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The elementary two-terminal network consisting of a 
resistively (R) shunted inductance (L) in series with a 
capacitatively (C) shunted resistance (R) with / ,R L C=  
is known for its non-dispersive dissipative response, 
i.e. with the input impedance Z0(ω) = R, independent 
of the frequency (ω). In this communication, we examine 
the properties of a novel equivalent network derived 
iteratively from this two-terminal network by replacing 
everywhere the elemental resistive part R with the 
whole two-terminal network. This replacement sug-
gests a recursion Zn+1(ω) = f(Zn(ω)), with the recursive 
function f (z) = (iω Lz/iω L + z) + (z/1 + iω Cz). This re-
cursive map has two fixed points – an unstable fixed 
point Z*u = 0, and a stable fixed point Z*s = R. Thus, re-
sistances at the boundary terminating the infinitely iter-
ated network can now be made arbitrarily small 
without changing the input impedance Z∞ (= R). This, 
therefore, leads to realizing in the limit n → ∞, an  
effectively dissipative network comprising essentially 
the non-dissipative reactive elements (L  and C) only. 
Hence the oxymoron–resistance without resistance! 
This is best viewed as a classical anomaly akin to the 
one encountered in turbulence. Possible application as 
a formal decoherence device – the fake channel – is 
briefly discussed for its quantum analogue. 
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CONSIDER an elementary two-terminal LCR network shown 
in Figure 1. This series–parallel combination of the resis-
tively (R) shunted inductance (L) in series with the capa-
citatively (C) shunted resistance (R) with, / ,R L C=  has a 
dispersionless dissipative input impedance Z0(ω) = R, in-
dependent of the circular frequency (ω). This readily 
verifiable result is, of course, known, though not as com-
monly as one would have expected it to be. (The 
equivalence is detailed in that, e.g. the Nyquist–Johnson 
noise powers generated by the two shunt resistors (R) at 
temperature T, say, combine to give a noise output at the 
(1–2)-terminal equal to that for a single resistance R at 
temperature T.) The structure of this two-terminal net-
work admits iteration generating an equivalent network as 
indicated in Figure 2, which is much familiar as a ladder 
network1. Consider such an iterated network, but now 
terminated arbitrarily at the boundary. With this, we can 
write the recursion relation 
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This recursion has two fixed points, Z* = f (Z*), giving 
Z* = 0, R. Linear stability analysis of these fixed points is 
readily done. A perturbation z0 about the fixed point 
Z* = 0, iterates away giving |zn+1| = 2|zn|, making Z*  = 0 
an unstable fixed point Z*u (= 0) Next, consider the fixed 
point Z* = R. A perturbation z0 about R, iterates as 
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Figure 1. Dispersionless two-terminal LCR network with R = / .L C  
 

 
 

Figure 2. Iteration of the two-terminal network with ( / )R L C=  
replaced recursively by the whole two-terminal network. Shown here is 
one stage of iteration. 
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Figure 3. a, Iteration of the two-terminal network impedance (Re Zn(ω)) initialized at Z0 = 0.05 + i0. Note the fast convergence to the stable fixed 
point Z*s = 1. Here R = L = C = 1, and ω = 10. b, Iteration of the two-terminal network impedance (Im Zn(ω)) initialized at Z0 = 0.05 + i0. Note the 
fast convergence to the stable fixed point Z*s  = 1. Here R = L = C = 1 and ω = 10. 

 
 
 
This makes the fixed point Z*s (= R) stable. The implication 
of this fixed-point analysis is now straightforward. Termi-
nating the network at the boundary with z0 = r0 + ix0, 
where r0 can be made arbitrarily small (but non-zero 
positive), the impedance will iterate away to the stable 
fixed point Z*s = R as n → ∞. This is, however, so assuming 
that there are no other attractors. We have, therefore, car-
ried out the recursion in eq. (1) numerically with different 
initializations, and a typical evolution is shown in Figure 
3 a and b. 
 Again, note the fast recursive convergence to the fixed 
point Z*u/R → 1. This is the all important point – an arbi-
trarily small resistive termination at the boundary generates 
a finite resistance /R L C= in the limit n → ∞. And this 
result suffices for our purpose. (Inasmuch as the recursion 
holds for all values of the frequency ω, other attractors, if 
any, e.g. a period-doubling (two-cycle) attractor, would 
generate infinitely many isospectral networks. Such at-
tractors, or indeed a strange attractor, should be interesting 
for network synthesis.) The physical picture, of course, is 
just this1. The energy fed at the input terminal into the in-
finitely iterated network appears to be absorbed effec-
tively resistively at the input terminal. But, in fact, it is 
really not dissipated there instantaneously and locally – it 
is cascaded away to the distant boundary where it is ulti-
mately dissipated. In a steady state a.c. response, for in-
stance, much energy remains stored in the reactive elements. 
This is strongly reminiscent of what happens in fluid turbu-
lence. There too, energy fed at the large-scale eddy (inte-
gral regime) is cascaded away progressively to smaller-
scale eddies (inertial regime), and is ultimately dissipated 

