
Chapter 5 

Second post-Newtonian gravitational radiation 
reaction for two- body systems 

5.1 Introduction 

As discussed in earlier chapters, the detection of gravitational waves from inspiraling 

compact binaries require extremely high phasing accuracy. This implies very accu- 

rate description of the evolution of the binary orbit. The orbital evolution, in reality 

has to be determined by local equations of motion that include damping terms due 

to the emission of gravitational radiation to infinity. Obtaining from first principles, 

approximate solutions of Einstein equations that incorporate into the "near-zone" 

gravitational fields, the back reaction from radiation to infinity, is a complicated 

and subtle exercise, involving near-zone iteration of Einstein's field equations upto 

the order required. In the absence of this difficult computation that provides the 

complete solution, a related question that provides a partial answer is the following. 

To what extent do the expressions of energy and angular momentum fluxes and the 

assumption of energy and angular momentum balance constrain the equations of 

motion? As discussed in detail in the introduction such heuristic methods based 

on the balance procedures have proved useful in earlier instances. For instance, as 

in [105] one can derive the the radiation reaction terms in the equations of motion 

sufficient to balance the energy radiated to the far-zone assuming 'energy balance'. 

Schematically, the method is based on the following arguments. The far-zone en- 



Chapter 5 160 

2 
ergy flux at  the Newtonian order reads (z )  = E .- (1:;)) . Integrating twice 

by parts and moving the total time derivatives to the left hand side for a redef- 

inition of El one obtains E - i i j  I!:) mzli ( 2 )  I!:)). AS E - rnv.a, one can 

read off the appropriate radiation reaction terms in the acceleration a, related to  

the fifth time derivative of the quadrupole moment. Recently Iyer and Will (IW) 

proposed a 'refined balance procedure' to  obtain the reactive terms in the equations 

of motion for binaries in general orbits. This 'refined balance procedure' which is 

extendable to  higher PN orders, depends on the balance of both energy and angular 

momentum [33, 341. The procedure leads to general expressions for the radiation 

reaction acceleration and the part in the reactive acceleration which is not fixed 

by the procedure corresponds to a residual gauge freedom inherent in the method. 

They also obtained, for the first time 3.5 PN terms (1PN radiation reaction) in the 

equations of motion of a binary using the 1PN accurate radiation reaction tensor 

potential obtained by Blanchet [31, 321. The consistency of the above result with 

the reactive acceleration to 1PN obtained using the refined balance procedure was 

also established in [34]. This provided a valuable non-trivial check on the validity of 

the 1PN reaction potentials and the overall consistency of the direct methods based 

on iteration of the near-field equations and heuristic methods based on energy and 

angular momentum balance. 

In this chapter we deduce the gravitational radiation reaction to  2PN order 

beyond the quadrupole approximation - 4.5PN terms in the equation of motion - 

using the refined balance method of Iyer and Will. We employ for our calculation 

the instantaneous 2PN accurate expressions for the energy and angular momentum 

fluxes obtained in chapter 2. We explore critically the features of their construction 

and illustrate them by contrast to  other possible variants. As in the earlier orders, 

there exist arbitrary terms in the 4.5PN reactive terms too, which along the lines 

of [33, 341, are shown to be associated with the possible residual 'gauge' choice at  
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the 4.5PN order. The limiting cases of circular orbits and radial infall are also 

discussed. The equations of motion are valid for general binary orbits and for a 

class of coordinate gauges. We also show that the far-zone flux formulae and the 

balance equations admit more general solutions than the one explored by Iyer and 

Will if one relaxes the requirement that the reactive acceleration be a power series 

in the individual masses of the binary or, equivalently, that it be nonlinear in the 

total mass. Most of the results presented in this chapter have been published in Ref. 

[45I 

To summarize: Starting from 2PN accurate energy and angular momentum 

fluxes for compact binaries of arbitrary mass ratio moving in quasi-general orbits 

[44, 431, we obtain the 4.5PN reactive terms in the equations of motion by an 

extension of the IW method. Schematically, the equations of motion for spinless 

bodies of arbitrary mass ratio are 

d2x G rnx a=-%-----. 
dt2 r 

[~+O(E)+O(€~)~O(€~~~)~O(€~)+O(€~~~)+O(€~)+O(€~~~)+. . .] , 

(5.1) 

where x and r = 1x1 denote the separation vector and distance between the bodies, 

and m = m l  + m2 denotes the total mass. The quantity E is a small expansion 

parameter that satisfies E N ( v / c ) ~  Gm/(rc2),  where v and r are the orbital ve- 

locity and separation of the binary system. The symbols O(E) and O(e2) represent 

post-Newtonian (PN), post-post-Newtonian (2PN) corrections and so on. Gravita- 

tional radiation reaction first appears a t  O ( E ~ . ~ )  beyond Newtonian gravitation, or a t  

2.5PN order. We call this the "Newtonian" radiation reaction. "Post-Newtonian" 

radiation reaction terms, at  O ( E ~ . ~ ) ,  were obtained by Iyer and Will [33, 341 and 

Blanchet [31, 321. Here we obtain the 2PN radiation reaction, a t  O ( E ~ . ~ ) .  

In the present chapter, for the ease of presentation we will work with the geo- 

metrical units: G = c = 1. This chapter is organized as follow. In section 5.2, we 

describe the Iyer-Will (IW) method to obtain the 2PN reactive terms. Section 5.3 
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examines the question of redundant equations and explores 'variants' of the origi- 

nal IW scheme that differ in their choice of the ambiguities in energy and angular 

momentum. Section 5.4 discusses the question of the undetermined parameters and 

arbitrariness in the choice of the gauge, in particular at  4.5PN order. Section 5.5 is 

devoted to the particular cases of quasi-circular orbits and head-on infall. In Sec- 

tion 5.6 for mathematical completeness, we prove that the far-zone flux formulae 

and the balance equations admit more general solutions if one relaxes the require- 

ment that the reactive acceleration be a power series in individual masses ml and 

m2. Section 5.7 contains some concluding remarks. 

