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A question of theoretical and practical interest is how a quantum system may be mea-
sured indirectly by means of an ancilla that interacts with it, and furthermore, how
a system of ancillas may be used to implement a coherent measurement of spatially
separated qudits. We provide general circuits that can be used to implement such mea-
surements. These circuits are relevant to quantum error correction, measurement-based
quantum computation and Bell state discrimination across a quantum network involving
multiple parties. The last mentioned problem is treated in detail. Our circuitry can also
help to optimize the quantum communication complexity for performing measurements
in distributed quantum computing.
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1. Introduction

Entangled states play a key role in the transmission and processing of quan-
tum information.1,2 Using an entanglement channel,3 an unknown state can be
teleported4 with local unitary operations, appropriate measurement and classical
communication; one can achieve entanglement swapping through joint measure-
ment on two entangled pairs.5 Entanglement leads to an increase in the capacity
of the quantum information channel, by means of quantum dense coding.6 The
bipartite, maximally entangled Bell states provide the most transparent illustration
of these aspects, although three-particle entangled states like GHZ and W states
are beginning to be employed for various purposes.7,8 Nonorthogonal states can-
not be discriminated with certainty,9 while the discrimination of orthogonal states
are possible in principle. A large number of results regarding locally [i.e. via local
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operations and classical communication (LOCC)] distinguishing various orthogonal
states shared between two distant parties, have recently been established.10–15

In contrast to the above works, which are concerned with local distinguishability
of one or more copies of orthogonal states, in the present work, we study the related
but quite different and less restricted problem of implementing measurements on
multi-qudit states across a quantum network in which quantum communication
of ancillary qubits is allowed. Our goal is to obtain (efficient) circuits for such a
distribution of measurement. Except for some basic similarity, our proposed task
is quite different from that of local distinguishability in several ways: (1) in our
task, quantum communication is permitted; (2) as a direct consequence, our results
always require only a single copy of the measured state. In contrast, local distin-
guishability results depend on the number of states to be distinguished and copies
thereof. For example, if only one copy of one of two Bell states is given, it can be
identified,10 but not if any of the four Bell states are admissible; (3) as another
direct consquence of (1), our method of measurement is always non-destructive, i.e.
if the measured state is one of the orthogonal states to be discriminated, then it is
not destroyed. In contrast, local distinguishability necessarily consumes an identi-
fied Bell state. Of course, the outcome of this task can be used to locally recreate
the identified Bell state, provided pre-shared entanglement is available. However,
this is essentially a destroy-recreate method, which is not non-destructive; (4) the
multi-qudit measurement we implement is always incomplete, i.e. it distinguishes
between classes of orthogonal basis states in a given basis, rather than all the basis
states. (However, these measurements are non-destructive, so that repeated mea-
surements may be made to effectively implement a complete measurement, such as
distinguishing the full set of n-qudit Bell states.)

It may be noted that our use of quantum communication can be replaced by
that of priorly shared entanglement. Each instance of transmission of a qudit is
then substituted by teleportation by consuming the entanglement.

If quantum communication is allowed, obviously the direct method for imple-
menting a multi-qubit measurement is to bring the qudits together for joint mea-
surement, and then redistribute them.16–20 Alternatively, they may be separately
brought into interaction with a common ancilla, which is then measured to obtain
the relevant information. We will be concerned with the latter sort of indirect,
ancilla-mediated measurement circuits.

