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PREFACE

Liquid crystals are anisotropic fluids{1, 2}: They possess orientational order and/or
oneor two dimensional translational order. They consist of moleculeswith shapeanisotropy
which can beeither rod-likeor disk-like. Inthisthesis we will present experimental studies
on liquid crystalline materials consisting of rod like molecules.

The nematic (N) liquid crystal isan orientationally ordered fluid. Thesmectic A (S4)
phase is an orientationally ordered fluid with an additional 1-dimensional translational
order. In the nematic phase the molecules tend to be parallel to some common axis
labelled by a unit vector called the director A. Theorientational order isreflectedin all the
macroscopic tensor propertiesd the medium. Even though the moleculesin the medium
are usually polar there are as many dipoleswhich point 'up’ as there are pointing 'down’.
Hence the nematic phaseis not ferroelectricand thestates A and —A are indistinguishable.

In this thesis we have mainly studied the effect o strong electric fields (~ 500 esu)
on some physicd propertiesd nematic and smectic A liquid crystals.

In Chapter 1 we give a genera introduction to the subject with particular reference
to the phenomena relevant to the work reported in the remaining chapters.

In Chapter 2 we describe a new experimental technique to quantitatively study the
effect of strong electric fidds on liquid crystals. When an electric fidd is applied to a
nematic liquid crystal, the field couples to the director through the dielectric anisotropy
and tends to align the molecules parallel or perpendicular to the field depending on the
sign o the anisotropy. The field dependent free energy density is given by

FE = ~§:-l7—l_-e||E2 cos? 9 — gl;r-eJ_Ez sin® @ (1)

where E isthe electricfield and ¢ and e, are the principal dielectricconstants. If ¢y > €.
then the director, A, digns pardle to E. When the electric fidd is applied along the
director, relating ¢, to the orientational order parameter S [3] we obtain

E_ _ 1 2
F* = 1ZWAE,,AS'E (2)
where Ae, is the didectric anisotropy of the fully aligned state (S=1). It can be seen
from the above equation that the energy can be lowered if S takes a higher value in the
presence o afidd.

Compounds with the highly polar cyano end group have a large 4(~ 8 — 20) thus
making the electric field effects quite pronounced. On the other hand, as the anisotropy in
magnetic susceptibility is quite small (x, ~ 10~7 cgs units), the effect o even rather high
magnetic fields on the order parameter and the transition temperature is also small [4].
However dueto the finiteresistanced the sample, when strong electric fields are applied
it gets heated thus making quantitative measurements difficult. Recently, Lelidis et al
[5-8] have designed an experimental technique in which they can overcome this problem
by using short electric pulses with large equilibration times. They have quantitatively
measured the electric field phase diagram in a few systems.

We have taken a different experimental approach .tothis problem. We have developed
a technique in which we measure the local temperature of the sample under a strong
electric field. This has been achieved by using a nickd resistance thermometer with a
large resistance (~ 300 ) etched in a nickd coated glass plate using a photolithographic
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Figure 1: Schematic diagram indicating the geometric disposition of the nickel thermome-
ter, SiO, insulator and the aluminium electrode on the lower plate d the cdll. 1t includes
a guard ring.

Figure 2 A sideview d the constructed cell.

technique (seeFigurel). Abovethisfilmfirst aninsulatinglayer of SiOg and subsequently
an aluminium electrodeare vacuum coated. This constitutes the bottom plate o the cell.
The top plate is either an aluminium coated electrode or an electrodeetched in an ITO
coated plate. The side view d the cdl is shown in Figure 2.

We use an impedance analysisd the cell to measure the dielectric constant (¢) and
theresistance (R,) d the sample which giveinformation on both the long range and short
range order in the medium. We have aso conducted light scattering measurements and
optical transmission studies with a microscope which can be used in the reflection mode.
Figure 3 shows the overall experimental setup.

In Chapter 3 we present theexperimental resultson the effect o astrong electricfied
on the nematic-isotropic phase transition in some compounds. When afield is applied to
the isotropic phaseit inducesan orientational order in the medium. Thisleadsto a wesk
induced anisotropy in all the physical properties, for eg to birefringence (Kerr effect). In
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Figure 4: Variation of the order parameter as a function of temperature and field in an
80CB sampleacrossthe N-I transition. The linesarefitted according to a Landau theory.

this paranematic phase the field induced order is uniaxial. Thus the higher temperature
paranematic phase and the lower temperature nematic phase have the same symmetry,
hence ruling out the possibility o a second order phasetransition between them. Assuch,
there can be either a jump in the order parameter at the transition point in afirst order
transitigp or a continuous evolution d the order parameter. It is expected that the jump
in the order parameter at the tragsition point decreases as the field is increased, and goes
to zero at the critical field. This phenomenonissimilar to the classicliquid-gas transition
under the application o pressure. There have been a number d theoretical calculations
on the detailed phase diagramsin the presenced afidd in the framework o the Landau
theory [9-11]. There are also some molecular models that discuss this problem [12-104].