5.2 The IW method for reactive terms in the equations of 

motion 

5.2.1 The Procedure 

We consider only two-body systems containing objects which are sufficiently small 

that finite-size effects, such as spin-orbit, spin-spin, or tidal interactions can be 

ignored. The dynamics of such systems is well studied and the two-body equations 

of motion - conveniently cast into a relative one-body equation of motion - is given 

by : 

where the subscripts denote the nature of the term, post-Newtonian (PN), post-post- 

Newtonian (2PN), Newtonian radiation reaction (RR), post-Newtonian radiation 

reaction (1RR) , 2PN radiation reaction (2RR), tail radiation reaction and so on; and 

the superscripts denote the order in c. For our purpose we need to know explicitly the 

acceleration terms through 2PN order and these are available in [104, 38, 1301. We 

have already displayed them as Eqs.(2.23) and reproduce these here with G = c = 1, 



Chapter 5 

where p - mlm2/m is the reduced mass, with 7 = p/m, and n = x l r .  The 

n.5PN reactive accelerations are determined by following the 'What else can it be?' 

procedure employed in IW which we summarize here. One writes down a general 

form for the Newtonian ( E ~ . ~ ) ,  1PN ( E ~ . ~ )  and 2PN ( E ~ . ~ )  radiation-reaction terms 

in the equations of motion for two bodies, ignoring tidal and spin effects. For the 

relative acceleration a = al - a2, one assumes the provisional form 

The form of Eq.(5.4) is dictated by the fact that it must be a correction to the 

Newtonian acceleration (i.e., be proportional to m/r2),  must vanish in the test 

body limit when gravitational radiation vanishes (i.e., be proportional to q) ,  must 

be dissipative, or odd in velocities (i.e., contain the factors +, n and v linearly) and 

finally, must be related to the emission of gravitational radiation or be nonlinear in 

Newton's constant G (i.e., contain another factor m l r ) .  The last condition may be 

more precisely stated by requiring that the reactive acceleration be a power series 

in the individual masses ml and ma [150]. For spinless, structureless bodies, the 

acceleration must lie in the orbital plane (i.e., depend only on the vectors n and v) .  

The prefactor 815 is chosen for convenience. To make the leading term of O ( E ~ . ~ )  

beyond Newtonian order, A2.5 and B2.5 must be of O(E). For this structureless two- 

body system the only variables in the problem of this order are v2, m/ r ,  and f2 .  Thus 
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A2.5 and B2.5 can each be a linear combination of these three terms; to those terms 

we assign six "Newtonian radiation reaction" parameters. Proceeding similarly, 

A3.5 and B3.5 must be of O(c2), hence must each be a linear combination of the six 

terms v4, v2m/r-, v2f2, f2m/r ,  f 4 ,  and ( ~ n l r ) ~ .  To these we assign 12 "1PN R R  

parameters. And finally, A4.5 and B4.5 must be of O(c3), each a linear combination of 

the 10 terms v6, v4f2, v4m/r,  v2f4, ~ ~ ( m / r ) ~ ,  v2f2(m/r) ,  f 6 ,  f4(m/r) ,  f2 (m/ r )2  and 

(m/ r )3  to which we assign 20 "2PN R R  parameters. The 6 Newtonian RR and 12 

post-Newtonian RR parameters were first determined in IW [33, 341. This solution 

has been checked and reproduced in the preliminary part of this investigation and 

constitutes an input to supplement the conservative acceleration terms in Eq. (5.4) 

for the present study. Our aim is to evaluate these 20 parameters appearing in A4.5 

and B4.5 that will determine the 2PN radiation reaction. It is worth pointing out 

that in the calculation we are setting up, the terms in the equations of motion of 

O(c3) and O(e4) beyond Newtonian order do not play any role. The former is non- 

dissipative but not yet computed; the latter on the other hand includes dissipative 

parts due to the 'tail' effects [151, 152, 56, 1281 which have been separately balanced 

by the tail luminosity in the works of Blanchet and Damour [151, 321. However all 

the radiation reaction results will remain as 'partial results' in the saga of equations 

of motion until a complete treatment & la Chandrasekhar [loo] and Damour [93] is 

available through 3PN order and later through 4PN order. 

Through 2PN order, the equations of motion can be derived from a generalized 

Lagrangian that depends not only on positions and velocities but also on acceler- 

ations. To this order, that is in the absence of radiation reaction, the Lagrangian 

leads to a conserved energy and angular momentum given by [104, 38, 241 
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where 

and where LN - p x  x V. 

Through 2PN order, the  orbital energy and angular m o m e n t u m  per unit  reduced 

mass ,  E = E / p  = fu2 - m / r  +O(e2)  + 0 ( c 3 ) ,  j = x x v[1 +O(e)  +O(e2)],  

are constant, and correspond to  asymptotically measured quantities. However, the 

radiation reaction terms lead to non-vanishing expressions for d ~ / d t  and d j / d t  

containing the 20 undetermined parameters. Following IW, starting from the 2PN- 

conserved expressions for E and j we calculate d ~ / d t  and d j l d t  using the 2PN 

two-body equations of motion [104, 38, 1301 supplemented by the radiation-reaction 

terms of Eq.(5.4). In the balance approach, this time variation of the 'conserved' 

quantities is equated to the negative of the flux of energy and angular momentum 

carried by the gravitational waves to  the far-zone. Thus in addition to the EOM and 

conserved quantities we need the 2PN accurate expressions for the far-zone fluxes 

of energy and angular momentum for a system of two particles moving on general 

quasi-general orbits. We have computed the instantaneous 2PN corrections to the 
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far-zone fluxes in chapter 2 using the BDI formalism. We quote below the Eqs.(2.57) 

and (2.61) for the 2PN accurate instantaneous contributions to  the far-zone fluxes 

but with G = c = 1 and per unit reduced mass: 

