
Chapter 4 

The second post-Newtonian gravitational 
wave polarizations 

4.1 Introduction 

The basic aim of the present chapter is to obtain the instantaneous 2PN corrections 

to the 'plus' and 'cross' polarization waveforms for inspiraling compact binaries of 

arbitrary mass ratio moving in elliptical orbits starting from the corresponding 2PN 

contributions to (hr2)inst, given by Eqs.(2.42) and (2.43) presented in chapter 2. 

Most of the results presented in this chapter are based on Ref. [146]. As empha- 

sised in [79], the gravitational wave observations of inspiraling compact binaries, 

is analogous to the high precision radio-wave observations of binary pulsars. The 

latter makes use of an accurate relativistic 'timing formula' based on the solution 

- in quasi-Keplerian parametrization - to the relativistic equation of motion for a 

compact binary in elliptical orbit [147]. In a similar manner, the former demands 

accurate 'phasing' i.e., an accurate mathematical modeling of the continuous time 

evolution of the gravitational wave phase. This requires for elliptical binaries, a con- 

venient solution to the 2PN accurate equations of motion. As mentioned in the last 

chapter, a very elegant 2PN accurate generalized quasi-Keplerian parametrization 

for elliptical orbits has been implemented by Damour, Schafer, and Wex [40, 41, 421. 

This representation is thus the most natural and best suited for our purpose to 

parametrize the dynamical variables that enter the gravitational waveforms, given 
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by Eqs.(2.42) and (2.43). It should be noted that the complete 2PN accurate ex- 

pressions for h+ and h,  require computations of the tail contributions at  1.5PN and 

2PN orders. These are not considered here. We also explore the effects of the orbital 

inclination and the eccentricity on the Newtonian part of h+ and h,. The orbital 

phase evolution for binaries in quasi-elliptical orbits, implicitly addressed in chapter 

3 is explicitly discussed further in this chapter. Note that results of the present 

chapter will form the first step in the direction of obtaining 'ready to use' theoret- 

ical templates to search for gravitational waves from inspiraling compact binaries 

moving in quasi-elliptical orbits. 

The chapter is organized as follows: In section 4.2 we present the details of 

the computation to obtain the 'instantaneous' 2PN corrections to h+ and h, for 

inspiraling compact binaries moving in elliptical orbits. Section 4.3 deals with the 

influence of the orbital parameters on the polarizations waveforms. In section 4.4 

we derive the equations that determine the phasing formulae for the quasi-elliptic 

case while section 4.5 comprises our concluding remarks. 

The 'plus' and 'cross' polarizations 

The two independent polarization states of the gravitational wave h+ and h, are 

given by 

1 
h+ = - 2 (pi pj - pi qj )  hy 

where p and q are the two polarization vectors, forming along with the unit vector 

N pointing from the source to the detector, an orthonormal right-handed triad [47]. 

From Eqs.(4.1) it is clear that the explicit computation of 2PN corrections to h+ and 

h,  requires the following: a)  The 2PN corrections to hzT, generally given in terms 

of the dynamical variables of the binary, namely v2, 9, r,  nil vi, N.n and N.v. 
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Here r and v are the relative position and velocity vectors for the two masses ml  and 

m2 in the center of mass frame of the binary. Also r = Irl, v = /vl,  n = :, i = 

and m = ml + m2; b) A 2PN accurate orbital representation for elliptical orbits to 

parametrize these dynamical variables. 

To see why one needs a 2PN accurate orbital representation, let us consider the 

explicit computation of h, a t  the Newtonian order. We have 

where Pijkm (N) is the usual transverse traceless projection operator projecting 

normal to N and vij = vivj , nij = ninj. Employing the standard convention 

adopted in [47], gives p = (0,1,0), q = (- cos i ,  0, sin i) ,  N = (sin i, 0, cos i), 

n = (sin 4, - cos 4,O), and v = (1: sin $ + r 4 cos $, -i cos 4 + r 4 sin 4, O), where 

4 is the orbital phase angle, 6 = dgldt  and i the inclination angle of the source. 

Using above convention we obtain, using Eq.(4.2) 

where q = plm.  Here, as usual, p is the reduced mass of the binary given by 

ml mz/m and C is a shorthand notation for cosi. When dealing with elliptical 

orbits, it is convenient and useful to  use a representation to rewrite the dynamical 

variables r, i ,  $ and $ in terms of the parameters describing an elliptical orbit. For 

example, in Newtonian dynamics, the Keplerian representation in terms of angular 

velocity, eccentricity and eccentric anomaly is a convenient solution to the Newtonian 

equations of motion for two masses on elliptical orbits. Similarly, to compute h+ 

and h,  to  2PN order, one needs a 2PN accurate orbital representation. In our 

computation here, we employ the most Keplerian-like solution to the 2PN accurate 

equations of motion. This solution was obtained by Damour, Schafer, and Wex [40, 

41, 421, and is given in the usual polar representation associated with the Arnowit, 

Deser and Misner (ADM) coordinates. It is known as the generalized quasi-Keplerian 
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parametrization and represents the 2 P N  motion of a binary containing two compact 

objects of arbitrary mass ratio, moving in elliptical orbits. The relevant details of 

the representation is summarized in what follows. 

Let r ( t ) ,  4(t) be the usual polar coordinates associated with the ADM coordi- 

nates in the plane of relative motion of the two compact objects. The radial motion 

r (t) is conveniently parametrized by 

T = a, (1 - e, cos u) , (4.4a) 

ft St n ( t - t o )  = u - e t  s i n u + - s i n u + - ( v - u )  , (4.4b) 
c4 c4 

where u is the 'eccentric anomaly' parametrizing the motion and the constants 

a,, e,, et,  n and to are some 2 P N  semi-major axis, radial eccentricity, time eccen- 

tricity, mean motion, and initial instant respectively. The angular motion 4(t)  is 

given by 

1 +e4 
where u = 2 tan-' {(-I' 1 - e, tan(:)} . 