This work presents a general strategy for obtaining circuits which indirectly
distribute measurement. The basic theory underlying our circuits is presented in
Sec. 2. In particular, our method is used in Sec. 4 to implement incomplete mea-
surements, which are useful in quantum error correction,23,24 measurement-based
quantum computation28–35 and Bell-state discrimination.21 In generalizing the lat-
ter work, we introduce a new kind of generalized Bell states, and provide circuits
that distribute their discrimination. In Sec. 5, we point out that our circuits can
also lead to lower quantum communication complexity in distributed computing.
Finally, we conclude with Sec. 6.
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2. Indirecting Quantum Measurement

Suppose we wish to measure observable W on system A, which is difficult to mea-
sure, but couples well with another system B that is amenable to easier measure-
ment. System B is measured in a suitable basis WB , the output of which should
indicate the result of indirectly measuring W on A. In our case, we choose WB to be
the computational basis always. An experimental situation of this kind is presented
in Ref. 39. We desire a method whereby B can be used as an ancilla through which
W is measured indirectly on A. To this end, we require that the two systems be
evolved together according to a suitable two-particle unitary operation V , followed
by a measurement on ancilla B in the computational basis. If the system A is in an
eigenstate of W , then the indirect measurement should of course not destroy the
state. In our terminology, we say that the measurement of W on A is indirected or
delegated to ancilla B.

We now present a method of constructing V given W . For the special case where
W is a qubit observable with eigenvalues ±1, cf. Fig. 10.13, Ref. 1, where V is given
by a controlled-W operation, with B serving as control qubit and A as the target
qubit. Our first result, Theorem 1, is that given observable W , its measurement
can be indirected by means of a controlled-U interaction, where U is an operator
compatible with W , i.e. [W, U ] = 0. If, further, U and W also share the degenerate
eigenspaces, if any, then we can write W = g(U), where g is in general a complex
valued function. The operators U and W satisfying this stronger condition are said
to be functionally compatible. Throughout the present work, the symbols I, X, Y

and Z denote the Pauli operators.

Theorem 1. Given observable W for a system and a unitary operator U func-
tionally compatible with it, measurement of W can be indirected to an ancilla using
the control-operation given by CU ≡ ∑

j |j〉〈j| ⊗ U j , where the ancilla serves as the
control-particle.

Proof. The unitary operator can in general be written in its diagonal basis by
U =

∑
j,k e2πιj/d|j; k〉〈j; k| (0 ≤ j ≤ d− 1), where index k accounts for degeneracy,

and is dropped in the absence of degeneracy. The observable compatible with it is
designated to be W =

∑
j,k f(j)|j; k〉〈j; k|, where f(·) is any real-valued function.

We observe that U and W are not only compatible, but must share their degenerate
subspaces. The state to be measured is some |Ψ〉 =

∑
k,l αk,l|k; l〉 entering the

upper wire in Fig. 1(a). At stage 1, the state of the ancilla-system complex is
d−1/2

∑
j,k,l αk,l|j〉a|k; l〉s, where the first ket denotes the ancilla, the second denotes

the principal system (the subscripts are dropped whenever there is no danger of
confusion). Via action of the controlled-U gate, in stage 2, the state of the complex is
d−1/2

∑
j,k,l αke2πιjk/d|j〉a|k; l〉s. At stage 3, by the action of H†

d, the above state is
transformed to d−1/2

∑
j,k,l,m αke(2πιj/d)(k−m)|m〉a|k; l〉s =

∑
k,l αk;l|k〉a|k; l〉s since

the summation over j is non-vanishing only when k = m. Therefore, a measurement
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Fig. 1. Circuit for indirecting measurement from a principal system to an ancilla. The upper
wire denotes an arbitrary system, on which measurement of W is indirectly performed by means
of an ancilla (lower wire). The circle-link represents the generalized controlled-U operation CU .

on the ancilla in the computational basis {|j〉} is equivalent to a measurement of
observable W on the system.

Some points worth noting are: if the system was initially in an eigenstate of
W , the indirect measurement is nondestructive, and the state remains available for
future use. If W (and hence U) is degenerate, then the measurement is incomplete,
i.e. the measurement projectors, given by Πj ≡ ∑

k |j, k〉〈j, k|, are of dimension
greater than one.