(5) far-zone 
= & N  + & l P N  + &1.5PN f t 2 P N  7 

(g) far-zone 
= iN [ J N  + J ~ P N  f 3 1 . 5 ~ ~  + j 2 P N ]  7 

where 
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In the above expressions iN = L N / p  and the tail terms are not listed. It is important 

to emphasize that the 'tail' contribution to the reaction force is such that the balance 

equation for energy is verified for the tail luminosity [151, 321. This corresponds to 

the 'tail' acceleration at  4PN. With this part independently accounted for, in our 

analysis we focus on the 'instantaneous' terms without loss of generality. It is worth 

recalling that the 'balance' one sets up in the above treatment is always modulo total 

time derivatives of the variables involved. This is crucial to realize and in IW this was 

systematically accounted for by noting that at orders of approximation beyond those 

at  which they are strictly conserved (and thus well-defined), E and 5 are ambiguous 

upto such terms. Consequently, we have the freedom to add to E and j arbitrary 

terms of order E ~ . ~ ,  E ~ . ~ ,  and E ~ . ~  beyond the Newtonian expressions without affecting 

their conservation at  2PN order. There are three such terms of the appropriate 

general form at  O ( E ~ . ~ )  in each of E and j, respectively, 6 each at  O ( E ~ . ~ )  and 10 each 
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a t  O(E* .~) ,  resulting in 6 additional Newtonian RR parameters, 12 additional 1PN 

RR parameters and 20 additional 2PN RR parameters, respectively. As discussed 

in detail in the following section, these numbers are very much tied up with the 

'functional form' we assume for the ambiguous terms and in this section we follow 

I'CV in close detail. Equating time derivatives of the resulting generalized energy 

and angular momentum expressions 2' and j* (rather than only the conserved 

expressions) to the negative of the far-zone flux formulae and comparing them term 

by term one seeks to determine the extent to which one can deduce the 4.5PN 

reactive acceleration terms by the refined balance approach. 

5.2.2 T h e  2PN RR computation and results 

The above procedure is implemented order by order. All the computations were 

done with MAPLE [I341 and independently checked by MATHEMATICA [153]. -4t 

the leading order, when the flux is given by the quadrupole equation, one deduces 

the 'Newtonian RR' or 2.5PN term in the acceleration. In this case, in addition 

to the 6 unknowns in the reactive acceleration, one has 3 unknowns each for the 

possible 2.5PN ambiguities in the E* and j*. As demonstrated in IW, the balance 

equations yield 12 constraints on these 12 Newtonian RR parameters. Of the 12 

constraints, only 10 are linearly independent, and thus finally one obtains 10 linear 

inhomogeneous equations for 12 Newtonian radiation reaction variables. Solving 

these equations one obtains explicit forms for A2.5, B2.5 and ~ 2 . 5 ,  j2.5 in terms of 

two 2.5PN arbitrary parameters. To get the 3.5PN reactive terms, one adopts the 

above solution and extends the calculation to O ( E ~ . ~ )  after introducing E ~ . ~  and 
- 

J3.5 with 12 additional IPN RR parameters. At 3.5PN there are 20 constraints on 

the 24 post-Newtonian radiation reaction parameters; of the 20 only 18 are linearly 

independent; the solution to this system yields explicit forms for A3.5, B3.5 and ~ 3 . 5 ,  

j3.5 in terms of six 3.5PN arbitrary parameters. Since we need these results for the 
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present computation, we reproduce them from IW [154]. 

where 

5 
95 = -(I9 - 727) - 5a3(1 - 37) + 5p5, 

2 8 
(5.10k) 

1 
9s = - - (634 - 667) + /32 (7 + 37) + J3 . 

21 
(5.101) 

The quantities a3, P2, J1, J2, J3, J*, J5 and p5 are parameters that represent the 

unconstrained degrees of freedom that correspond to gauge transformations. In 

addition to the reactive terms listed above, one of the coefficients that determine 
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the 2.5PN ambiguity in E and 5 and three of the coefficients that determine the 

corresponding 3.5PN ambiguity are nonvanishing. We list these also since they are 

needed for setting up the 4.5PN computation: 

We now adopt the 2.5PN and 3.5PN solutions given by Eqs.(5.9), (5.10) and 

(5.11). Following the IW strategy, we assume the 4.5PN terms in the equations of 

motion to be of the form 

We also assume for the ambiguity in ~ 4 . 5  and j 4 . 5  the restrictions and functional 

forms adopted in IW and also require that j remain a pseudo-vector. The 'general- 

ized' "energy" and "angular momentum" through 4.5PN are thus given as sums of 

the conserved parts Eqs.(5.6), the 'most general' 2.5PN and 3.5PN contributions - 

i.e., with coefficients determined by the Newtonian RR and 1PN RR calculations, 

and arbitrary 4.5PN terms. We use E* and 5' to distinguish these quantities from 

the conserved energy and angular momentum. We get (per unit reduced mass) 
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We now compute the 4.5PN terms in d ~ * / d t  and dj*/dt  using the identities 

where a is given by Eqs.(5.2), (5.3), (5.4), (5.9), (5.10) and (5.12). To compute 
. . 

