \eta^{3}\right\} \sin 10 u \\
& +15 e_{r}^{5}\left\{1 2 \left[\left(8 e_{r}^{8}-32 e_{r}^{6}+48 e_{r}^{4}-32 e_{r}^{2}+8\right) C^{4}\right.\right. \\
& +\left(12 e_{r}^{8}+12 e_{r}^{6}-76 e_{r}^{4}+68 e_{r}^{2}-16\right) C^{2} \\
& \left.-9 e_{r}^{8}+140 e_{r}^{6}-109 e_{r}^{4}-36 e_{r}^{2}+8\right] \\
& -4\left[\left(120 e_{r}^{8}-480 e_{r}^{6}+720 e_{r}^{4}-480 e_{r}^{2}+120\right) C^{4}\right. \\
& +\left(64 e_{r}^{8}+300 e_{r}^{6}-1032 e_{r}^{4}+908 e_{r}^{2}-240\right) C^{2} \\
& \left.-63 e_{r}^{8}+106 e_{r}^{6}+97 e_{r}^{4}-428 e_{r}^{2}+120\right] \eta \\
& +\left[\left(480 e_{r}^{8}-1920 e_{r}^{6}+2880 e_{r}^{4}-1920 e_{r}^{2}+480\right) C^{4}\right. \\
& +\left(-480 e_{r}^{8}+1968 e_{r}^{6}-3456 e_{r}^{4}+2928 e_{r}^{2}-960\right) C^{2} \\
& \left.+97 e_{r}^{8}-355 e_{r}^{6}+774 e_{r}^{4}-1008 e_{r}^{2}+480\right] \eta^{2} \\
& +33\left(1-e_{r}^{2}\right) e_{r}^{4}\left[e_{r}^{2}-2\left[\eta^{3}\right\} \sin 11 u\right. \tag{4.18~m}\\
& +1
\end{align*}
$$

In Eqs.(4.17) and (4.18) $\delta=\left(m_{1}-m_{2}\right) / m$ and $S=$ sini. In the circular limit Eqs.(2), (3) and (4) of [47] modulo the tail terms are recovered by setting $e,=0$ in

Eqs.(4.17) and (4.18) and using

$$
\begin{equation*}
u=\left\{1-3 \tau^{2 / 3}-\frac{1}{2}(9-14 \eta) \tau^{4 / 3}\right\} \phi \tag{4.19}
\end{equation*}
$$

obtained by inverting Eqs.(4.5) in the circular limit. This completes the solution to the 2PN generation problem for inspiraling compact binaries moving in elliptic orbits modulo the tail terms. Though, in principle, the required equations are available [128], the explicit expressions for the tail contribution to the polarizations have not been written down for elliptic orbits. Related details of tail contributions are discussed in $[128,129]$ and summarized in section 4.4.

Following earlier work $[126,127,44]$ we have used the 'radial eccentricity' e, to represent in Eqs.(4.16), (4.17) and (4.18) the gravitational polarizations, h_{+}and h ,. Though convenient and compact for the initial computations, at higher orders it has the disadvantage that various PN contributions do not separate cleanly when written in terms e,. This is due to the v term in $H_{+, x}^{(1)}$. This term has a 1 PN correction which when re-expressed in terms of e,, cannot be cleanly separated out analytically in the tan-' expansion. However, if one uses e_{ϕ} rather than e,, one can achieve a clean split of the various PN contributions to h_{+}and h ,. The following relation connecting e_{r} to e_{ϕ} is needed to rewrite the $\mathrm{N}, 0.5 \mathrm{PN}$ and 1PN contributions to h_{+}and h_{\times}in Eqs.(4.16), in terms of e_{ϕ}, u and τ,

$$
\begin{align*}
e_{r}= & e_{\phi}\left\{1-\frac{\tau^{\frac{2}{3}}}{2} \eta-\frac{\tau^{\frac{4}{3}}}{768\left(1-e_{\phi}^{2}\right)}\left[3264-2112 \eta-360 \eta^{2}\right.\right. \\
& \left.\left.+\left(1-e_{\phi}^{2}\right)\left(960-224 \eta+264 \eta^{2}\right) \eta\right]\right\} \tag{4.20}
\end{align*}
$$

It may be noted that the above tranformation will only change the coefficients in Eqs.(4.17) and (4.18) at $1 \mathrm{PN}, 1.5 \mathrm{PN}$ and 2 PN orders and not their 'u-harmonic' structure.