. In the above v is some real anomaly, 40, k,  e4 are some constant, periastron 

precession constant, and angular eccentricity respectively. The explicit expressions 

for the parameters n, k, a,, et, e,, e4, f t ,  gt, f4 and g4 in terms of the 2 P N  conserved 

energy and angular momentum per unit reduced mass were obtained in [41, 421 and 

displayed in the last chapter as Eqs.(3.5). It is straightforward to obtain the 2 P N  

accurate expressions for r ,  4, 5 ,  4, in terms of E = G r n n ,  e, and u, using Eqs.(3.5) 

and the following relations, 
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<4/3 
( ( 1  - e:)2 (23  112 - 15 - 15 q )  

+24c4 ( 1  - e f )  

+(1 - e:) (234 q - 22 q2 - 204) + (408 - 264 q ) )  } (4.6b) 

cos u - e4 
cosv = 

( 1  - e4 cos u)  

( I  - $ 2 ) ( 1 / 2 )  sin u 
sin v = 

( 1  - ed cos u)  

, Using the equations above, we can, for instance, write: 

- ( ( 1 2  sin v cos v2 - 3 sin v) er
3 + 24 sin v cos v e?) q2 

+8 sin v cos v e: q . 1 (4.7) 

Proceeding along the above lines, we obtain expressions for r, +, $ and 6, listed 

below: 

(198 q - 306) + 1 + (144 T,I - 360) ( 1  - e, cos u)  
( 1  - 4 ( 1  - e:)ll2 I I 

+2688 erq - 7488 e, cos u + (480 q - 2160) e: > ( 
5 - (1344 q - 3744) e:) cos 2u + (- 80 q + 360 ) er 

+ (224 q - 624)  e:) cos 3u] v 
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+ ( I  - e:)ll2e: [(-45 e:q2 + (120 q - 40) e,q) sin u 

.i. = 
( 1  - e, cos u )  

~ 2 1 3  + [ ( 7 q  - 6 ) e r c o s u + 2 q -  18 
6 c2 ( 1  - e,  cos u)  1 

<4/3 

' 2 8 8  ( 1  - e:) ( 1  - e, cos u ) ~  c4 [(204 q2 - 810 q + 1872)  e: 

- ( 2 3 6 q 2 + 4 2 q- 6 1 2 )  e :+32q2+19561)-3096  

+ (480 q2 - 5436 q + 8352)  e,) cos u 

+ (-168 q2 + 1350 q - 2484)  e:) cos 2u 

+(1 - e,) 2 (-432 q + 1080) e: - 288 q + 720 
2 ' (  

+ (2167 - 5 4 0 )  e: + (8647) - 2160)  e,) cosu  ( 

[2/3 + 
6 c2(1 - e,  cos u)  ( 1  - e:) [ ( (- 9  q + 24) e f  + (12 q - 42) e,  

- (188 q2 - 802 q - 138) er3 + (64 q2 + 1192 q - 2832 ) e,) cos u 
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+ (16q2 + 11327 - 2172) eT2) cos 2u 

+ (-20 q2 + 322 q - 522) eT3) cos 3u 

+ (216 q - 540) eT4 + (-216 q + 540) eT2) cos 2u ( 
(-36 q + 90) eT5 + (36 q - 90 ) eT3) cos 3u)] ) . (4.8d) 

To obtain the desired 2PN expressions for sin q5 and cos 6, we need to obtain sin v 

and cos v in terms of J, e, and u. Using Eqs.(4.6) and the relation connecting e4 to 

e,, we obtain after some manipulations, 

J2I3 e, q sin2 u 
cosv = cosu - e, - - 

( I  - e, cos u) 2 c2 (1 - e, cos u) 
(413 1 +- 

384 c4 (1 - e:) (1 - e, cos u ) ~  
[(66 q3 - 8 q2 + 240 q) eT3 

+ ((-33 q3 + 28 q2 - 120 q) ef + (33 q3 - 73 q2 - 48 q + 408) eT2) cos u 

+ ((-66 q3 + 8 q2 - 240 q) er3 + (66 q3 - 98 7' - 96 q + 816) e,.) cos 221 

+ ((33 q3 - 28 q2 + 120 q) e,' - (33 q3 - 73 q2 - 48 q + 408) er2) cos 3u] } 

~213 
sinv = 

1 
1 + - 

(1 - - e, ' cos u) { 2 c2 (1 - e, COSU) (1 - e:) 
(-eT2q + q e,) cos u 

~413 1 
[(99 q3 - 48 q2 + 360 q) e, 4 +- 

192 c4 (1 - e:)2(l - e, cos u)2 

+ (-99 q3 + 147 q2 + 144 7) - 1224) er2 

+((-66q3 + 56; - 240q) eT
5 + (-90q2 - 336q + 816) eT3 

+ (66q3 - 98q2 - 96q+816) e,) cosu + ((33q3 - 40q2 + 120q) e, 4 

+ (-33 q3 + 73 q2 + 48 q - 408) eT
2) cos 2u] } . (4.9b) 
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Eqs. (4.8) and (4.9) will be required to obtain h+ and h, in terms of <, e, and u from 

the expressions for 2PN corrections to h y  in ADM coordinates. 

The 2PN corrections to h y ,  given by Eqs. (5.3) and (5.4) of [44], however, are 

available in the harmonic (De-Donder ) coordinates. Using, in a straightforward 

manner, the transformation equations of Damour and Schafer [I421 to relate the dy- 

namical variables in the harmonic and the -ADM gauge, we obtain the 2PN accurate 

instantaneous contributions to h:T in the ADM gauge. For completeness, we quote 

again the relevant transformation equations displayed in the previous chapter as 

Eqs. (3.8) relating the harmonic (De-Donder) variables to the corresponding ADM 

ones, 

Gmi. 
VD = VA - -{[7v2 +38  

8 c4 r2 r 

The subscripts 'D' and 'A' denote quantities in the De-Donder (harmonic) and in the 

ADM coordinates respectively. Note that in all the above equations the differences 

between the two gauges are of the 2PN order. As there is no difference between the 

harmonic and the ADM coordinates to  1PN accuracy, in Eqs.(4.10) no suffix is used 

for the 2PN terms. 