E* and j* to ~ ( s ~ . ~ ) ,  one needs to  evaluate (EN, jN) ,  (EIPN, jlPN) and (EZPN, 

5 2 ~ ~ )  by using a to 0 ( ~ ~ . ~ ) ,  0 ( ~ ~ . ~ )  and O ( C ~ . ~ ) ,  respectively. On the other hand, 

for time derivatives of the 'ambiguity parts', ( E ~ . ~ ,  j4.5), ( ~ 3 . 5 ,  j3.5) and (G.5, j ~ . ~ ) ,  

the relevant accelerations are the 'conservative' accelerations to order Newtonian, 

post-Newtonian and second post-Newtonian, respectively. Schematically, we get, 
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where 

and R!.'' and ~ !4" ]  consist of combinations of the parameters hi and ki from A4.' 

and B4.5, Qi, Xi combined with functions of 7 from G.5 and j4.', t1, &, &, &, 6,  p5 

combined with functions of 77 from 1PN corrections of 3.5PN terms and a3 and P2 

combined with functions of 7 from 2PN corrections of 2.5PN terms. We equate 

d ~ * / d t  and d j * / d t  thus obtained to the negative of the 2PN far-zone fluxes given 

by Eqs.(5.8). This results in 30 constraints on the 40 parameters hi, ki, $i and Xi. 

Two of these constraints being redundant, of the 30 constraints only 28 are linearly 

independent. The system of 28 linear inhomogeneous equations for 40 variables is 

therefore upder-determined to the extent of 12 arbitrary parameters, and we choose 

these to be . +g, ~ 6 ,  ~8 and x g .  With this choice, the coefficients in Eq.(5.12) 

determining the 4.5PN reactive acceleration are given by 
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At the 4.5PN order, 4 parameters determining E4.5 and 54.5 are non-vanishing and 

are given by 
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A final minor remark is with regard to the two possible ways one may implement the 

requirement that the ambiguity in j*  be a pseudovector. One may either choose it 

proportional to as in the treatment above or to the conserved angular momentum 

j .  At 2.5PN order both choices are identical. At the 3.5PN order, the two choices 

lead to an identical system of linear equations barring a translation in the values of 

p3 and p6 by an amount given by the coefficients of v2 and mlr in JIPN: 

Since p3 and p6 are not among the arbitrary parameters determining the solution, the 

solution determining the reactive terms and t6 is unchanged. Only the expressions 

for p3 and P6 are changed to 

At 4.5PN order, however, the situation is different. Indeed, as before, the two choices 

lead to an identical system of linear equations barring a translation in the values of 

the five parameters ~ 3 ,  ~ 5 ,  X6, ~9 and xlo. 



Chapter 5 

Consequently, in terms of the above 'shifted' variables, the solutions for the reactive 

accelerations are identical. As ~ 6  and x g  are among the independent  parameters 

that determine the reactive acceleration, in terms of ~ 6  and ~9 the two choices 

yield equivalent but different looking solutions for the 4.5PN reactive terms in the 

equations of motion. 

Of the two choices, the second choice is more convenient for calculations by 

hand since d J / d t  = 0 to O(e2), but has no special advantage when the calculation 

is done on a computer. 

5.3 Redundant equations and related variant schemes 

It was noticed in IW that both at  the 2.5PN and at the 3.5PN order, the 'balance 

procedure' leads to two redundant constraint equations [34]. Here, a t  4.5PN or- 

der, we once again obtain two redundant constraint equations. In this section, we 

examine critically the origin of these redundant equations. 

In implementing the 'refined balance procedure' for the general orbits, IW [34] 

balance the 'energy flux' and 'angular momentum flux7 completely independently 

of each other. However, for circular orbits, these fluxes are not independent but 

related [I401 via: 

(g) far-zone 
= 212j 

where 3 is defined by the equation 

(g) =..3 
far-zone 

The general balance should reflect this limit and we find that for Newtonian RR 

a linear combination of the 6 equations representing energy balance and another 

linear combination of the 6 equations representing angular momentum balance are 
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indeed identical and given by: 

Similarly at 3.5PN we have 

and finally at  4.5PN order the 'degenerate' equation is 

Thus we can trace the existence of one of the redundant equations in the IW pro- 

cedure to the fact that for circular orbits the energy and angular momentum fluxes 

are not independent but proportional to each other. 

The mystery of the other redundant equation was not so easy to resolve but af- 

ter a careful examination of the system of equations and 'experiments' in modifying 

the system, we could finally track it back to its source. The observation that this 

redundant equation relates the coefficients of the polynomial representing the am- 

biguity in 5 led us to examine the functional form that IW proposed as the starting 

ansatz for the calculation. A comparison of the functional forms for the ambiguity 

in E and j Eqs.(5.13) reveals that indeed IW assume a more general possibility for 

than required. The ambiguity in angular momentum leads to terms more general 

than required by the far-zone flux formula and time derivative of the leading term 

using the reactive acceleration. The absence of such terms in the far-zone flux then 

yields only the trivial solution for these additional variables in J, and the second 

redundant equation is just a homogeneous linear combination of these trivial solu- 

tions. Thus the second redundant equation in the IW scheme is due to the fact that 

the IW scheme - extended here to 4.5PN order - is not a 'minimal7 one. 
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To verify this 'conjecture' we experimented with alternatives for the functional 

form that one assumes as the starting expression for the ambiguity in E and j 

- the 2.5PN, 3.5PN and 4.5PN order terms. In the first instance, we replace the 

IW scheme - labelled for clarity of reference by IW21 - by the 'minimal' variant 

in Eq.(5.13) - labelled by IW22. The notation IW21 indicates e.g., that (m/r)2 

is pulled out in E while only (ml r ) '  is pulled out in j .  As explained above, the 

minimal choice for j* is obtained by pulling out the factor (8/5)17eN(m/r)2i from 

arbitrary terms in j*, rather than the factor (8/5)l) tN(m/r)i  as in the IW scheme 

for j * .  This reduces by one the order of the polynomial in v2, i 2 ,  and m/ r  that 

constitutes the arbitrariness, and consequently implies a reduction in the number of 