4.3 Influence of the orbital parameters on the waveform

To investigate the dominant effects of eccentricity and orbital inclination on the polarization waveforms, we concentrate our attention on the leading Newtonian part of h_{+}and h_{\times}. For convenience we list them below again,

$$
\begin{align*}
h_{+}= & \frac{2 G \eta m}{c^{2} R} \tau^{2 / 3}\left\{\frac { 1 } { 4 (1 - e _ { r } \operatorname { c o s } u) ^ { 3 } } \left[-4 e_{r}^{2}-e_{r}\left(\left(3 e_{r}^{2}-3\right) C^{2}-7\right) \cos u\right.\right. \\
& \left.\left.+\left(\left(1-e_{r}^{2}\right) C^{2}+1\right)\left(-4 \cos 2 u+e_{r} \cos 3 u\right)\right]\right\} \tag{4.21a}\\
h_{\times}= & \frac{2 G \eta m}{\boldsymbol{c}^{2} \mathbf{R}} \tau^{2 / 3}\left\{\frac{C\left(1-e_{r}^{2}\right)^{1 / 2}}{2\left(1-e_{r} \cos u\right)^{3}}\left[5 \mathrm{e}, \sin u-4 \sin 2 u+e_{r} \sin 3 u\right]\right\} \tag{4.21b}
\end{align*}
$$

In order to compare with existing results for the spectral analysis of Newtonian part, of h_{+}and $h_{\times}[132,133]$, we require the following expansion of the eccentric anomaly ' u ' in terms of the mean anomaly $\mathrm{M}=\mathrm{n}\left(\mathrm{t}-t_{0}\right)$ to the Newtonian order, available in the standard textbooks of celestial mechanics [148]

$$
\begin{equation*}
u=M+\sum_{p=1}^{\infty}\left(\frac{2}{p}\right) J_{p}\left(p e_{r}\right) \sin p M \tag{4.22}
\end{equation*}
$$

where $J_{p}\left(p e_{r}\right)$ is the Bessel function of the first kind of order p . Further, the trigonometric functions of the eccentric anomaly 'u' appearing in Eqs.(4.21) can also be expanded in terms of a Fourier-Bessel series of the mean anomaly $\mathrm{M}=\mathrm{n}\left(\mathrm{t}-t_{0}\right)$ using standard relations available in the literature [148]. We display them below

$$
\begin{align*}
\frac{1}{\left(1-e_{r} \cos \mathrm{u}\right)} & =1+2 \sum J_{p}\left(p e_{r}\right) \cos p M \tag{4.23a}\\
\cos q u & =\sum\left(\frac{q}{\mathrm{e}}\right)\left(J_{p-q}\left(p e_{r}\right)-J_{p+q}\left(p e_{r}\right)\right) \cos p M \tag{4.23b}\\
\sin q u & =\sum\left(\frac{q}{\mathrm{P}}\right)\left(a J_{p-q}\left(p e_{r}\right)+J_{p+q}\left(p e_{r}\right)\right) \sin p M \tag{4.23c}
\end{align*}
$$

where $\mathrm{p}, \mathrm{q} \geq 1$ and all sums are from $\mathrm{p}=1$ to $\mathrm{p}=\infty$. As is well known [149], these expressions are generally convergent for $e_{T}<0.66$ only. To compute the power spectra for h_{\times}and h_{+}, we keep the first 40 terms in Eqs.(4.23) and also Taylor expand
$J_{p}\left(p e_{r}\right)$ to $O\left(e_{r}^{41}\right)$. Since these number of terms exhibit reasonable convergence we have not gone to hundred terms as in [132]. Using these expressions we compute $\left|\left(h_{\times}\right)_{p}\right|^{2}$ and $\left|\left(h_{+}\right)_{p}\right|^{2}$, the strength of the harmonic p of the fundamental orbital frequency for the 'plus' and 'cross' polarization at the Newtonian order. The results obtained for the first ten harmonics for $e_{r}=0.1,0.22,0.4,0.6$ and 0.9 in the case of 'cross' polarization are presented in Table 4.1. We observe that for small and medium eccentricities $\left(e_{r}=0.1 \ldots 0.4\right)$ the second harmonic has the maximum amplitude. Moreover, for $e_{r}=0.22$ the third harmonic is 30% of the the second one. We also find that for $e_{r}=0.6$ the maximum amplitude harmonic is the fourth one and there is appreciable power in all the first ten harmonics, all these are in agreement with $[132,133]$. Though we also observe that the first harmonic is dominant for $e_{r}=0.9$ as noted by [132], we have little confidence in the values presented in the last column of Table 4.1, due to poor convergence of Eqs.(4.23) for e, >0.66. Note that the element in the $9^{\text {th }}$ row, $6^{\text {th }}$ column of the Table 4.1 is negative. This is an indication that the the number of terms retained in our computation is not sufficient to achieve the limit of the poorly convergent infinite series involving Bessel functions. The behaviour for $\left|\left(h_{+}\right)_{p}\right|^{2}$ is similar and we do not list it here.