Using the ¢;; measurementswe have constructed the electric field phase diagram for
two compounds with positive dielectric anisotropy i.e. pentyl cyanobiphenyl and octyloxy
cyanobiphenyl (80CB). In both the cases we can reach the critical fidd. We fit the data
to a Landau model. Figure 4 shows the variation o the order parameter o 80CB as a
function o temperature at different fields with the corresponding theoretical variations
based on the Landau theory. It can be seen that the theoretical variation is somewhat
morerapid than that of the experimental data. Thisisto be expected asit is known that
even in thefield free case the Landau theory predicts a much steeper variationd the order
parameter as a function d temperature than is experimentally observed.

We have also used optical studies in the reflection mode to measure the influence
d a strong electric field on the orientational order and the transition temperature in a
material with negative dielectric anisotropy (4-methoxyphenyl-trans-4-pentylcyclohexyl-
carboxylate). Here we see a small increase in the transition temperature as the fidd is



Preface \f

66.2 |

86 |

TE(°C)

85.8 |

65.6 |-

0 200 400 800
-~ E(esu)

Figure5: T4y asafunctiond applied electricfieldin 80CB. Thesymbolsareexperimental
data. The caculated variation correspondsto the prediction of the Landau theory that
the shift in transition temperature is proportional to E2.

increased.

In Chapter 4 we present experimental results on the effect o a strong electric fied
on the N-S4 and Sa-Ng (reentrant nematic) phase transitionsin a couple of systems. In
the S4 phase the trandational order couples with the orientational order and the S4-N
transition temperature dependson thefield. We have usad the resistance of the sampleto
detect the N-84 phasetransition in 80CB (T'§y) as afunction of the applied electricfield.
We see that as thefidd is increased the transition temperature aso increases (Figure 5).
We have used an appropriate Landau theory to obtain the theoretical fit shown in the
figure.

Inview o the lower symmetry of theS 4 phase, it usually occursat lower temperatures
compared to the N phase. However, it is now wel established that in compounds whose
molecules have strongly polar cyano or nitro end groups, the nematic phase can reenter, as
the S4 liquid crystal is cooled to a low enough temperature [1, 2, 15). It isalso established
that the S4 phase which occurs between the higher temperature N phase and the lower
temperature reentrant nematic (Ng) phaseis characterised by a layer spacing d which is
somewhat longer than the molecular length. This S4 phase with such a 'partial bilayer’
structure is caled the Ag phase and arises due to an antiparallel orientation between
neighbouring polar molecules {16, 17] such that the aromatic cores overlap.

High pressure studies on such reentrant systems show that the N-A4 transition tem-
perature usually decreases with pressure and the A4-Ng transition temperature increases
with pressure ultimately making the Aq phase bounded above [18]. We have studied the
electricfidd effect on a mixture d 80CB-60CB to look for a similar phase diagram. As
we found it difficult to detect the transition temperatures using the dielectric constant
and resistance of the sample at all the applied eectric fields we have also used a simple
light scattering techniquefor this purpose.

Both the A4-Ng and Ag-N transition temperatures increase with field though the
variationd the former is much stronger than that o the latter. We have applied fields up
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Figure6: Theedectricfidd phasediagram for the 60CB - 80CB mixture. Circlesare data
obtained from light scattering measurements and open squares are those obtained from
the electrical impedance measurements. The solid lines are guides to the eye. Note that
the data on the Ngz-A4 transition are consistent with a change o sope around 200 esu.

to 500 esu (at 4111 Hz) on asamplewith thickness~ 20 um to construct the phasediagram
shown in Figure 6. Though we have shown the fidld dependenced the Ag-Ng transition
temperature by a smooth lineas a guide to the eye note that the data is consistent with
a change o slope around ~ 200 esu.

We discussthiselectricfidd phase diagram in the framework of an extended Landau-
de Gennes theory. Finaly we will summarisethe predictionsd a molecular model deve-
oped by our coworkers, extended to includethe electricfidd effect on the phase transitions
in a system exhibitinga reentrant phase [19-21] which broadly agree with the experimental
results.