3. Distributing Quantum Measurement

A direct measurement (i.e. one not mediated by an ancilla) of a multipartite observ-
able, whose eigenstates are in general entangled, cannot be performed except by
bringing together all the qudits and measuring them jointly (otherwise, the no-
signalling condition would be violated). In this sense, a direct measurement on a
multipartite system cannot in general be distributed. In contrast, the indirect mea-
surement described in the preceding section may be distributed as follows. The
ancilla interacts separately first with one qudit. It is then quantum communicated
to another system qudit, with which it interacts, and so forth, for any other possible
system qudits. Finally, the ancillary qudit is measured in a suitable basis WB , the
output of which should indicate the result of measuring the corresponding multipar-
ticle observable on the qudits. In our case, we choose WB to be the computational
basis always.

A sufficient condition for the distributability of (indirect) measurement is that
the operator U is a tensor product of unitary qudit operators, e.g. X ⊗ X ⊗ Z or
X ⊗ Y , etc. In this case, the control-operation is obtained by replacing each of the
operators in the product by the corresponding control-operation. In other words,
the control-U of Theorem 1 can be broken up into a set of control-gates acting



August 21, 2007 10:1 WSPC/187-IJQI 00309

General Circuits in Quantum Computation 631

pairwise on each system qudit from a common ancillary qudit, before the ancilla is
finally measured. This is the feature that enables distribution of the measurement.

The indirect measurement so effected is necessarily incomplete, and the corre-
sponding observable W is necessarily incomplete/degenerate, because the measured
n-qudit system is of dimension dn (n ≥ 2), whereas the ancilla is only d-dimensional.
Therefore, if the required measurement is complete, we must be able to express it
as a set of incomplete measurements that are distributable in the above sense. The
next section gives an example where in a complete Bell state, discrimination is
obtained by a set of incomplete, distributed measurements which yield parity and
phase information.

Our method of distribution is stated more clearly in Theorem 2.

Theorem 2. Let U be a unitary operator compatible with degenerate observable
W, such that U =

⊗
m Um, where m (= 1, 2, . . . , n) labels subsystems. The indirect

measurement of W can be distributed by means of separate controlled operations
on the individual subsystems j from the same ancilla. The control-operations may
be performed in any order [e.g. Fig. 2(a)] or grouped together [e.g. 2(b)].

Proof. From Theorem 1, the required controlled operation is CU =
∑

j |j〉〈j| ⊗
U j =

∑
j |j〉〈j|

⊗
m(Um)j . Thus, the controlled operation can be broken up into

single-qudit controlled operations with n target qudits interacting with a single con-
trol qudit action. We will call this type 1 decomposition (cf. Fig. 2(a) for the case
n = 4). Further, the last expression above can be written as (

∑
j |j〉〈j| ⊗ (U1)j ⊗

I⊗(n−1))(
∑

j′ |j′〉〈j′|⊗I⊗(U2)j′⊗I⊗(n−2)) · · · (∑j′′ |j′′〉〈j′|⊗I⊗(n−1)(Un)j′′ ). There-
fore CU = CU1×CU2×· · · CUm , where CUk

≡ ∑ |j〉〈j|⊗(Uk)j . Since the CUj ’s commute
with each other, they may be performed in any order. This is type 2 decomposition
[cf. Fig. 2(b)], in which the ancilla interacts with each qudit separately. The ancilla
is quantum communicated from one to another system qudit in order to make it
available for the control-gate action with that system qudit.

|0>

|ψ>

Hd dH+
|0>

|ψ>

Hd dH+

(a) (b)

Fig. 2. Two equivalent ways of distributing an (indirect) measurement of X⊗n. The four upper
wires denote four qubits of the measured system. The crossed circle-links represent CNOT oper-
ations. The control-operations may be (a) clustered into a single collective control-operation, or
(b) performed in sequence (in any order).
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Note that W itself need not have the product form of U . Given some function
g, W = g(U) will not have the product form unless g preserves product structure,
i.e. g(abc · · ·) = g(a)g(b)g(c) · · · . In particular, we may select g(·) = exp [−i log(·)],
which has this property. If U =

∑
j,k,...