variables that characterize the ambiguity in j to one for j2.5, three in j3.5 and six in 
- 
J4.5. Thus in the IW22 scheme, at the 2.5PN level we have 6 variables in the reac- 

tive acceleration, 3 variables determining the energy ambiguity ~ 2 . 5  and 1 variable 

determining the ambiguity in jz5 i.e., 10 variables in all. The balance equations 

lead to 9 equations - 6 from energy and 3 from angular momentum - of which 8 

are linearly independent. In other words, there is only one redundant equation. The 

linear system of 8 equations for 10 variables is then the same as before and leads 

to the IW21 solution in terms of 2 arbitrary parameters. (The two extra variables 

in IW21 are identically zero.) Similarly, a t  the 3.5PN level we have 12 variables in 

the reactive acceleration, 6 variables determining the energy ambiguity $.5 and 3 

variables determining the ambiguity in 53.5, i.e., 21 variables in all. The balance 

equations lead to 16 equations - 10 from energy and 6 from angular momentum 

- of which 15 are linearly independent, leaving only one redundant equation. The 

linear system of 15 equations for 21 variables is then the same as before and leads 

to the IW21 solution in terms of 6 arbitrary parameters. (The three extra variables 

in IW21 are identically zero.) Finally, a t  the 4.5PN level, we have 20 variables in 

the reactive acceleration, 10 variables determining the energy ambiguity G.5 and 6 
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variables determining the ambiguity in ja5, i.e., 36 variables in all. The balance 

equations lead to 25 - 15 from energy and 10 from angular momentum - equations 

of which 24 are linearly independent, again leaving only one redundant equation. 

The linear system of 24 equations for 36 variables is the same as before and leads 

to the solution obtained in the previous section in terms of 12 arbitrary parame- 

ters. (The four extra variables in the IW21 scheme are identically zero.) The IW22 

(minimal) scheme thus confirms the conjecture that the occurrence of the second 

redundant equation is special to the IW scheme (IW21) and is related to the choice 

they make for the functional form of the j ambiguity by pulling out only one factor 

of nonlinearity mlr  rather than its square - the minimal choice. To double check the 

above explanation, we performed another experiment by examining a variant that 

would generate an increased number of redundant or degenerate equations. This 

scheme denoted by IWl l  differs from IW21 in that the ambiguity in c* is assumed 

to have (8/5)q(m/r)+ as the common factor, i.e., by pulling out only one order of 

nonlinearity m l r  rather than its square as in IW21; the polynomial representing 

the ambiguity in E is consequently of one order more than in IW21. In this case, 

a t  2.5PN order one has 6 + 6 + 3 = 15 variables and 10 + 6 = 16 equations of 

which 3 are redundant. The 13 equations for 15 variables thus yield the required 

solution in terms of 2 arbitrary parameters and similarly for higher orders. One 

may also explore the most general of choices in which only ( 8 1 5 ) ~  is pulled outside 

and the ambiguity is the highest order polynomial consistent with the order of the 

approximation. We studied one such scheme (IWOO) in the Newtonian RR case. For 

convenience, the various experiments are summarized in Table 5.1. 

To conclude: at  2.5PN, 3.5PN and 4.5PN orders all variants of IW examined in 

this subsection with different forms of the ambiguities in E and j - minimal (IW22) 

or I W l l  - lead to identical reactive accelerations including their gauge arbitrariness. 

At this juncture one may wonder about the issues of the 'uniqueness' and 'am- 
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Table 5.1: Comparison of four Alternative Schemes : IW21, IW22 (Minimal), IWl l  
and IWOO. N denotes the order of approximation, NV the number of variables, 
NC the number of constraints coming from balance equations, ND the number of 
degenerate equations, NI the number of independent equations and NA the number 
of arbitrary parameters determining the solution. In the NV column, a + b + c 
means a variables of reactive acceleration, b in energy ambiguity and c in angular 
momentum ambiguity. 

N NV NC ND NI NA 
IW21: IW Scheme 

2.5PN 6+3+3 12 2 10 2 
3.5PN 12+6+6 20 2 18 6 
4.5PN 20+10+10 30 2 28 12 

IW22: Minimal Scheme 
2.5PN 6+3 +1 9 1 8 2 
3.5PN 12+6+3 16 1 15 6 
4.5PN 20+10+6 25 1 24 12 

I W l l  Scheme 
2.5PN 6+6+3 16 3 13 2 
3.5PN 12+10+6 25 3 22 6 
4.5PN 20+15+10 36 3 33 12 

IWOO Scheme 
2.5PN 6+10+6 25 5 20 2 

biguities7 of the schemes discussed earlier. In this regard, we would like to make 

the following general remarks. For general orbits, in addition to  the balance of en- 

ergy one must take into account the balance of angular momentum. Thus, schemes 

involving only energy balance are not relevant except in special cases like 'circular 

orbits' and 'radial infall' (see section 5.5). Can one have schemes where one imple- 

ments both energy and angular momentum balance but does not take into account 

the possible ambiguities in E and j? One can show that even at the 2.5PN level this 

system of equations is inconsistent! Further, is the ambiguity necessary both in E 

and j ? If one examines a scheme with both energy and angular momentum balance 

taking account of the ambiguity only in E one does obtain a consistent solution upto 

4.5PN order but with only half the number of arbitrary parameters as in the IW 

scheme. The reduced 'gauge' freedom is not adequate to treat as special cases the 
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Burke-Thorne gauge at  the 2.5PN level or the Blanchet choice at the 3.5PN level. 

And finally, in a scheme with both energy and angular momentum balance taking 

account of the ambiguity only in 5 one obtains a consistent solution at 2.5PN order 

containing no arbitrary parameters at all. No solution is possible at higher orders. 