Using Eqs.(4.10) the 2PN corrections to h a  in ADM coordinates can eas- 

ily be obtained from Eqs.(5.3) and (5.4) of [44]. For economy of presentation, we 

write ( h Z T ) ~  in the following manner, (h:T)~ = (h;T)o+ 'Corrections', where 

(hZTlA represent the metric perturbations in the ADM coordinates. (h;T)o is 

a short hand notation for expressions on the r.h.s of Eqs.(5.3) and (5.4) of [44], 
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where N ,  n ,  v ,  v2, f ,  r are the ADM variables NA, nA, VA, v i ,  fA,  r A  respectively. The 

'Corrections' represent the differences at the 2PN order, that arise due to the change 

of the coordinate system, given by Eqs.(4.10). As the two coordinates are different 

only at the 2PN order, the 'Corrections' come only from the leading Newtonian 

terms in Eqs. (5.3) and (5.4) of [44]. 

To check the algebraic correctness of the above transformation, we compute the 

far-zone energy flux directly in the ADM coordinates using 

After a careful use of the transformation equations, the expression for ( d & / d t ) ~  

calculated above, matches with the expression for the far-zone energy flux, Eq.(4.7a) 

of [44] obtained earlier. This provides a useful check on the transformation from 

TT inst TT inst 
(hij ) D  '0 (hij )A - 

As mentioned in 143, 441, there is no need to apply the T T  projection to ( h F )  

given by Eq.(4.11) before contracting with p and q, as required by Eqs.(4.1). Thus, 

we schematically write, 

The polarization states h+ and h,, for Eqs.(4.13) are given by, 
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Using Eqs.(4.13), (4.14), (4.8) and (4.9)) we obtain after a lengthy but straight- 

forward computation the instantaneous 2PN accurate polarizations h+ and h ,  in 

terms of <, e, and u. In order to  compare with existing gauge independent circular 

limit results, we rewrite the expressions for h+ and hx  in terms of the orbital angu- 

lar freqtlency w, using a 2PN accurate relation connecting the mean motion n to  w 

given by w = n ( l +  k).  From Eqs.(39), (44) and (46) of [42], after some manipulation 

we obtain: 

where T = 
~3 

. All the computations are performed using MAPLE [134]. The 

final result for the two polarizations of the gravitational wave from an inspiraling, 

non-spinning, compact binary in elliptic orbit, is then written as, 

where the curly brackets contain a post-Newtonian expansion. The explicit expres- 

sions for various post -Newtonian terms for the 'plus' polarization are given by 

(1 - e:) C2 + 1 -4 cos 2u + e, cos 321 (4.17a) 

H y / 2 )  = - S  6 (l-e:)1"6{ 20 e, (e: - 2 e: + 1) C2 
- 5 e: + 5 ( 64 (1 - e, cos u) 
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HY)  = 1 1 

(1 - e:) (1 - e, cos u )  (1 - e, cos u ) ~  HP2l 

(1 + C2) (1 - e;) ' I 2  + 
2 

+573 e: - 5406 e: + 3480 11 cos u > 1 
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-704 e: + 2205 e: - 3220 e: + 6087 cos 2u 11 

-153 e: - 261 ef - 706 e: + 316 

+ (1 - e:) ((126 e: + 696 ef - 1770 ef + 948) C' 

+(-91 e: - 859 ef + 572 e;) C2 - 19 ef + 446 e; - 948 q cos 5u > 1 
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HP22 = ( 1 2  sin 2u - 15 e, sin u - 3 e, sin 3u 1 
Hy/2) - 6 , { 1 (I - e:)'I2 

( 1  - e:) ( 1  - e, cos u ) ~  1536 ( 1  - e, cos u ) ~  H P 3 ~  

+(378 e:' - 4491 ej + 10518 e: + 3891 e: - 10392 e: + 96) c2 
-2208 e j  + 11447 e: - 27519 e: + 14382 e: - 392 q cos u > 1 
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-1710 efi + 8249 e: - 14587 e: + 15725 e: - 4830 r ]  cos 2 u  > 1 

-728 efi + 3826 e: - 6077 e: + 5790 e: - 900 r ]  cos 3 u  ) 1 

+24 efi - 1198 ef + 2005 e: - 422 e: - 2500 r ]  cos 5u > 1 
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+30 e: - 41 e: + 219 er4 - 813 e: + 974 q cos 621 ) 1 

+(2 e: - e: - 1)  C2e: + 3 er2 - 4 q cos 9u ) 1 (4.17g) 

HP32 = 2 [(44 e: - 45 e: + 1)  c2 + 40 e: - 66 e: + 5 sin u 

+8e, (-14e: + 14) c2 - 9e: + 15 sin2u 

I 
[ I 

+ [(19 e: + 35 e: - 54) c2 + 10 ef + 17 e: - 54 sin 3u  

-8 e, (3 e: - 3 )  c2 + 2 e: - 3 sin 4u 

I 
[ 

+e: [ ( 3  e: - 3 )  c2 + 2 

I 
e, - 3 sin 5u I (4.17h) 

H?) = 1 
2 

( 1  - e,2) ( 1  - e, cos u )  
{ ( 5  4 2  ' )  (1 - e:)3/2 HP41 

1 1 
737 280 ( 1  - e, cos u ) ~  HP42 
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+495 (1 + c2) (1 - e:)2 (49 e: + 1820 ef + 6440 e: 

+4032 e: + 256 r13 cosu ) I 
HP423 = 4 12 (85740 ef4 - 542888 ef2 + 1428980 eiO - 2002480 e: [ ( 

+I576980 ef - 663080 e: + 117388 e: - 640) C6 

+(-85080 ef4 - 828832 ei2 + 548980 efo 

+4078240 e: - 5982640 ef + 2207840 e: + 42932 e: + 18560) c4 

+(-220455 e:4 - 3199870 ef2 - 5009561 efO + 16140398 e: 
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+(I3530 e:O + 990001 efi + 2135208 e: 