(
e2πij/d|j〉〈j| ⊗ e2πik/d|k〉〈k| ⊗ · · ·), then

W ′ =
∑

j,k,...

(
e2πj/d|j〉〈j| ⊗ e2πk/d|k〉〈k| ⊗ · · ·). In the case of Pauli operators, the

situation is simpler because any tensor products of Pauli operators is both Hermi-
tian and unitary, and we can simply set W = U , i.e. given observable W , a unitary
operator compatible with it is itself. A case where this simplicity is not available is
considered in the next section.

A natural application of the above results is in situations requiring incomplete
measurements. For example, X ⊗ X is incomplete (if measured without project-
ing the two qubits individually). It represents the “phase observable” for a two-
qubit system, whose two eigenspaces are spanned by {|00〉 + |11〉, |01〉 + |10〉}
and {|00〉 − |11〉, |01〉 − |10〉}. From Theorems 1 and 2, we know that incom-
plete X ⊗ X can be implemented using two CNOTs and an ancilla. Figure 2
gives alternative ways to indirect measurement of X⊗4: Fig. 2(a) shows how it
can be indirected using a single multiqudit control-operation; Fig. 2(b) shows
how it can be broken down into a set of two-qubit interactions, and in principle,
distributed.

A family of quantum error correcting codes that can be systematically built
from classical linear codes are the Calderbank–Shor–Steane (CSS) codes23,24 which
can be described using the more general stabilizer formalism.40,41 Here, the code
C is chosen to lie in the +1 eigenspace of commuting operators Mj, which must
be tensor products of Pauli matrices. By choosing a sufficient number of Mj ’s, one
can ensure that for any pair of distinct correctible errors E1, E2, there is an Mj

that anticommutes with E1E2, which allows the errors to be distinguished via the
error correction condition. The Mj ’s form the set T , the stabilizer of the code C.
To detect and determine an error, it suffices to measure the n − k generators gj

of T . As a simple application of the above two theorems, we can construct cir-
cuits to measure the generators. We note the following two facts: (1) The gj ’s are
Hermitian operators drawn from the Pauli group, so that they are also unitary.
To indirect their measurement, we set W = U in Theorem 1; (2) they are ten-
sor products of local operators (Pauli operators, here), which means that we can
apply Theorem 2.

For example, consider a generator to the stabilizer of the 7-qubit Steane code,
XIIIXXX , where the tensor product between successive operators is implicit.
Theorem 1 implies that this syndrome can be measured indirectly by applying the
controlled operation |0〉〈0|⊗ IIIIIII + |1〉〈1|⊗XIIIXXX , where the first qubit is
an ancilla. Next, Theorem 2 shows that the X ’s can be replaced with CNOTs from
an ancilla onto the 1st, 5th, 6th and 7th system qubits. This gives the first syndrome
measurement in Fig. 10.16 of Ref. 1, which is similar to measurement of the Steane
code stabilizer generator ZIZZIIZ, where the Z’s are replaced with controlled-
phase gates (cf. Fig. 10.16 of Ref. 1). In this way, our method of constructing
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circuits can be applied to any syndrome computation. It can similarly be extended
to codes living in the Hilbert space of higher-dimensional qudits.

Incomplete measurements corresponding to the product of operators are
also essential in measurement-based quantum computation. The latter is a
novel paradigm of universal quantum comptutation, recently studied by several
authors,25−35 who show, surprisingly, that universal quantum computation is pos-
sible using only measurements as computational steps. Two distinct models of
measurement-based quantum computation are teleportation-based quantum com-
putation (TQC)28–30 and one-way quantum computation,31–33 also called cluster-
state quantum computing. TQC, which employs teleportation as a quantum compu-
tation primitive, was evolved from the idea of indirectly effecting certain gates and
measurements, using ancillas. The method was generalized25–27 by understanding
the connection to teleportation.36

For example, a TQC strategy to teleport two qubits through a CNOT gate makes
use of 2-qubit incomplete measurements Z⊗Z and X⊗Z on an input state |ψ〉 and
an ancilla (see Eq. (34) of Ref. 35). Being the tensor products of Pauli operators,
they are straightforwardly indirected and distributed. In particular, the operator
Z ⊗ Z is simply the parity operator for Bell states, and its indirect measurement
can be distributed using, as we shall see later, the circuit such as that in the second
or third box in Fig. 4. Such simple recipes allow us to indirect a universal set of
operations for quantum computation. In principle, this can be used to distribute
TQC over a quantum network.