Table 4.1: The power spectrum $\left|\left(h_{\times}\right)_{p}\right|^{2}$ scaled by $\left(\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}\right)^{2}$, corresponding to different values of p and eccentricity e_{r}

Harmonic, p	$e_{r}=0.1$	$e_{r}=0.22$	$e_{r}=0.4$	$e_{r}=0.6$	$e_{r}=0.9$
1	$\sim 10^{-2}$	0.1022	0.2892	0.4686	0.2752
2	3.8037	3.1152	1.6262	0.3271	$\sim 10^{-2}$
3	0.1931	0.7746	1.4184	0.8681	$\sim 10^{-3}$
4	$\sim 10^{-3}$	0.1171	0.6944	0.9572	$\sim 10^{-3}$
5	$\sim 10^{-4}$	$\sim 10^{-2}$	0.2779	0.8139	$\sim 10^{-2}$
6	$\sim 10^{-6}$	$\sim 10^{-3}$	0.1006	0.6127	$\sim 10^{-2}$
7	$\sim 10^{-8}$	$\sim 10^{-4}$	$\sim 10^{-2}$	0.4299	$\sim 10^{-2}$
8	$\sim 10^{-9}$	$\sim 10^{-5}$	$\sim 10^{-2}$	0.2884	0.4494
9	$\sim 10^{-11}$	$\sim 10^{-6}$	$\sim 10^{-3}$	0.1875	-1.02554
10	$\sim 10^{-13}$	$\sim 10^{-7}$	$\sim 10^{-3}$	0.1192	39.0874

Table 4.2: The spectrum of $\left|\left(h_{\times}\right)_{n}\right|^{2}$, where 'harmonics' are in terms of eccentric anomaly u corresponding to different values of eccentricity e,. Here too h_{\times}is scaled by $\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}$

Harmonic, n	$\left\|h_{\times}\right\|^{2}, e_{r}=0.1$	$\left\|h_{\times}\right\|^{2}, e_{r}=0.4$	$\left\|h_{\times}\right\|^{2}, e_{r}=0.9$
1	$\sim 10^{-3}$	$\sim 10^{-2}$	0.7622
2	4.0201	4.3561	7.7536
3	$\sim 10^{-2}$	1.1449	13.5365
4	$\sim 10^{-4}$	0.159379	14.8223
5	$\sim 10^{-6}$	$\sim 10^{-2}$	12.8813
6	$\sim 10^{-8}$	$\sim 10^{-3}$	9.7166
7	$\sim 10^{-11}$	$\sim 10^{-4}$	6.6532
8	$\sim 10^{-13}$	$\sim 10^{-6}$	4.2439
9	$\sim 10^{-15}$	$\sim 10^{-7}$	2.5639
10	$\sim 10^{-18}$	$\sim 10^{-8}$	1.4836
20	$\sim 10^{-43}$	$\sim 10^{-20}$	$\sim 10^{-3}$
30	$\sim 10^{-68}$	$\sim 10^{-33}$	$\sim 10^{-8}$
40	$\sim 10^{-93}$	$\sim 10^{-46}$	$\sim 10^{-14}$
50	$\sim 10^{-119}$	$\sim 10^{-60}$	$\sim 10^{-25}$