On general considerations, the reactive acceleration should be a power series in 

the individual masses ml and m2 or equivalently, it should be nonlinear in the total 

mass m as assumed in earlier sections. It is interesting to investigate whether the 

functional forms of the far-zone fluxes and the balance procedure necessarily lead 

to such 'physical' solutions alone or whether they are consistent with more general 

possibilities. In section 5.6, for mathematical completeness [I551 we investigate this 

question in detail and prove that the flux formulas and balance equations do not 

constrain the reactive acceleration to their 'physical' forms alone but allow for a 

more general form for the reactive acceleration. 

5.4 Arbitrariness in reactive terms and gauge choice 

It is well known that the formulas for the energy and angular momentum fluxes 

in the far-zone are gauge invariant, i.e., independent of the changes in the coordi- 

nate system that leave the spacetime asymptotically flat. On the other hand, the 

expressions for the reactive force are 'gauge dependent' and consequently e.g., the 

Chandrasekhar form is different from the Burke-Thorne or Damour-Deruelle forms. 

In IW it was shown that the Burke-Thorne gauge corresponds to the values P2 = 4 

and a3 = 5, while the Damour-Deruelle choice corresponds to P2 = -1 and a3 = 0. 

It can also be shown that the ADM choice corresponds to ,& = % and a3 = 3 [156]. 

It was further shown that the reactive acceleration implied by Blanchet's first princi- 

ples determination of the 1PN radiation reaction indeed corresponds to a particular 

choice of the arbitrary parameters in the IW solution. One of the satisfactory as- 

pects of IW was the demonstration that the part of the reactive acceleration not 
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determined by the balance requirement was precisely related to  the possible ambigu- 

ity in the choice of the gauge a t  that order. (The flux is equal to  the time variation 

of the conserved quantities only upto total time derivatives; this ambiguity may be 

absorbed in a 'change' in the relative separation vector as discussed below.) 

Following IW, we seek to establish the correspondence between the arbitrary 

parameters contained in the radiation reaction terms and the residual gauge freedom 

in the construction. The residual gauge freedom arises from the fact that the far- 

zone fluxes Eqs.(5.7), (5.8) are independent of changes in the coordinate system 

that leave the spacetime asymptotically flat. These coordinate changes will induce 

a change in x which is the difference between the centers of mass of the two bodies 

x l ( t )  and x2(t)  at  coordinate time t.  Following IW, we choose the transformation 

to be of the form x + x' = x + Sx, where Sx can depend only on the two vectors x 

and v ,  

6x = (f2.5 + f3.5 + f4.5)fx -k (92.5 + 93.5 + g q . 5 ) ~ ~ .  (5.25) 

In order that Sx/x be O ( E ~ . ~ ) ,  O ( E ~ . ~ )  and O ( E ~ . ~ ) ,  f2.5 and 92.5 must be O(c2), 

f3.5 and 93.5 must be 0(c3)  and f4.5 and 94.5 must be O(c4). AS for the other 

variables, the f 7s  and g7s will also be polynomials in the variables m l r ,  v2 and f2 .  

As pointed out in [34], we do not independently take into account changes in the 

coordinate time t since the v-dependent term in 6x includes this contribution via 

x ( t  + St) - ~ ( t )  + vSt. 

In [34] it was proved that to cancel the dependence on the two 2.5PN arbitrary 

parameters and the six 3.5PN arbitrary parameters, Sx should be chosen such that 
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where Pab7s and Qab9s are given by 

We provisionally choose the 4.5PN part of Sx to be of the form 

The change in the 2PN equations of motion Eqs.(5.3) produced by this change of 

variable Eq.(5.25) can be determined using the known form of 6x upto 3.5PN order 

Eqs. (5.26), (5.27), the provisional form chosen above for the 4.5PN terms Eq. (5.28) 

and the transformations given below: 
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The gauge change generates reactive terms and the requirement that  this change 

should cancel the dependence of the radiation-reaction terms on arbitrary parame- 

ters dictates that  
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The above computation shows that as at the 3.5PN order the (12 parameter) ar- 

bitrariness in the 4.5PN radiation reaction formulas reflects the residual freedom 

that is available to one in the choice of a 4.CPN accurate 'gauge'. Every particular 

4.5PN accurate radiation reaction formula should correspond to a particular choice 

of these 12 parameters. 

5.5 Particular cases: quasi-circular orbits and head-on infall 

In this section we specialise our solutions valid for general orbits to the particular 

case of quasi-circular orbits and. radial infall and verify that they indeed reproduce 

the simpler reactive solutions one would obtain if one formulated the problem ab 

initio appropriate to these two special cases. We first consider the quasi-circular 

limit that is of immediate relevance to sources for the ground based interferometric 

gravitational wave detectors. In this particular case, the reactive acceleration may be 

deduced using only the energy balance. Using the reactive acceleration we compute 

the 4.5PN contribution to .i. and w. We also discuss the complementary case of the 

radial infall of two compact objects of arbitrary mass ratio and determine the 4.5PN 

contribution to the radial infall velocity for the two special cases: radial infall from 

infinity and radial infall with finite initial separation. 
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5.5.1 Quasi-circular inspiral 

Using our general reactive solution we can compute the physically relevant quantities 

.i. and cj for quasi-circular inspiral, where r and w are the orbital separation and 

the orbital angular frequency in harmonic coordinates, respectively. As would be 

expected, these results are independent of the arbitrary parameters that are present 

in the reactive solution. We obtain the radiation reaction contribution to a upto 

4.5PN for quasi-circular inspiral by setting .i. = 0 + O ( E ~ . ~ )  and using 

in Eqs. (5.4), (5.9), (5.12) and (5.17). We get 

It is worth noting that for quasi-circular inspiral the energy flux determines the 

reactive acceleration without any gauge ambiguity. All the arbitrary terms in energy 

are proportional to 7: and hence play no role in this instance. Inverting Eq.(5.31), 

we get 
m - 1 2 4 = u2 [ I+  (3 - 11)u2 + q(48 - 8 9 ~ + 4 q  )u ] . 
T 

(5.33) 

Differentiating Eq.(5.33) w.r.t t and noting that the a that appears is the total 

acceleration (conservative + reactive) we get, after some rearrangement 

Using Eq.(5.34) and the expression for angular velocity (w - u/r )  



Chapter 5 

we may express w as 

The results Eqs. (5.34) and (5.36) are in agreement with [18] as expected and 

required, suggesting that the reactive terms obtained here could be used to evolve 

orbits in the more general case also [I571 . 