4. An Example: Distribution of Discrimination of Bell-States

The requirement that the distributed measurement must be an incomplete measure-
ment of a certain type need not be restrictive. In this section, we give an example
of a complete measurement W that can be implemented by means of several incom-
plete measurements Wj such that the Wj ’s can be distributed. This allows us to
effectively distribute the measurement of W .

We consider the problem of distributing Bell-state discrimination among n

qudits. The full observable W in this case has generalized Bell states as its eigen-
states, and lives in the Hilbert space H of dimension dn, where each qudit is
d-dimensional. We will show how W can be analyzed into a set of incomplete mea-
surements corresponding to relative parity and phase, which are distributed.

The two-qubit case was considered in Ref. 21, where two separated users wish to
perform a distributed Bell state measurement via quantum communication, and the
states to be discriminated are the usual Bell states |Φ±〉 = (1/

√
2)(|00〉 ± |11〉) and

|Ψ±〉 = (1/
√

2)(|01〉 ± |10〉). These are the eigenstates of X ⊗X and Z ⊗Z, which
are also unitary. These operators commute with each other and have a manifestly
product form. We can regard X ⊗X as the phase observable (in that it informs us
whether the Bell state contains a + or −) and Z ⊗ Z as the parity observable (in
that it informs us whether the superposition terms have odd or even parity). Thus
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we can apply Theorems 1 and 2 to measure X ⊗X and Z ⊗Z incompletely, to get
complete information of the Bell state.

More generally, we can readily extend these results to the two-qudit space.22 We
replace the Pauli matrices with their d-dimensional analogs.42 Accordingly, instead
of X and Z, we have Xd and Zd, respectively, given by the action:

Zd|j〉 �→ e2πιj/d|j〉; Xd|j〉 �→ |j + 1〉, (1)

where the increment in the ket is in mod d arithmetic. The operators Xd and Zd

are related by a Fourier transform Xd = HdZdH
†
d, where Hd is the generalized

Hadamard transformation given by:

(Hd)jk =
1√
d
e−2πιj·k/d. (2)

Unlike the qubit case, Zd, Xd and Hd are not Hermitian. The d2 2-qudit Bell states
are36: |Ψpq〉 = 1/

√
d

∑
j e2πιjp/d|j〉|j +q〉 (0 ≤ p, q ≤ d−1), the simultaneous eigen-

states of Xd⊗Xd and Zd⊗Z†
d, with eigenvalues e−2πip/d and e−2πiq/d. Parameter p

denotes the generalized phase, and q denotes the generalized parity. Thus, Xd ⊗Xd

and Zd⊗Z†
d, can be considered as unitary operators compatible with the generalized

“phase observable” Mp, with eigenvalues p, and the generalized parity observable
Mq, with eigenvalues q. In fact, Xd ⊗ Xd = e−2πiMp/d and Zd ⊗ Z†

d = e−2πiMq/d.
The generalization of the CNOT that one obtains according to the definition

given in Theorem 2 is:

CXd
: |j〉|k〉 �→ |j〉|j + k〉, (3)

where the first (second) qudit is the control (target). Consider indirecting the mea-
surement of Zd on a qudit. Following Theorem 1, this measurement can be indi-
rected using CZd

, which is a controlled-phase operation. That is, in Fig. 1, we set
U ≡ Zd. However, by means of Hadamards, it is possible to turn CZd

into a CXd

operation. To see this, we note that for any integer j,

(Zd)j = (HdXdH
†
d)j = Hd(Xd)jH†

d. (4)