In the circular limit $u=\phi$, the waveforms are relatively simple, and multiples of ϕ correspond to higher harmonics of the dominant gravitational wave frequency. The situation is more involved in the elliptic case discussed here due to the presence of the factor $\left(1-e_{r} \cos u\right)^{3}$ in the denominator of Eqs.(4.21). To obtain another simple characterization of the 'harmonic' content in the Newtonian part h,, using the eccentric anomaly u , we Taylor expand $(1-\mathrm{e}, \cos u)^{-3}$ around $\cos \mathrm{u}=0$ to high accuracy by keeping the first 100 terms. From the the resultant expression for h_{\times}, we compute $\left|\left(h_{\times}\right)_{p}\right|^{2}$, where $\mathrm{p}=1, \ldots 100$. The results are summarized in Table 4.2. It is clear from the Table 4.2 that for small and medium eccentricities $(\mathrm{e},=0.1$ and $\mathrm{e},=0.4$), the second 'u-harmonic' contribution to $\left|h_{\times}\right|^{2}$ is dominant and $\left|\left(h_{\times}\right)_{p}\right|^{2}$ is negligible beyond $p=10$. However for very high values of e, , $(\mathrm{e},=0.9)$ the higher 'u-harmonics' contribute substantially to $\left|h_{\times}\right|^{2}$. In fact for e, $=0.9$ the 'harmonic' contributing most is the fifth one and moreover, $\left|\left(h_{\times}\right)_{p}\right|^{2}$ is not negligible
until $\mathrm{p}=20$. Similar results hold for $\left|\left(h_{+}\right)_{p}\right|^{2}$. This qualitative observation regarding the dominant 'u-harmonic' for very high values of eccentricities, is different from a similar discussion in [133] and the last column of Table 4.1. However, there may be more reliability on the discussions based on the 'u-harmonics' for high values of e, since the Fourier-Bessel expansion of the true or eccentric anomaly in terms of the mean anomaly and Eqs.(4.23) are not in general applicable for $e,>0.66$, while no such restriction applies when we Taylor expand $(1-\mathrm{e}, \cos u)^{-3}$.

It is also evident from Eqs.(4.21) that the orbital inclination i changes the magnitudes of $\left|h_{\times}\right|^{2}$ and $\left|h_{+}\right|^{2}$ appreciably. In Figures (4.1), (4.2), (4.3) and (4.4) we have plotted h_{\times}and h_{+}scaled by $\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}$, for various e_{r} 's and i 's when eccentric anomaly u goes from 0 to 2π, corresponding to one complete orbit.

Figure 4.1: The effect of the inclination angle i on the Newtonian part of h_{\times}when e_{r} takes values 0 and 0.4 . Note that h_{\times}is scaled by $\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}$.

Figure 4.2: The effect of the inclination angle i on the Newtonian part of h_{\times}when $e_{r}=0.9$. Here also we scale h_{\times}by $\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}$.

Figure 4.3: The effect of the inclination angle i on the Newtonian part of h_{+}scaled by $\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}$. Here e_{r} takes values 0 and 0.4.

Figure 4.4: The effect of the inclination angle i on the Newtonian part of h_{+}, scaled by $\frac{G m \eta}{c^{2} R} \tau^{\left(\frac{2}{3}\right)}$ for $\mathrm{e},=0.9$.

For $e_{r}=0.9,\left|h_{+}\right|^{2}$ is reduced by a factor of 4 whereas $\left|h_{\times}\right|^{2}$ goes down by a factor >45 when i is varied from 0 to 0.45π. It is clear from above plots that for small and medium eccentricities, reduction in $\left|h_{\times}\right|^{2}$ and $\left|h_{+}\right|^{2}$ is small compared to higher e_{r} 's, when i is varied from 0 to $\pi / 2$. This is consistent with [133].

We also compute the square of the ratio between h_{+}and h_{\times}, to see if we can
use it to obtain an estimate of the orbital inclination i.

$$
\begin{equation*}
\left(\frac{h_{\times}}{h_{+}}\right)^{2}=\left\{\frac{-2 C\left(1-e_{r}^{2}\right)^{1 / 2} \sin u\left(e,-2 \cos u+e_{r} \cos u^{2}\right)}{\left(\left(1+\left(1-e_{r}^{2}\right) C^{2}\right)\left\{-e_{r} \cos u^{3}+2 \cos u^{2}-1\right\}+e_{r}\left(e_{r}-\cos u\right)\right)}\right\}^{2} \tag{4.24}
\end{equation*}
$$

In Figs. (4.5) and (4.6) we plot Eq.(4.24) for various eccentricities and eccentric anomalies when i is varied from 0 to $\pi / 2$.

Figure 4.5: Plots of $\left(\frac{h_{\mathrm{x}}}{h_{+}}\right)^{2}$. Here i (x-axis) is varied from 0 to $\pi / 2$ and e_{r} takes values 0 and 0.4.