5.5.2 Head-on infall 

Recently Simone, Poisson and Will [I391 haw obtained to 2PN accuracy the grav- 

itational wave energy flux produced during head-on infall and starting from these 

formulas one can deduce ab initio the reactive acceleration in this limit adapting IW 

to the radial infall case. As required, these results match exactly with expressions 

obtained by applying radial infall limits to the general orbit solutions and we sum- 

marize the relevant formulas in this limit in what follows. Equations representing 

the head-on infall can be obtained from the general orbit expressions by imposing 

the restrictions, x = zn, v = i n ,  r = z and v = .i. = i .  For radial infall the 

conserved energy Eq.(5.6) to 2PN order then becomes 

where y = mlz. Unlike the quasi-circular inspiral, for head-on infall we can distin- 

guish between two different cases. Following [I391 we denote them by (A) and (B), 

respectively, and list the expressions relevant for our computations. In case (A), the 

radial infall proceeds from rest at infinite initial separation, E(z) = E(oo) = 0, and 
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inverting Eq. (5.37) we get 

In case (B), the radial infall proceeds from rest at finite initial separation zo, which 

implies 

We obtain as in case (A),  an expression for i given by 

i = - ( 2  (y - yo) [1 - 5y (1 - 5) + 3 (1 - %) 

where yo = m/zo. We first compute the 4.5PN contribution to 2 for case (B),the 

radial infall from finite initial separation. We use the radial infall restriction along 

with Eq.(5.40) in Eqs.(5.4), (5.9), (5.12) and (5.17) to obtain 4.5PN terms in 2 as 
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To obtain the 2 P N  reactive terms for case (A), the radial infall from infinity, we use 

in Eqs.(5.4), (5.9), (5.12) and (5.17) the radial infall restriction and Eq.(5.38). The 

expression thus obtained is the same as obtained by putting yo = 0 in Eq.(5.41). 

The C 's in Eq.(5.41) are given by 

We have also computed the 2PN reactive terms for cases (A) and (B) ab initio using 

the IW method adapted to radial infall. In this case, only energy balance is needed 

as J = 0 for head-on infall. The result thus obtained is in agreement with Eq.(5.41). 

Eq. (5.41) may be integrated straightforwardly to obtain the 4.5PN contribution to 

i2 in case (B) and it yields 
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We obtain the 4.5PN contribution to  i2 for case (A) by putting yo = 0 in Eq.(5.43). 

Unlike in the case of quasi-circular inspiral the expressions in the head-on or radial 

infall cases are dependent on the choice of arbitrary variables or the choice of 

'gauge'. 

5.6 The general solution t o  the balance method 

5.6.1 The 2.5PN reactive solution 

It should be noted that all the discussion in section 5.3 follows only after one has 

assumed a functional form for the reactive acceleration - in particular, the intuitive 

requirement that it be nonlinear, i.e., contain an overall factor of mlr .  I t  is pertinent 
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to ask whether more general possibilities obtain, consistent with the far-zone fluxes, 

if one relaxes this requirement. We have explored this question in detail at  the 2.5PN 

level and we summarize the results in what follows. In this instance the reactive 

acceleration is assumed to be: 

i .e . ,  it is determined by 12 reactive coefficients instead of the earlier 6. Recall that 

the nomenclature IW22, IW21 and IWI 1 refers to the functional forms chosen for 

the ambiguity in energy and angular momentum and we introduce similar notation 

EJ22, EJ21 and EJl1 ,  respectively, in this section. where the acceleration has a 

more general form as given by Eq.(5.44). With this form of the reactive acceleration, 

however, one gets e.g., in the EJ21 scheme at  2.5PN 

The derivatives of E* and j* with the new form of the reactive acceleration are 

given by 



Chapter 5 

Using Eqs.(5.45) and (5.46) one can understand the counts of the various variables 

summarized in Table 5.2. 

Table 5.2: Comparison of the four Alternative Schemes: EJ21, EJ22, EJ11, and EJOO 
at 2.5PN level. The notation is as in Table 5.1. In the NC column, a + b indicates 
that a constraints arise from energy balance and b from angular momentum balance. 

Scheme NV NC ND NI NA 
EJ22 12+3+1 10+6 2 14 2 
EJ21 12+3 +3 10+6 1 15 3 
E J l l  12+6+3 10+6 1 15 6 
EJOO 12+10-t6 15+10 3 22 6 

One can explain the new counts for the arbitrary parameters by comparing e.g., 

the EJ21 scheme with a general form for the reactive acceleration as in this section 

with the IW21 scheme with the restricted form for reactive acceleration as in section 

5.3. One has 6 extra variables and 4 extra equations. However one gains an extra 

equation because one of the degeneracies is lifted. The resulting 5 equations for 6 

variables lead to an extra arbitrary parameter resulting in a 3 parameter solution 

in this instance. All the other entries in Table 5.2 can be similarly understood by 

comparison of Tables 5.1 and 5.2. 