We can therefore replace the unitary U ≡ Zd in the upper wire of Fig. 1 by an Xd,
sandwiched between Hadamards outside the control operation. Thus, the indirec-
tion of the measurement of Zd is equivalent to the circuit in Fig. 3(a). Furthermore,
a circuit identity means that, by dropping the Hadamards in Fig. 3(a), reversing
the control direction and taking the transpose-conjugate, we perform an equivalent
operation, depicted in Fig. 3(b). This identity is proved in Theorem 3, which pro-
vides a qudit equivalent of the qubit control reversal depicted in Fig. 10 of Ref. 38.

Theorem 3. The measurement circuits depicted in Fig. 3 are equivalent.

Proof. Let the incoming state of the two qudits be |Ψ〉 =
∑

jk αjk|j〉|k〉 (we ignore
the fact that the summation can run on a single index on account of Schmidt
decomposability). It may be seen that at stages 1–3, this state is successively
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Hd

Xd
+

+

dH

dH dX+

Fig. 3. The above circuits are equivalent to indirecting measurement of Zd. The measured prin-
cipal system enters in the upper wire, the ancilla is the lower wire. Dropping the Hadamards
reverses the direction of control.

transformed first into |Ψ1〉 ≡ (1/d)(
∑

j,j′,k,k′(αjk exp[(2πι/d)(−jj′−kk′)]|j′〉|k′〉)),
then |Ψ2〉 ≡ (1/d)(

∑
j,j′,k,k′ (αjk exp[(2πι/d)(−jj′ − kk′)]|j′ + k′〉|k′〉)), and finally

|Ψ′〉 ≡ (1/d2)(
∑

j,k,j′,k′,j′′,k′′ αjk exp[(2πι/d)(−jj′−kk′+j′′[j′+k′]+k′′k)]|j′′〉|k′′〉).
Using the fact that (1/

√
d)

∑d−1
x=0 exp[(2πι/d)(x · y)] = δ(y), |Ψ′〉 may be simplified

to
∑

j,k αjβk|j〉|k − j〉, which is also the state obtained by applying on |Ψ〉 the
circuit in Fig. 3(b).

With these results, we can extend the n-qubit result of Refs. 21 and 22 to the 2-
qudit case, using Theorems 1–3. We now consider the more general system of “Bell
states” on n qudits, which we introduce below. A complete, maximally entangled
Bell basis for the Hilbert space Cdn

is given by

|Ψpq1q2···qn−1〉 =
d−1∑

j=0

e2πιj·p/d|j, q1 + j, q2 + j, . . . , qn−1 + j〉. (5)

We call them Bell states in the sense that any state |Ψpq1q2···qn−1〉 is a simultaneous
eigenstate of mutually commuting operators X⊗n

d and Zd(j)⊗Z†
d(k) (1 ≤ j, k ≤ (n−

1) and j 
= k), having, respectively, eigenvalues e−2πip/d and e−2πi[qk−qj ]/d. They
are functions of, respectively, the generalized phase observable Mp, with eigenvalues
p, and the generalized relative parity observable Mqj,k

with eigenvalues qk − qj . In
fact, X⊗n

d = e−2πiMp/d and Zd(j) ⊗ Z†
d(k) = e2πiMqj,k

/d.
The circuit that accomplishes indirection of the measurement of Mp and Mqj,k

is given in Fig. 4. According to Theorem 1, their measurements can be indi-
rected using controlled-(X⊗n

d ) and controlled-(Zd ⊗ Z†
d) operations. According to

Theorem 2, these joint controlled operations can be split into controlled operations
on separate target qudits. The phase variable measurement (first box) employs
type 2 decomposition, with n applications of CXd

, which is suitable for a dis-
tributed computing context in which the ancilla is sequentially passed from one
node to another. The type 1 variant of this subcircuit would be to combine all the
CXd