Figure 4.6: Plots of $\left(\frac{h_{\mathrm{X}}}{h_{+}}\right)^{2}$ when i (x-axis) is varied from 0 to $\pi / 2$, for $e_{r}=0.9$

We observe that for $\mathrm{u}=2$ the ratio can be used as a good indicator for the orbital inclination for very small to very high eccentricities.

The different post-Newtonian contributions; Newtonian, 0.5PN, and 1PN, to h_{\times}and h_{+}scaled by $\frac{G m \eta}{c^{2} R}$ for a binary with following parameters $\mathrm{f}=0.01 \mathrm{Ha}, \mathrm{i}=$ $0.45 \pi, m_{1}=10 M_{\odot}, m_{2}=1.4 M_{\odot}$ are plotted over an orbit for various values of e_{r} in Figures (4.7), (4.8), (4.9) and (4.10). To compare the variations with the Newtonian order, we scale 0.5 PN corrections by a factor of 10^{9} and 1 PN corrections by 10^{19}.

Figure 4.7: Plots of $\mathrm{N}, 0.5 \mathrm{PN}$ and 1 PN contributions to h_{\times}scaled by $\frac{G m \eta}{c^{2} R}$ for $\mathrm{f}=0.01 \mathrm{~Hz}, i=\pi / 4, \mathrm{~m}=11.4$, for an orbital period, when e_{r} takes the values 0 and 0.4. The 0.5 PN and 1 PN contributions are scaled by 10^{9} and 10^{19} respectively for comparison with the N contribution.

Figure 4.8: Plots of $\mathrm{N}, 0.5 \mathrm{PN}$ and 1 PN contributions to h_{\times}scaled by $\frac{G m \eta}{c^{2} R}$ for $\mathrm{f}=0.01 \mathrm{~Hz}, i=\pi / 4, \mathrm{~m}=11.4$ when u is varied from 0 to 2π for $e_{r}=0.9$. The 0.5 PN and 1 PN contributions are scaled by 10^{9} and 10^{19} respectively for comparison with the N contribution.

Figure 4.9: Plots of $\mathrm{N}, 0.5 \mathrm{PN}$ and 1 PN contributions to h_{+}scaled by $\frac{G m \eta}{c^{2} R}$ for $\mathrm{f}=0.01 \mathrm{~Hz}, \mathrm{i}=\pi / 4, \mathrm{~m}=11.4$, for an orbital period, when e_{r} takes the values 0 and 0.4 . The 0.5 PN and 1 PN contributions are scaled by 10^{9} and 10^{19} respectively for comparison with the N contribution.

Chapter 4

Figure 4.10: Plots of $\mathrm{N}, 0.5 \mathrm{PN}$ and 1PN contributions to h_{+}scaled by $\frac{G m \eta}{c^{2} R}$ for $\mathrm{f}=0.01 \mathrm{~Hz}, i=\pi / 4, \mathrm{~m}=11.4$, for an orbital period, when $\mathrm{e},=0.9$. The 0.5 PN and 1 PN contributions are scaled by 10^{9} and 10^{19} respectively for comparison with the N contribution.

Here we have not plotted the 1.5 PN and the 2 PN contributions to h_{+}and h_{\times}for the following reasons. The 1.5PN terms are not structurally different from the 1 PN terms but only $\sim 10^{9}$ times smaller than that. For the 2 PN terms, as mentioned earlier when one employs e,, the 2 PN corrections from the v terms in $H_{+, x}^{(1)}$ do not analytically seperate out cleanly. Hence these orders are not plotted in this chapter. A comment is in order regarding the cusp and discontinuity in the above Figures at the 1PN order. These features are due to the v terms present in
the 1PN contributions to h_{+}and h_{\times}generated by the Taylor expansion of $\cos \phi$'s and $\sin \phi$'s at Newtonian order to 1PN accuracy and directly involve the periastron constant k as seen from Eqs.(4.5).

The explicit effect of periastron precession is explored in the set of Figures where the waveforms are compared with and without the inclusion of the periastron precession.

Figure 4.11: The modulation due to periastron precession at the 1PN order, for the 'cross' polarization. We concentrate on the same binary as in Fig (4.9).

Chapter 4

Figure 4.12: The plot of IPN contribution to h_{\times}when v terms appearing in $H_{\times}^{(1)}$ are neglected. The binary parameters are as in Fig (4.9).