+443249 efi - 2034432 e: + 3309272 e: - 4553232 e: + 1435472 

+495 (1 + c2) (1 - e:)2 (3efi - 168ef - 1960e: 

-2464 e: - 256) r13] cos 3u 
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+495 (1 + c2) (1 - e:)2 (23 ef + 294 eff + 532 e: + 120) v3e:] cos 421 

(4 .17~ )  

H P m  = 5 er 6 (-3960 e:4 - 102296 e:2 + 393072 e:O - 292320 e: I ( 
-576920 ef + 1171560 e: - 766944 e: + 177808) C6 

+(-5940 e:4 + 124904 e:2 + 826824 efO - 2702352 e: 

+I978892 e: + 260376 e: .- 489984 e: + 7280) C4 

+(4455 ef4 + 709031 ef2 + 1376269 efO - 2582315 e: 

+I550280 e: - 116968 eff - 756160 e: - 184592) c2 

+I3385 ei2 + 189506 e:O + 3585485 e: + 3156500 e: 

-1048376 e: - 2233184 e: - 496 
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-99 (1 + c2) (1 - e:)2 (53 e: + 2128 e: + 7280 e: + 3136) 113e:] cos 5u 
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+495 e: (1 + c2) (1 - e:) (229 e: + 1792 e: + 1456) q3]  cos 6u 

-641400 e: + 1474240 e: - 991592 e: + 232688) c6 

+(-9900 ef4 + 13928 ef2 + 552928 efo - 1982160 e: 

+2870820 e: - 2249800 e: + 1036872 e: - 232688) C 4 

+(7425 e:4 + 873065 ef2 
- 155341 e:' - 1909885 e: + 4307064 e: 

-3411632 e: + 521992 e: - 232688) C 2 

+53907 ef2 + 503710 efO + 3405455 efi + 2686636 e: 

-4200424 e: - 567272 e: + 232688 ) 
+10 (19800 ef4 + 416544 e:2 - 1681656 efO + 1467120 e: ( 
+I924200 ef - 4422720 e: + 2974776 ep - 698064) c6 

+(858O e:4 - 286864 e:2 - 425088 e:' + 3814096 efi 

-6849884 ef + 6038736 e: - 2997640 ep + 698064) c4 

+(- 16335 ef4 - 348483 ef2 + 627315 e:O - 2704137 e: 

+3130512 e$ + 179040 e: - 1565976 e: + 698064) C2 

-72837 ef2 + 396174 efO - 1126909 e: - 146316 e: 
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+e: (-495 (1 + c2) (1 - e:)2 (39 e: + 1036 e: + 1680))rj1~] cos 7u 
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+32 e: - 1667 e: - 13650 e: + 14776 e: - 47032 q2 ) 
+495 e: (1 + c2 + 1) (1 - e:)2 (41 e: + 154) q3] cos 8u (4.17t) 

HP4210 = e: [-6 ((1320 ef2 + 13904 e:O - 89320 e: + 191840 ef 

-198440 e: + 101200 e: - 20504) c6 + (1980 ei2 + 5896 e:' 

$12000 e: - 111680 e: + 174380 e: - 103080 e: + 20504) c4 
+(-I485 e:2 - 76517 e;O + 284361 e: - 492695 e: + 326024 e: 

-60192 e: + 20504) c2 - 7815 efo - 26518 e: - 380915 e: 

+293460 e: + 62072 e: - 20504 + 10 (3960 ef2 + 41712 e:O ) ( 
-267960 e: + 575520 e: - 595320 e: + 303600 e: - 61512) C6 

+(I716 ef2 - 15856 efO + 144112 e: - 415872 e: + 515764 e: 

-291376 e: + 61512) c4 + (-3267 ef2 - 47655 efO + 37431 e: 

-85605 ef + 218160 e: - 180576 e: + 61512) c2 

-5649 e:O + 47382 e: - 158633 e: + 51316 e: 

+I68352 e: - 61512 17 1 
-15 (1 - e:)2 ((2640 e: + 33088 e: - 115104 e: 

+I20384 e: - 41008) C6 

+(-3432 e: - 57328 ez + 113064 e: - 93312 e: + 41008) C4 

+(902 eS( + 20007 ez - 9484 e: - 38368 e: + 41008) c2 

-977 e: - 6580 e: + 11296 e: - 41008 q2 ) 
-495 e: (1 + c2 + 1) (1 - e:)2 (11 e: + 140) q3] cos 9u (4 .17~ )  
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+(-521 e:' + 432 e: - 1041 e: + 2330 elf - 1800 e: + 600) C2 

-279 elf + 456 e: - 2400 772 ) 

+ (12 e:' - 8 e: - 56 ef + 96 elf - 52 e: + 8) C4 

+(-9 e:' + 103 ef - 227 e: + 149 elf - 24 ef + 8) C2 

f ( 5 2  e:' + 152 ef - 888 e: + 1232 elf - 668 ef + 120) C4 

+(-99 e:' + 57 e: - 201 ef + 483 elf - 360 e: + 120) C2 

+(82 e: - 27 e: - 240 e: + 240) C2 - 27 elf + 24 e: - 240 q2 ) 

H P 4 3  = eT (4392 ef - 9488 elf + 5800 e: - 704) c4 [ 
+(279 ef + 5916 elf + 336 e: - 9600) C2 

-2841 ef + 22804 elf - 17144 e: - 5888 
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-5585 e: + 20217 e: - 20100 e: + 320 7 sin u - 1 1  
+4 (- 1688 e: + 3440 e: - 1816 e: + 64) c4 [ 
+(-975 e: - 2472 e: + 3696 e: + 576) c2 

-1963 e: + 8515 e: - 10144 e: + 160') sin 2u 
/ 

+3 e, (240 e: + 1456 e: - 3632 e: + 1936) c4 [ 
+(261 e: + 3372 e: - 2464 e: - 1664) C2 

+(-311 e: - 729 e: - 100 e$ - 576) C2 

+61 e: - 597e: + 2588 e: - 3768 77 sin 3u > 1 
(-122 e: + 116 e: + 134 e: - 128) c4 

+(-I10 e: - 117 e: - 85) C2e: 

-56 e: + 207 e: - 79 ef - 384 7 sin 4u > 1 
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HP44 = (4 e: + e, (3 ef - 10) cos u + 4 (-e: + 2) cos 2u 

+e, (ef - 2) cos 3u) . 