’s into a single controlled action, a controlled-(Xd)⊗n gate, having the effect:
CU : |j〉|j1〉 · · · |jn〉 �→ |j〉|j1 + j〉 · · · |jn + j〉, analogous to Fig. 2(b). Note that
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|ψ>

|0> |0>

|ψ>

|0>dH dH
+

dX

dX

dX

dX

dX dX dX dX+ + + +

Fig. 4. Diagram depicting the circuit for the indirection of generalized orthonormal qudit Bell
state discriminator. The first box depicts the indirected measurement of the generalized phase
observable, Mp, compatible with X⊗n

d in type 2 configuration. The other two boxes depict the

indirected measurement of an observable compatible with Z†
d ⊗Zd, which yields the relative parity

between the two qudits. To obtain the full information on the Bell state, n ancilla measurements
are needed in all: one to obtain phase information p, and n − 1 needed to obtain relative parity
information qj .

controlled-(Zd ⊗ Z†
d) is equivalent to (Hd ⊗ Hd)(controlled-(Xd ⊗ X†

d))(H†
d ⊗ H†

d),
which is seen by an argument analogous to Eq. (4). In type 2 configuration, the
controlled-(Xd⊗X†

d) can be written as a sequence of two CXd
’s acting from the same

ancilla onto two different system qudits. Using Theorem 3, the direction of control
can be inverted, and we get the subcircuits in the second and later boxes in Fig. 4.
A total of n ancillary qudits are required, one for each incomplete, d-dimensional
observable. In practical situations, the choice of the n − 1 pairs (j, k) of the rela-
tive parity observable will depend on the topology of the quantum communication
network available (cf. Sec. 5).

5. Quantum Communication

A novel practical use of the above circuits can be in overcoming restrictions coming
from the topology of a quantum communication network. The classical and espe-
cially the quantum resources required to implement the network are expected to be
expensive. Thus, it is worthwhile to use protocols that minimize both of them. As a
particular application, suppose that we are faced with the task of nondestructively
measuring quantum states in a network involving several users, who represent the
network nodes. Quantum communication between the nodes is allowed but must
preferably be minimized.

The direct way to perform multi-qudit measurement across a quantum network
is for all other members to communicate their qudits to a single node, whose mem-
ber (called, say Alice) performs a joint measurement on all n qubits or qudits to
determine the state, and transmits back the measured state. For example, consider
implementing Bell state discrimination across a quantum network. Alice can apply
a string of n− 1 C†

X operations on each consecutive pair of qudits in the Bell state



August 21, 2007 10:1 WSPC/187-IJQI 00309

General Circuits in Quantum Computation 637

|Ψpq1q2···qn−1〉 in Eq. (5), with the control (target) qudit being the preceding (fol-
lowing) qudit, and then finally apply Hd on the first qudit. It is easily seen that
each application of C†

X will disentangle the controlled qudit from the rest. For the
Bell states, this procedure effects the transformation:

|Ψpq1q2···qn−1〉 �→ |p〉|q2 − q1〉 · · · |qn−1 − qn−2〉. (6)

Subsequent measurement of each qudit in the computational basis completely char-
acterizes the Bell state. The state thus being discriminated, the above procedure
can be reversed to re-create the state |Ψpq1q2···qn−1〉 and transmit it back to the
remaining players.

In contrast, protocols based on our circuits quite generally involve only trans-
mission of the ancilla rather than the system qudits along the network edges. At
each node, the ancilla interacts with the local qudit as necessary. For example, in
the case of a n-qudit Bell state discrimination, the ancilla measuring the phase
observable Mp visits each node.