Chapter 4

Figure 4.13: A plot for the 1PN contribution to h_{+}similar to Fig (4.11)

Figure 4.14: The plot similar to Fig (4.12) for the 'plus' polarization.

From above Figures it is clear that periastron precession modulates the waveform.

The next Figure contains plots of the real anomaly versus the eccentric anomaly u for values of eccentricities $\mathrm{e},=\mathbf{0 . 1}$ and $\mathrm{e},=.9$ respectively.

Figure 4.15: The plot of the true anomaly as a function of the eccentric anomaly. Note that discontinuity occurs at $u=\pi$ regardless of eccentricity.

Irrespective of the value of e_{r} the real anomaly v as a function of eccentric anomaly u has a discontinuity at $u=\pi$. The combined effect of this discontinuity in v and the oscillatory behaviour of various harmonics present at 1PN leads to the cusp and discontinuity in the waveforms at $u=\pi$ at these orders. Such features are also present at the 1.5 PN and 2 PN orders. Finally, it should be noted that the values in these Figures (4.11) and 4.13) have been scaled by 10^{19} and hence these features may not be relevant in practice.

4.4 Phasing

The explicit time evolution for the 'plus' and 'cross' polarizations is obtained by computing the time dependence of u, w and e_{r} and inserting these relations back into Eqs.(4.16), (4.17) and (4.18) for h_{+}and h_{\times}. To obtain the time evolution of u we first need to expand u in terms of M to the 2PN order, generalizing Eq.(4.22)
[146]. The orbital elements e_{r} and \boldsymbol{w} appearing in the above relation will evolve due radiation reaction. Unlike in the quasi-circular case, the solution $e_{r}(t)$ and $\omega(t)$ is not explicit but implicitly contained in the following coupled system of first order differential equations. The equations are obtained earlier in [44] to the required 2PN order but rewritten here in terms of the 'gauge-invariant' variable $\tau=\frac{G m \omega}{c^{3}}$. We have,

$$
\begin{align*}
<\frac{\boldsymbol{d} \boldsymbol{w}}{d t}>= & \frac{1}{5} \boldsymbol{G}^{2} c^{6} \boldsymbol{m}^{2} \frac{\tau^{11 / 3}}{\left(1-e_{r}^{2}\right)^{11 / 2}\left\{\left(96+292 e_{r}^{2}+37 e_{r}^{4}\right)\left(1-e_{r}^{2}\right)^{2}\right.} \\
& +\frac{\tau^{2 / 3}\left(1-e_{r}^{2}\right)}{56}\left\{(1036 \eta-13147) e_{r}^{6}-(6636 \eta+189154) e_{r}^{4}\right. \\
& -(54096 \eta+193624) e_{r}^{2}-14784 \eta-11888 \\
& +\tau^{4 / 3}\left[\frac { 1 } { 6 0 4 8 } \left(\left(34188 \eta^{2}-1649430 \eta+7135065\right) e_{r}^{8}\right.\right. \\
& -\left(1038408 \eta^{2}-680310 \eta-143408034\right) e_{r}^{6} \\
& \left(2190804 \eta^{2}-151843320 \eta-202085400\right) e_{r}^{4} \\
& +\left(7007280 \eta^{2}+131090976 \eta-4673632\right) e_{r}^{2} \\
& \left.+1903104 \eta^{2}+4514976 \eta-360224\right) \\
& \left.\left.+\left(1-e_{r}^{2}\right)^{3 / 2}(5-2 \eta)\left(48+298 e_{r}^{2}+79 e_{r}^{4}\right)\right]\right\} \tag{4.25a}\\
<\frac{d e_{r}}{d t}>= & -\frac{1}{15} \frac{\eta c^{3}}{G m} \frac{\tau^{8 / 3} e_{r}^{2}}{\left(1-e_{r}^{2}\right)^{9 / 2}}\left\{2\left(304+121 e_{r}^{2}\right)\left(1-e_{r}^{2}\right)^{2}\right. \\
& +\frac{\left(1-e_{r}^{2}\right) \tau^{2 / 3}}{84}\left[(16940 \eta-168303) e_{r}^{4}\right. \\
& \left.-(60060 \eta+858504) e_{r}^{2}-180320 \eta-196632\right] \\
& +\tau^{4 / 3}\left[\frac { 1 } { 1 0 0 8 } \left(\left(50820 \eta^{2}-3172554 \eta+11204991\right) e_{r}^{6}\right.\right. \\
& -\left(1173480 \eta^{2}-6557598 \eta-91575254\right) e_{r}^{4} \\
& -\left(117180 \eta^{2}-75705732 \eta-25245996\right) e_{r}^{2} \\
& \left.+3144960 \eta^{2}+16402608 \eta-12161360\right) \\
& \left.\left.+5\left(1-e_{r}^{2}\right)^{(3 / 2)}(5-2 \eta)\left(304+121 e_{r}^{2}\right)\right]\right\} \tag{4.25b}
\end{align*}
$$