Similarly, for the 'cross7 polarization we have 

6 ~1 '1 ' )  = - S C  (1 - (2) sinu-32ers in2u 
8 (1 - e, cos u ) ~  

sin 3u - 8 e, sin 4u + e: sin 5u (4.18b) 

C H?) = - 1 (1 - e,2)lI2 
HX21 - 96 v HLY22 lg2 

(I - e, cos u)3 (1 - e:) 
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-3058 e: + 7701 e: - 7890 e: + 1960 q sin u I 1 
314 ef - 692 e: + 442 e: - 64) c2 

-58 ef + 355 e: - 338 e: + 272 I 
- [(1884 ef - 4152 e: + 2652 e: - 384) c2 

- 1889 e: + 3755 e: - 3140 e: + 416 q sin 2u I )  

+87 e: - 57 e: + 706 e: - 316 J 
126 e: + 696 e: - 1770 e: + 948) c2 

-42 e: - 599 e: + 1394 e: - 948 q sin 521 I  > 

HX22 = {e, (9 e: - 30) e, cos u - 12 e, - 2 cos 2u 
( 2  ) 
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+3 e, (e: - 2) cos 311 + 12 e, 1 
Hri2) = 6 1 

(1 - e, cos u) 5 c S{ 768 (1 - e, cos u)4 HX31 

3 2, +- 
2 1/2 8 (1 - er) 

~ ~ 3 2 )  

-6636 e: + 17569 ef - 28581 ef + 8394 ef - 184 q sin u J 1 

-4404 ef + 7127 ef - 13069 e: + 3170 q sin 211 I >  

-231 e: + 10696 ef - 10979 e: + 15982 e: - 2052 7 sin 321 

306 ef + 334 e: - 1586 e: + 946) C2 

I I 

- j(1224 ef + 1336 e: - 6344 e: + 3784) c2 

-423 ef - 3277 e: + 3056 e: - 3820 q sin 4u I )  
+2 {[(-lo8 e: - 1731 ef + 2536 e: + 553 e: - 1250) C2 

-447 e: - 402 ef + 1070 e: - 1831 ef + 1250 J 
+ 216 e: + 3462 e: - 5072 e: - 1106 e: + 2500) C2 [ ( 
+I35 e: - 2628 ef + 1031 e: - 358 e: - 2500 7 sin 5u I I 
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-116 e: - 469 e: + 815 e: - 974 q sin 6u 1 1  
+e:{(-54 e: - 514 e: + 1190 e: - 622) c2 

-81 e: - 685 e: - 918 e: + 622 

108 e: + 1028 e: - 2380 e: + 1244) c2 

-27e: - 557e: + 1138 e: - 1244 q sin 7u 1 1  
+6e:{2 [(8e: - 16e:+8) C2+11e:+15e:  

- 8l 
-[(32e:-64e:+32) C2-11 e, + 27 e: - 32 rl sin 8u 

2 +3e:{(-2e:+4e:-2) ~ ~ - 3 e : - 5 e , + 2  

I 1  

H?) = C 1 

(1 - ez)3/2 (1 - e, cos u ) ~  737 280 (1 - e, cos u ) ~  HX44 

+(1 - e:)3/2 HX43 

1 +- I 
v HX41 + v2 HX42 (4.18i) 

128 (1 - e:) (1 - e, cos 2 ~ ) ~  

HX41 = 24 e:{ [(194 e: - 528 e: + 474 e: - 140) c2 
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-280 e: + 13843 ef - 42120 e: + 39712 e: + 1616 g cos u I > 

-2375 e: + 13375 ef - 25086 e: + 18576 ef + 64 g cos 28 I >  

-56 e: - 733 ef + 5332 e: - 10252 ef + 7392 g cos 3u I I 
+8 ((-102 e: + 568 ef - 318 e: - 660 ef + 512) C2 

-235 e: + 1073 ef - 1004 e: - 848 ef + 1536 q cos 4u I  1 

-56 e: - 245 ef + 2748 e: - 5636 ef + 3792 r )  cos 521 I >  

- 19 e: + 123 e: - 230 e: + 144 q cos 621 I 1  
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HX42 = -45 e, sin u + 36 sin 2u - 9 e, sin 3u 

+495 1 - e, 21 e:' + 350 efl - 2520 e: - 8400 e: ( 2 ) [  
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-2560 e j  + 5121 q3) s in  u 

- 15045368 e: + 9631 120 e: - 2009312 e: + 57344 q2 I 
133 e: - 42 e: - 4872 ef - 4976 e: - 256 q sin 2 u  I 31 
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-4672 e: - 512 11 sin 321 I 3~ 
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+652395 e$ - 626096 e: + 339708 e: - 34816 q2 J 
4-495 (1 - e:) e: [-20 ef - 30 e$ + 427e: + 472 er2 + 120 yl3 sin 4u I I 



Chapter 4 

+3 88800 ef2 + 2133760 efo - 5832960 efi [ ( 
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+I072 e:O + 7150 e: - 30615 e: + 52469 e: - 54432 e$ + 23516 q2 

8 e: + 18 e: - 77 q3 sin 8u 

J 
I I 
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+297 1 - e ,  e, -e: + 2 r13 sin 10u ( 2 ) 4 [  I }  

+33 1 - e ,  e ,  e ,  - 2 r13 sin l l u  . ( ' > " [ '  I > 
In Eqs.(4.17) and (4.18), 6 = (ml - m2)/m and S = sini. In the circular limit 

Eqs.(2), (3) and (4) of [47] modulo the tail terms are recovered by  setting e ,  = 0 in 
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Eqs. (4.17) and (4.18) and using 

obtained by inverting Eqs.(4.5) in the circular limit. This completes the solution to  

the 2PN generation problem for inspiraling compact binaries moving in elliptic orbits 

modulo the tail terms. Though, in principle, the required equations are available 

[128], the explicit expressions for the tail contribution to the polarizations have 

not been written down for elliptic orbits. Related details of tail contributions are 

discussed in [128, 1291 and summarized in section 4.4. 