at the distant smallest (Kolmogorov) scale – of viscosity. 
Indeed, the dissipation rate becomes independent of the 
viscosity in the limit of vanishingly small viscosity! This 
is a classic example of the classical dissipative anomaly2 
in the technical sense of the term – the time-reversible 
symmetry remains broken even as the symmetry-breaking 
parameter (the viscosity) tends to zero, giving dissipation 
without dissipation! 
 The conceptual similarity to our network is obvious 
(and not a little because of the inward-bound nature of our 
iterated network that makes the drawing in Figure 2 in-
creasingly more difficult beyond even the second stage of 
iteration). It will be apt at this stage to note that yet an-
other example of such an anomaly is encountered in the 
context of infinite-ladder networks of inductors and capa-
citors3,4, where finite dissipation arises as a result of a subtle 
limiting procedure well known in the context of phase 
transitions. The networks are, however, essentially low-
pass filters and the input impedance is not dispersionless. 
We may note in passing that the iterated network is hier-
archical in its geometry.  
 Our analysis of the iterated network has implications 
for dissipative quantum mechanics. It is known that there 
is no simple way of introducing dissipation phenome-
nologically into a Hamiltonian quantum system without 
inconsistencies5. A way out in the context of quantum 
transport has been to introduce fake channels5,6, such as 
transmission lines that outcouple part of the wave amplitude 
causing the so-called stochastic attenuation. Our infi-
nitely iterated network is essentially a lumped-element 
transmission line where the reactive elements can be con-

Imaginary part of Zn 
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sidered as part of the Hamiltonian system, and dissipation 
enters only through the anomaly discussed above. A 
quantum version of our iterated network is the Cayley tree 
composed of one-dimensional scatterer as introduced by 
Shapiro7 in the context of quantum conduction in parallel 
resistors using splitters. 
 An interesting feature of our network is its invariance 
with respect to a certain correlated disorder, namely that 
the condition /R L C=  (fixed) allows us to vary L and 
C for a given R at random with the strong correlation, 
without leading to Anderson wave-localization8,9 that would 
have blocked energy cascading. This is a case of purely 
gauge disorder.  
 In conclusion, we have analysed a two-terminal LCR 
network which is dispersionless and admits hierarchical 
iteration. When infinitely iterated, it gives an essentially 
reactive (L and C) network and yet provides dissipation – 
through an anomaly. Possible application to dissipative 
quantum systems is pointed out. The network admits corre-
lated disorder without localization. 
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A view-based approach for the computation of updates 
of optical parameters of a turbid medium is discussed. 
The approach differs from conventionally employed 
reconstruction techniques in terms of implementation 
of the computed updates. Simulation studies in fre-
quency domain for tissue phantoms approximated by 
slab geometry have been presented. Results of the 
study show that the proposed inversion scheme, wherein 
the projection data corresponding to each view has 
been handled individually, works well in predicting the 
presence of an inhomogeneity. A comparison with the 
reconstruction results of conventionally employed in-
version schemes involving simultaneous handling of 
projection data from all the view angles shows that the 
accuracy of the proposed scheme in predicting the 
presence of single inhomogeneity is higher and the re-
construction is also relatively free of artifacts. On the 
other hand, in the presence of multiple inhomogeneities, 
though the simultaneous handling of all the views gives 
better reconstruction, the updates obtained by the 
proposed scheme can be employed as close a priori in-
formation about the approximate positions of the in-
homogeneities, thereby reducing the overall dimension 
of the Jacobian matrix to be inverted and hence making 
the convergence faster. 
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OVER the past decade, diffuse optical tomography (DOT) 
has emerged as a viable method for non-invasive meas-
urements of optical properties of highly scattering media 
and monitoring of living tissues1–3. Since DOT presents a 
typical ill-posed inverse problem with a limited number 
of measurements, use of an appropriate reconstruction al-
gorithm is important. Hence, there has been considerable 
interest in the development of fast and accurate recon-
struction algorithms. An iterative Newton–Raphson algo-
rithm was employed by Pogue et al.4 for the reconstruction 
of optical parameter distribution using a multigrid finite 
difference solution of the frequency domain diffusion 
equation. Jiang et al.5 used a finite element-based recon-
struction algorithm under diffusion approximation to simul-
taneously reconstruct the images of both absorption and 
scattering coefficients. Model et al.6 introduced an iterative 
reconstruction algorithm for near-infrared imaging by 