The solution to the above system gives us $\omega(t)$ and $e_{r}(t)$, the evolution of w and e_{r} under the effect of gravitational radiation reaction. Using this solution in the 2PN accurate expansion connecting u and M one gets $u(t)$, the time evolution of the eccentric anomaly. Finally inserting $u(t), \mathrm{w}(t)$ and $e_{r}(\mathrm{t})$ into Eqs.(4.16), (4.17) and (4.18) one obtains $h_{+}(t)$ and $h_{\times}(t)$, the time evolution of the 'plus' and 'cross' polarizations, under gravitational radiation reaction.

The above equations are complete to 2 PN accuracy modulo the tail terms. The contribution of tail terms to the flux of energy and angular momentum has been obtained in [128] and [129]. The consequent contribution to the evolution of orbital frequency and eccentricity is also discussed there. After adding on these contributions at 1.5 PN the phasing equations are complete and accurate to 2 PN order and should provide the starting point for a numerical solution to the phasing problem in the quasi-elliptic case.

4.5 Conclusions

In this chapter we have computed all the 'instantaneous' 2PN contributions to h_{+} and h_{\times}for two compact objects of arbitrary mass ratio moving in elliptical orbits, using 2PN corrections to $h_{i j}^{T T}$ and the generalized quasi-Keplerian representation for the 2 PN motion. The expressions for h_{+}and h_{\times}obtained here represent gravitational radiation from an elliptical binary during that stage of inspiral when orbital parameters are essentially the same over a few orbital periods, in other words when the gravitational radiation reaction is negligible. We investigated the effect of eccentricity and orbital inclination on the amplitude of the Newtonian part of h_{+}and h_{\times}. We observed that orbital inclination i changes the magnitudes of $\left|h_{+}\right|^{2}$ and $\left|h_{\times}\right|^{2}$ appreciably. The reduction in $\left|h_{+}\right|^{2}$ and $\left|h_{\times}\right|^{2}$ for small and medium eccentricities, is small compared to higher e_{r} 's, when i is varied from 0 to $\pi / 2$, which is consistent with the earlier work [133]. We compute $\left(\frac{h_{x}}{h_{+}}\right)^{2}$ at the Newtonian order
and conclude that this ratio for $\mathrm{u}=2$ can be used as good indicator for the orbital inclination, for very small to very high values of e,. The modulation of h_{+}and h_{\times} due to the precession of the periastron, which occurs at 1 PN order is also explicitly shown.

As mentioned earlier, following [2] the construction of the search templates for gravitational radiation may be done in two steps. The first step deals with the construction of the 'plus' and 'cross' gravitational wave polarizations, which was performed here for compact binaries of arbitrary mass ratio, moving in elliptical orbits. The second step involves the determination of the evolution of the orbital elements (the orbital phase and parameters like eccentricity) as a function of time. The parameters describing the orbit vary in a nonlinear manner with respect to time, as the orbit evolves under the action of gravitational radiation reaction forces. In principle, the evolution of the orbital elements should be determined from the knowledge of the radiation reaction forces acting locally on the orbit. In practice, as discussed in this chapter, this is determined assuming energy and angular momentum balance and the far-zone expressions for energy and angular momentum fluxes. The complete determination of the radiation reaction terms in the equations of motion requires a full iteration of the Einstein's field equations in the near-zone. In the absence of this complete result an interesting question to pose is the following. To what extent do the expressions of energy and angular momentum fluxes and the assumption of energy and angular momentum balance constrain the equations of motion? In the next chapter we address this question using the 'refined balance procedure' proposed by Iyer and Will $[33,34]$ and discuss radiation reaction to 2PN order beyond the quadrupole approximation i.e. the 4.5 PN terms in the equations of motion.