Following earlier work [126, 127, 441 we have used the 'radial eccentricity' e, 

to represent in Eqs. (4.16), (4.17) and (4.18) the gravitational polarizations, h+ and 

h,. Though convenient and compact for the initial computations, a t  higher orders 

it has the disadvantage that various PN contributions do not separate cleanly when 

written in terms e,. This is due to the v term in HE. This term has a 1PN 

correction which when re-expressed in terms of e,, cannot be cleanly separated out 

analytically in the tan-' expansion. However, if one uses e+ rather than e,, one can 

achieve a clean split of the various PN contributions to h+ and h,. The following 

relation connecting e, to e+ is needed to rewrite the N, 0.5PN and 1PN contributions 

to h+ and h, in Eqs.(4.16), in terms of e+ ,u  and r, 

It may be noted that the above tranformation will only change the coefficients in 

Eqs.(4.17) and (4.18) at lPN,  1.5PN and 2PN orders and not their 'u-harmonic' 

structure. 
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4.3 Influence of the orbital parameters on the waveform 

To investigate the dominant effects of eccentricity and orbital inclination on the 

polarization waveforms, we concentrate our attention on the leading Newtonian 

part of h+ and h,. For convenience we list them below again, 

+ ((1 - e:) c2 + 1) (-4 cos 2u + e, cos 3u (4.21a) 

h, = 5 e, sin u - 4 sin 2u + e, sin 3u 
c2 R 

In order to compare with existing results for the spectral analysis of Newtonian part, 

of h+ and h, [132, 1331, we require the following expansion of the eccentric anomaly 

'u' in terms of the mean anomaly M = n(t  - to )  to the Newtonian order, available 

in the standard textbooks of celestial mechanics [I481 

where Jp(p e,) is the Bessel function of the first kind of order p. Further, the trigono- 

metric functions of the eccentric anomaly 'u' appearing in Eqs.(4.21) can also be 

expanded in terms of a Fourier-Bessel series of the mean anomaly M = n(t  - to) 

using standard relations available in the literature [148]. We display them below 

1 

(1 - e, cos u) 
= 1 + 2 x  ~ , ( ~ e , )  cospM 

cos q" = ~ ( ' 1  P (J,-,(P eT) - ~,+,(p  e,)) cos p~ (4.2313) 

sinqu = 4 c(-) P (aJP-,(Per) + J,+,(P~,)) s i npM,  (4 .23~)  

where p ,  q 2 1 and all sums are from p = 1 to p = oo. As is well known [149], 

these expressions are generally convergent for e, < 0.66 only. To compute the power 

spectra for h, and h+, we keep the first 40 terms in Eqs.(4.23) and also Taylor expand 
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Jp(peT)  to  O(e;'). Since these number of terms exhibit reasonable convergence we 

have not gone to  hundred terms as in [132]. Using these expressions we compute 

1 (hx)p12 and l(h+)p12, the strength of the harmonic p of the fundamental orbital 

frequency for the 'plus' and 'cross' polarization a t  the Newtonian order. The results 

obtained for the first ten harmonics for e, = 0.1,0.22,0.4,0.6 and 0.9 in the case of 

'cross' polarization are presented in Table 4.1. We observe that  for small and medium 

eccentricities (e, = 0.1 . . .0.4) the second harmonic has the maximum amplitude. 

Moreover, for e, = 0.22 the third harmonic is 30% of the the second one. We also 

find that for e, = 0.6 the maximum amplitude harmonic is the fourth one and 

there is appreciable power in all the first ten harmonics, all these are in agreement 

with [132, 1331. Though we also observe that the first harmonic is dominant for 

e, = 0.9 as noted by [132], we have little confidence in the values presented in the 

last column of Table 4.1, due to poor convergence of Eqs. (4.23) for e, > 0.66. Note 

that the element in the gth row, 6th column of the Table 4.1 is negative. This is an 

indication that the the number of terms retained in our computation is not sufficient 

to  achieve the limit of the poorly convergent infinite series involving Bessel functions. 

The behaviour for l(h+),I2 is similar and we do not list it here. 

Table 4.1: The power spectrum l(hX),l2 scaled by ( % T ( % ) ) ~ ,  corresponding to  
different values of p and eccentricity e, 
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Table 4.2: The spectrum of l(hX),l2, where 'harmonics' are in terms of eccentric 
anomaly u corresponding to different values of eccentricity e,. Here too h, is scaled 
by @W (') 

c 2 R  

Harmonic, n lh, I2,e, = 0.1 Ihx 12,er = 0.4 lhx 12, er = 0.9 
1 lo-3 N 0.7622 

In the circular limit u = 4, the waveforms are relatively simple, and multiples 

of 4 correspond to higher harmonics of the dominant gravitational wave frequency. 

The situation is more involved in the elliptic case discussed here due to  the presence 

of the factor (1 - e , c o s ~ ) ~  in the denominator of Eqs.(4.21). To obtain another 

simple characterization of the 'harmonic' content in the Newtonian part h,, using 

the eccentric anomaly u, we Taylor expand (1 - e, cos u ) - ~  around cos u = 0 to high 

accuracy by keeping the first 100 terms. From the the resultant expression for h,, 

we compute l(hx),I2, where p = 1 , .  . . loo .  The results are summarized in Table 4.2. 