In Chapter 5 we describe the results of various experiments using a strong electric
field on p-cyanophenyl p-n heptylbenzoate (CP7B) which has a larger diel ectricanisotropy
than those o the cyanobiphenyl compoundsstudied in the previous chapters. We argue
that these experimental results indicate the presence d short range polar order in the
medium. The new results obtained in this study are

e Electricfied phase diagram o the paranematic-nematic phase transition.

e Field induced enhancement of the order parameter. Figures 7 showse as afunction
d temperature at different applied electric fields. We have related the variation of
¢ to the order parameter and discussed the enhancement o the order parameter
in terms of the microscopic Kerr effect and the quenching of macroscopic thermal
fluctuations.

e Conductivity measurementsin particular near the electric fidd induced nematic-
paranematic critical point. Figure 8 shows the variation of R, as functions of tem-
perature and field. The conductivity measurement shows the usual effectsof a week
electrolyte, viz, a reduction in the conductivity at higher fields deep in the nematic
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phase due to the sweeping o the ions by the field. Asthefidd isincreased to large
values, the conductivity again increases due to an increase in the order parameter.
Close to the critical point Te, the conductivity shows an unusually large increase
exhibiting a pesk at a temperature dightly lower than T,. We interpret the conduc-
tivity peak near T, as arising from a critical dowing down of macroscopic polarised
domains of molecules which have a parallel orientation.

e Divergence d the order parameter susceptibility near the electric fidd induced
nematic-paranematic critical point using the third harmonic electrical signal.

e Generation of a second harmonicresponsein the electrical signal at T, which implies
the presence of polarised domains that do not reorient with the field.

e Degp in the nematic phase, at ~ 33°C' wefind that thereisa large increasein the
scattered intensity when a fidd d ~ 600 esu is applied, which impliesthat thereis
a field induced phase transition. We have ascertained that the lower temperature
phase is neither biaxial nor a smectic phase. We tentatively interpret this to be a
nematic-nematic phase transition which takes place due to a change in the short
range order in the medium.

We may also note that there is a consderable body o theoretical work on the possi-
bility o a polar nematic phase when the molecules carry a large dipole moment (seefor
example [22]). To our knowledge such a phase has not yet been discovered. Our observa-
tion of a strong polar short range order may indicate one possibleroute to the realisation
d a polar nematic liquid crystal.

In Chapter 6 we present experimental results on the electrooptic response of some
nematic liquid crystals with positive dielectric anisotropy to a low frequency square wave
eectric fidd (see Figure 9). Asit can be seen from Figure 9 the optical response shows
a peak at a specificfidd. We have dso measured the current through the sample which
saturates at some vaue d thefied (Figure10). We interpret the electrooptic response to
arise from the flexoelectric coupling of the medium with the strong field gradient preva-
lent near the electrodes implied by the saturation d the current. The possible role of
electrohydrodynamic instability is also discussed.

In Chapter 7 we present magnetic susceptibility measurements on a few mesogens.
It is a convenient technique for measuring the order parameter o nematic liquid crys-
tals. We use a standard Faraday balance technique using aluminium cups as the sam-
ple containers. The measurements have been made on the following compounds : p-
cyanophenyl p-n heptylbenzoate (CP7B), octyloxy cyanobiphenyl(80CB) 5-n-heptyl-2(4
cyanophenyl)-pyrimidine (RO CP7037) and 4-methoxy phenyl-trans-4- pentylcyclohexyl-
carboxylate. Figure 11 shows the order parameter variation as a function o temperature
for the above the compounds. These vaues are used in interpreting the ¢ valuesin the
appropriate chapters.
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The following papers contain some d the resultsdescribed in this thesis.

1.Effect of strong electricfidds on phase transitionsin someliquid crystals.

Geetha Basappa and N.V. Madhusudana, Molecular Crystals and Liquid Crystals,
288, (1996) 161.

2. Effect d a strong éectric fidld on the reentrant nematic to smectic A4 phase
transition .

Geetha Basappa, A.S Govind and N.V. Madhusudana (J. Phys. in press).

3. Effect o a strong electric field on a nematogen : Evidence for polar short range
order.

Geetha Basappa and N.V. Madhusudana (submitted for publication).

Other Publications:
1 Unusua patterns in the growth of smectic liquid crystals. R. Prathibha, Geetha Bas-
appaand N. V. Madhusudana, Key EngineeringMaterials, 103, (1995) 27.
2. Growth patterns d some smectic C liquid crystals in some binary mixtures. R.
Prathibha, Geetha Basappa, N. V. Madhusudana and B. K. Sadashiva (submitted for
publication).
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