Irrespective of network topology, the direct strategy for Bell-state discrimina-
tion requires the implementation of 2(n− 1) two-qudit gates in all. In our method,
the number of two-qudit gates is the sum of n two-qudit gates for determining the
phase parameter p and 2(n − 1) for determining the (relative) parities, giving a
total of 3n − 2 two-qudit gates. From this viewpoint of consumption of nonlinear
resources, our method does not offer any advantage. However, this turns out not to
be the case from the viewpoint of quantum communication complexity, that is, the
quantity of quantum information (measured in qudits) that must be communicated
between different network nodes in order to perform a computation. Still, one point
worth noting here is that whereas the full state is available in the measure-recreate
technique just after Alice’s measurement, in our protocol, the full sequence of com-
munication must be completed in order to recover the initial state. Otherwise, the
ancilla remains entangled with the system qudits. In this work, we ignore both noise
and physical distance issues.

Suppose that a quantum communication network with a star topology and
n members is given, as for example, in Fig. 5(a), where n = 6. For all mem-
bers to transmit their qudits to Alice (at A), and for her to transmit them back
would require 2(n − 1) qudits to be communicated. Each edge through which a
qudit is communicated is counted as a unit of quantum communication complexity.
In our method, for measuring the “phase observable” Mp among n(> 2) parties,
the ancillary qudit is communicated 2(n − 2) times [for example, using the path
BACADAEAF , starting at B and being measured at F , giving a complexity of 8
for Fig. 5(a)]; the communication complexity for relative parity measurement is the
number of edges, n−1. In all, this requires 3n−5 instances of qudit communication,
which is larger than that required for the direct method.

However, consider a linear configuration of the communication network, as in
Fig. 5(b), where members are linked up in a single series. In the direct method, if
Alice is located at one end, the communication complexity is seen to be n(n − 1)
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Fig. 5. Four possible configurations of the quantum communication network: (a) In a star topol-
ogy, a set of “relative parity” measurements could be along each edge; (b) in the linear configura-
tion, the strategy of observing consecutive qubits or qudits, in the manner of Fig. 4, can be used
with advantage. Similar is the case with ring topology in (c) and the situation in Fig. (d), which
depicts two subgraphs connected by an expensive edge, for example, a long-haul connection.

qudits (again, counting each traversed edge as one unit of quantum communication);
it is (n2−1)/2 if she is in the middle. In either case, it is (of order) O(n2). In contrast,
our method can be implemented using n − 1 qudit communications for the phase
and one qudit communication for each relative parity measurement. For example,
to measure the phase observable, the ancillary qudit traverses the path CBADE,
starting at C and being measured at E, giving a complexity of 4. This requires only
2(n − 1) qudits to be communicated in all, so that the required communication is
only O(n). Thus, a distributed rather than direct method gives a quadratic saving
in quantum communication complexity.

A similar quadratic saving is seen to hold for the ring topology shown in
Fig. 5(c). The situation described in Fig. 5(d) is of even greater practical relevance.
In real life, we find the global Internet formed by long-haul connections between
various local area networks (LANs). A corresponding quantum situation is encoun-
tered when the distributed computing occurs over a large area, where two relatively
inexpensive quantum LANs of arbitrary topology [networks 1 and 2 in Fig. 5(d)] are
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linked by a much more costly connection, typically an expensive long-haul quan-
tum channel. To perform a Bell state discrimination over the global net, the direct
strategy would necessitate all qubits on one of the LANs to be transmitted across
the long-haul channel. On the other hand, our distributed strategy allows for no
more than two ancillary qudits to be transmitted across this channel, one for the
phase observable measurement, and the other for one relative parity measurement
between any member of network 1 and any member of network 2.

6. Conclusions

We have developed a general method for constructing circuits to indirect and dis-
tribute measurements on multiple qudits. This generalizes and unifies a number
of known circuit results. A side-benefit for quantum communication in distributed
computing was also noted. We conclude by noting possible directions for generaliz-
ing our work. One way is to study the general conditions under which any (possibly
complete) multi-qudit observable can be effectively distributed. Another is to allow
for more general initial state preparation of ancillas. This could be used to extend
optimal partial deterministic quantum teleportation of qubits43 to qudits. Another
idea is to allow the ancillas to be measured by positive-operator values measures
rather than by only projective measurements.
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