It is clear from the Table 4.2 that for small and medium eccentricities (e, = 0.1 and 

e, = 0.4), the second 'u-harmonic' contribution to lhXl2 is dominant and l(hX),l2 

is negligible beyond p = 10. However for very high values of e,, (e, = 0.9) the 

higher 'u-harmonics' contribute substantially to lhXl2. In fact for e, = 0.9 the 

'harmonic' contributing most is the fifth one and moreover, I(hx)p12 is not negligible 
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until p = 20. Similar results hold for l(h+),I2. This qualitative observation regarding 

the dominant 'u-harmonic' for very high values of eccentricities, is different from a 

similar discussion in [I331 and the last column of Table 4.1. However, there may be 

more reliability on the discussions based on the 'u-harmonics' for high values of e, 

since the Fourier-Bessel expansion of the true or eccentric anomaly in terms of the 

mean anomaly and Eqs.(4.23) are not in general applicable for e, > 0.66, while no 

such restriction applies when we Taylor expand (1 - e, cos u ) - ~ .  

It is also evident from Eqs.(4.21) that the orbital inclination i changes the 

magnitudes of Ih, l 2  and 1 h+ l 2  appreciably. In Figures (4.1), (4.2), (4.3) and (4.4) 

we have plotted h, and h+ scaled by % r(3), for various er7s and i's when eccentric 

anomaly u goes from 0 to  2 T, corresponding to one complete orbit. 

' " I  1 I I I I I I 

Figure 4.1: The effect of the inclination angle i on the Newtonian part of h, when 
e, takes values 0 and 0.4. Note that  h, is scaled by 9 ~ ( $ 1 .  
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Figure 4.2: The effect of the inclination angle i on the Newtonian part of h ,  when 
e, = 0.9. Here also we scale h ,  by 341). 
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Figure 4.3: The effect of the inclination angle i on the Newtonian part of h+ scaled 
by ~ ( 3 ) .  Here e, takes values 0 and 0.4. 
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Figure 4.4: The effect of the inclination angle i on the Newtonian part of h+, scaled 
by 9 T(+) for e, = 0.9. 

For e, = 0.9, lh+I2 is reduced by a factor of 4 whereas Ih, l 2  goes down by a 

factor > 45 when i is varied from 0 to 0.45 T .  It is clear from above plots that for 

small and medium eccentricities, reduction in Ih, l 2  and lh+I2 is small compared to 

higher e,'s, when i is varied from 0 to  ~ / 2 .  This is consistent with [133]. 

We also compute the square of the ratio between h+ and h,, to see if we can 
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use it to obtain an estimate of the orbital inclination i. 

-2 C  ( 1  - e;)ll2 sin u e, - 2 cos u  + e, cos u 2 ( ) j 2 .  ( 2 )  = + - e i ) c 2 )  - e , c o s u 3 + ~ c o s u 2 - l I + e T ( e T - c o s o )  

In Figs. (4.5) and (4.6) we plot Eq.(4.24) for various eccentricities and eccentric 

anomalies when i is varied from 0 to  7r/2. 

h 2 Figure 4.5: Plots of (e) . Here i(x-axis) is varied from 0 t o  n / 2  and e, takes values 
0 and 0.4. 
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Figure 4.6: Plots of (2)2 when i (x-axis) is varied from 0 to 7r/2, for e, = 0.9 

We observe that for u = 2 the ratio can be used as a good indicator for the 

orbital inclination for very small to very high eccentricities. 

The different post-Newtonian contributions; Newtonian, 0.5PN, and lPN, to 

h, and h+ scaled by 9 for a binary with following parameters f = 0.01 Ha, i = 

0.45 T, ml = 10Mo, mz = 1 .4Mo are plotted over an orbit for various values of e, in 

Figures (4.7), (4.8), (4.9) and (4.10). To compare the variations with the Newtonian 

order, we scale 0.5 PN corrections by a factor of 10' and 1PN corrections by lo1'. 
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Figure 4.7: Plots of N, 0.5PN and 1PN contributions to h, scaled by 9 for 
f = O.OlHz,i = 7r/4, m = 11.4, for an orbital period, when e, takes the values 0 
and 0.4. The 0.5PN and 1PN contributions are scaled by 10' and 1019 respectively 
for comparison with the N contribution. 
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Figure 4.8: Plots of N, 0.5PN and I P N  contributions to h, scaled by 9 for 
f = O.OlHz, i = 7r/4, m = 11.4 when u is varied from 0 to 2 T for e, = 0.9. The 
0.5PN and 1PN contributions are scaled by lo9 and 1019 respectively for comparison 
with the N contribution. 
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Figure 4.9: Plots of N, 0.5PN and 1PN contributions to  h+ scaled by for 
f = 0.01 Hz, i = 7r/4, m = 11.4, for an orbital period, when e, takes the values 0 
and 0.4. The 0.5PN and 1PN contributions are scaled by lo9 and 1019 respectively 
for comparison with the N contribution. 
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Figure 4.10: Plots of N, 0.5PN and IPN contributions to  h+ scaled by for 
f = O.OlHz, i = ~ 1 4 ,  m = 11.4, for an orbital period, when e, = 0.9. The 0.5PN 
and 1PN contributions are scaled by lo9 and 10'' respectively for comparison with 
the N contribution. 

Here we have not plotted the 1.5PN and the 2PN contributions to h+ and 

h, for the following reasons. The 1.5PN terms are not structurally different from 

the 1PN terms but only N lo9 times smaller than that.  For the 2PN terms, as 

mentioned earlier when one employs e,, the 2PN corrections from the v terms in 

H!,)~ do not analytically seperate out cleanly. Hence these orders are not plotted 

in this chapter. A comment is in order regarding the cusp and discontinuity in the 

above Figures a t  the IPN order. These features are due to  the v terms present in 
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the 1PN contributions to h+ and h,  generated by the Taylor expansion of cos$'s 

and sin 4's a t  Newtonian order to  1PN accuracy and directly involve the periastron 

constant k as seen from Eqs.(4.5). 