The reactive solution resulting from the EJ22 scheme in this instance is exactly 

the same as the IW21 reactive solution discussed earlier. From the EJ21 scheme one 

obtains a solution with three arbitrary parameters given by 

a', = 3P3 , a; = 3(1 + a3 - P3), a; = -4P3 , 
I a & = 2 3 / 3 - 3 a 3 + 2 P 2 , a k = - 5 a 3 ,  a 6 = 0 ,  (5.47a) 

b ' , = O ,  b ; = 2 + P 2 ,  b$=3/33, b & = 2 - P 2 ,  

bk = -3 (1 + P2 + P3) , bk = -4P3 . (5.47b) 
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This construction can be generalized to 3.5PN and 4.5PN orders in which cases the 

number of arbitrary parameters are 8 and 15, respectively. The E J l l  and EJOO 

schemes on the other hand lead to a solution with six arbitrary parameters a t  the 

2.5PN level. However, not all these solutions are similar in regard to the possibility 

of gauging away all the arbitrary parameters they contain. 

5.6.2 T h e  2.5PN gauge arbitrariness 

We have also investigated the question whether all the extra arbitrary parameters 

appearing in schemes with the general form of reactive acceleration (See Table 5.2.) 

can be gauged away? We find that at  2.5PN order, though this is possible with the 

3 parameters of the EJ21 scheme, it is not true for the 6 arbitrary parameters in 

the E J l l  and EJOO schemes. For this reason the E J l l  and EJOO schemes are not 

satisfactory and we discuss them no further. We present here for the EJ21 scheme 

details of the gauge calculation a t  2.5PN order. We choose Sx to be 

where f;,, and gi., are given by 

For the reactive acceleration given by Eqs.(5.44) and (5.47) we obtain 
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The EJ21 scheme leads to a more general solution to the balance equations, and 

as in IW all the arbitrary parameters that appear in its solution can be associated 

with a residual choice of gauge. It has been explored in detail upto 4.5PN and the 

results are summarized below. We list the new general reactive solutions and the 

corresponding gauge transformations for the arbitrary parameters they contain. For 

brevity, the solutions are presented in the form : 'New solution' = 'Old solution' + 
'Difference'. 

5.6.3 The 3.5PN and 4.5PN reactive solutions 

The reactive acceleration is assumed to have the following general form 

with d2.5 and B2.5 given in Eqs.(5.44) and (5.47) and d3 .5 '  133.51 d 4 . 5  and 0 4 . 5  given 

by 
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With this form of the acceleration we have at 3.5PN 

where ypl is given by Eqs. (5.16), 

and ~ ' ! 3 ' ~ ] ,  ~ ' ! 3 - ~ ]  consist of corresponding linear combinations of the parameters 

involved. Repeating the procedure explained in the text, the 3.5PN reactive solution 

obtained is: 
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where fil gi are given by Eqs.(5.10). The solution corresponding to Eqs.(5.11) re- 

mains identical. 

Similarly at  4.5PN we have 

where 

and yll is given by Eq.(5.16). Here ~ ' ! 4 ' ~ ~ , ~ ' ! 4 ~ ~  consist of linear combinations of 
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the parameters involved. The 4.5PN reactive solution reads as: 
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where hi, ki are given by Eqs.(5.17) of the text and Eqs.(5.18) remain the same. 

5.6.4 The 3.5PN and the 4.5PN gauge arbitrariness 

Finally it can be shown that all the arbitrary parameters in the reactive solution 

may be absorbed in a choice of 'gauge' of the form 

where f;., and g;., are given by Eqs.(5.49), (5.50), while fi.51 f i . 5 ,  gi.5 and d . 5  have 

the form 
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At 3.5PN we have 

Similarly at  4.5PN we have 
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In the above, the Pab and Qab are given by Eqs.(5.27) and (5.30) of the text. 

To conclude: the far-zone flux formulas and the balance equations by themselves 

do not constrain the reactive acceleration to be a power series in ml and m2, or 

equivalently nonlinear in the total mass m, as assumed in the initial sections of the 

present chapter, following IW. They are also consistent with the more general form 

of the reactive acceleration discussed in this section. 

5.7 Concluding remarks 

Starting from the 2PN accurate energy and angular momentum fluxes for structure- 

less non-spinning compact binaries of arbitrary mass ratio moving in quasi-general 

orbits we deduce the 4.5PN reactive terms in the equation of motion by an appli- 

cation of the IW method. The 4.5PN reactive terms are determined in terms of 

twelve arbitrary parameters which are associated with the possible residual choice 

of 'gauge' at this order. These general results could prove useful to studies of the 

evolution of the orbits. The limiting and complementary cases of circular orbits and 

head-on infall have also been examined. 

We have systematically and critically explored different facets of the IW choice 

like the functional form of the reactive acceleration and provided a better under- 

standing of the origin of redundant equations by studying variants obtained by mod- 

ifying the functional forms of the ambiguities in E* and 3'. The main conclusions 

we arrive at  by this analysis are 

In terms of the number of arbitrary parameters and the corresponding gauge 
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transformations, the IW scheme exhibits remarkable stability for a variety of 

choices for the form of the ambiguity in energy and angular momentum. The 

different choices merely produce different numbers of degenerate equations. 

This indicates the essential validity and soundness of the scheme. These so- 

lutions are general enough to  treat as special cases any particular solutions 

obtained from first principles in the future. 

Relaxing the requirement of nonlinearity in m or more precisely the power 

series behaviour in ml and m2 permits mathematically more general solutions 

for the reactive accelerations involving more arbitrary parameters. Solutions 

more general than the ones discussed iri the Section 5.6, e.g., a solution in- 

volving 6 parameters at  the Newtonian level, cannot be gauged away either 

by gauge transformations of the form discussed by IW or by more general 

gauge transformations that differ in their powers of nonlinearity (mlr depen- 

dence). However, none of these solutions are of 'physical' interest to describe 

the gravitational radiation reaction of two-body systems. 