The explicit effect of periastron precession is explored in the set of Figures 

where the waveforms are compared with and without the inclusion of the periastron 

precession. 

Figure 4.11: The modulation due t o  periastron precession a t  the 1PN order, for the 
'cross' polarization. We concentrate on the same binary as in Fig (4.9). 
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Figure 4.12: The plot of IPN contribution to h ,  when v terms appearing in H:) 
are neglected. The binary parameters are as in Fig (4.9). 
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Figure 4.13: A plot for the IPN contribution to h+ similar to Fig (4.11) 
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Figure 4.14: The plot similar to Fig (4.12) for the 'plus' polarization. 

From above Figures it is clear that periastron precession modulates the wave- 

form. 

The next Figure contains plots of the real anomaly versus the eccentric anomaly 

u for values of eccentricities e, = 0.1 and e, = .9 respectively. 
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Figure 4.15: The plot of the true anomaly as a function of the eccentric anomaly. 
Note that discontinuity occurs a t  u = -ir regardless of eccentricity. 

Irrespective of the value of e, the real anomaly v as a function of eccentric 

anomaly u has a discontinuity a t  u = T .  The combined effect of this discontinuity 

in v and the oscillatory behaviour of various harmonics present a t  1PN leads to the 

cusp and discontinuity in the waveforms a t  u = T a t  these orders. Such features 

are also present a t  the 1.5PN and 2PN orders. Finally, it should be noted that the 

values in these Figures (4.11) and 4.13) have been scaled by 10'' and hence these 

features may not be relevant in practice. 

4.4 Phasing 

The explicit time evolution for the 'plus' and 'cross' polarizations is obtained by 

computing the time dependence of u, w and e, and inserting these relations back 

into Eqs.(4.16), (4.17) and (4.18) for h+ and h ,  . To obtain the time evolution of u 

we first need to expand u in terms of M to the 2PN order, generalizing Eq.(4.22) 
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[146] .  The orbital elements e ,  and w appearing in the above relation will evolve due 

radiation reaction. Unlike in the quasi-circular case, the solution e , ( t )  and w ( t )  is 

not explicit but impIicitly contained in the following coupled system of first order 

differential equations. The equations are obtained earlier in [44] to the required 2PN 

order but rewritten here in terms of the 'gauge-invariant' variable r = 9. We 

have, 

d w  1 qc6 rill3 < - >  = -- 
d t  5 G 2 m 2  ( 1  - e : )11 /2  ( ( 9 6  + 292 e: + 37 e f )  ( 1  - e:)2 
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The solution to the above system gives us w(t) and e,(t), the evolution of w and 

e, under the effect of gravitational radiation reaction. Using this solution in the 

2PN accurate expansion connecting u and -M one gets u(t),  the time evolution of 

the eccentric anomaly. Finally inserting u(t)  , w ( t )  and e, (t) into Eqs. (4.16), (4.17) 

and (4.18) one obtains h+(t) and h,(t), the time evolution of the 'plus' and 'cross' 

polarizations, under gravitational radiation reaction. 

The above equations are complete to 2PN accuracy modulo the tail terms. 

The contribution of tail terms to the flux of energy and angular momentum has 

been obtained in [I281 and [129]. The consequent contribution to the evolution of 

orbital frequency and eccentricity is also discussed there. After adding on these 

contributions a t  1.5PN the phasing equations are complete and accurate to 2PN 

order and should provide the starting point for a numerical solution to the phasing 

problem in the quasi-elliptic case. 

Conclusions 

In this chapter we have computed all the 'instantaneous' 2PN contributions to h+ 

and h, for two compact objects of arbitrary mass ratio moving in elliptical orbits, 

using 2PN corrections to hcT and the generalized quasi-Keplerian representation for 

the 2PN motion. The expressions for h+ and h, obtained here represent gravita- 

tional radiation from an elliptical binary during that stage of inspiral when orbital 

parameters are essentially the same over a few orbital periods, in other words when 

the gravitational radiation reaction is negligible. We investigated the effect of ec- 

centricity and orbital inclination on the amplitude of the Newtonian part of h+ and 

h,. We observed that orbital inclination i changes the magnitudes of lh+I2 and 

1 h, 1' appreciably. The reduction in 1 h+ 1' and 1 h, l 2  for small and medium eccen- 

tricities, is small compared to higher e,'s, when i is varied from 0 to  7r/2, which is 
2 

consistent with the earlier work [133]. We compute (2) a t  the Newtonian order 
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and conclude that this ratio for u = 2 can be used as good indicator for the orbital 

inclination, for very small to very high values of e,. The modulation of h+ and h,  

due to the precession of the periastron, which occurs at  1PN order is also explicitly 

shown. 

As mentioned earlier, following [2] the construction of the search templates for 

gravitational radiation may be done in two steps. The first step deals with the 

construction of the 'plus' and 'cross' gravitational wave polarizations, which was 

performed here for compact binaries of arbitrary mass ratio, moving in elliptical 

orbits. The second step involves the determination of the evolution of the orbital 

elements (the orbital phase and parameters like eccentricity) as a function of time. 

The parameters describing the orbit vary in a nonlinear manner with respect to 

time, as the orbit evolves under the action of gravitational radiation reaction forces. 

In principle, the evolution of the orbital elements should be determined from the 

knowledge of the radiation reaction forces acting locally on the orbit. In practice, as 

discussed in this chapter, this is determined assuming energy and angular momentum 

balance and the far-zone expressions for energy and angular momentum fluxes. The 

complete determination of the radiation reaction terms in the equations of motion 

requires a full iteration of the Einstein's field equations in the near-zone. In the 

absence of this complete result an interesting question to pose is the following. To 

what extent do the expressions of energy and angular momentum fluxes and the 

assumption of energy and angular momentum balance constrain the equations of 

motion? In the next chapter we address this question using the 'refined balance 

procedure' proposed by Iyer and Will [33, 341 and discuss radiation reaction to 2PN 

order beyond the quadrupole approximation i.e. the 4.5PN terms in the equations 

of motion. 


